Summarizing Measured Data

Nelson Fonseca
State University of Campinas

Statistical Concepts

- Mean

$$
E[X]=\bar{X}=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Second central moment => variance

$$
\sigma_{x}^{2} \stackrel{\Delta}{=(X-\bar{X})^{2}} \stackrel{\Delta}{=} \overline{X^{2}}-(\bar{X})^{2}
$$

- Standard deviation (central moment)

$$
\sigma_{x}=\sqrt{\sigma_{x}^{2}}
$$

- Coefficient of variation

$$
C_{X}=\frac{\Delta}{\bar{X}}
$$

Statistical Concepts

- Covariance of two random variables X_{1} and X_{2}
$\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]$
$\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)$
$\operatorname{Corr}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{2}\right) /\left(\sigma_{1} \sigma_{2}\right)$

Statistical Concepts

- Quantile - the x value at which the CDF takes a value α is called α quantile or 100α-percentile (x_{α})

$$
P\left(x \leq x_{\alpha}\right)=F\left(x_{\alpha}\right)=\alpha
$$

Statistical Concepts

- Median - The 50-percentile (or 0.5quantile) of a random variable
- Mode - The most likely value, x_{i}, that has the highest probability p_{i} or at which the pdf is maximum

Indices of Central Tendencies

Indices of Central Tendencies

- Mean:
- total of all observation is of interest,
- affected by outlier
- usefulness depends on the number of samples, variance and skewness (ratio between maximum and minimum values)
- Median and Mode ignores the total information:
- Median and mean always exists, there can be more than one mode;

Mean

TABLE 12.1 System Response Tlmes for 5 Days

	System A	System B
	10	5
	9	5
	11	5
	10	4
	10	31
Sum	50	50
Mean	10	10
Typical	10	5

Geometric Mean

- Cache hit ratio over several layers of caches
- Cache miss ratios
- Average error rate per hop on a multihop path

$$
\left(\dot{x}=\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$ in a network

Geometric Mean

- The geometric mean of a ratio is the ratio of the geometric means of the numerator and denominator (physical meaning). The choice of bases does not change the conclusion.

$$
\operatorname{gm}\left(\frac{x_{1}}{y_{1}}, \frac{x_{2}}{y_{2}} \ldots \frac{x_{n}}{y_{n}}\right)=\frac{g m\left(x_{1}, x_{2}, \ldots x_{n}\right)}{g m\left(y_{1}, y_{2}, \ldots y_{n}\right)}=\frac{1}{\operatorname{gm}\left(y_{1} / x_{1}, y_{2} / x_{2}, \ldots y_{n} / x_{n}\right)}
$$

Geometric Mean

TABLE 12.2 Improvement in Each Layer of Network Protocol

Protocol Layer	Performance Improwement (\%)
7	18
6	13
5	11
4	8
3	10
2	28
1	5

Variability

- 5-percentile and 95-percentile (fractile, quantile) - minimum and maximum
- Xth decile $=10 X$-percentile
- Xth quartile $=25 x t h$ quartile
- Median =second quartile
- Intequartile range (SIQR) = third first quartile

