Summarizing Measured Data

Nelson Fonseca State University of Campinas

· Mean

$$E[X] = \overline{X} = \int_{-\infty}^{\infty} x f_X(x) dx$$

– Second central moment => variance

$$\sigma_x^2 = \overline{(X - \overline{X})^2} = \overline{X^2} - (\overline{X})^2$$

Standard deviation (central moment)

$$\sigma_{x} = \sqrt{\sigma_{X}^{2}}$$

Coefficient of variation

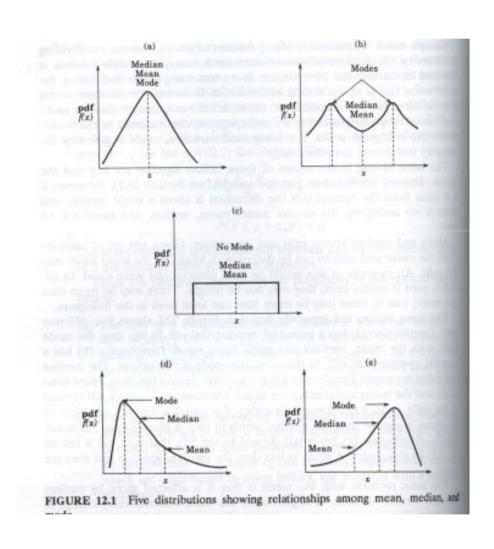
$$C_X = \frac{\delta}{X}$$

• Covariance of two random variables X_1 and X_2

$$Cov(X_1, X_2) = E[(X_1 - E[X_1])(X_2 - E[X_2])]$$

$$var(X_1 + X_2) = var(X_1) + var(X_2) + 2Cov(X_1, X_2)$$

Corr
$$(X_1, X_2) = Cov (X_1, X_2) / (\sigma_1 \sigma_2)$$


• Quantile – the x value at which the CDF takes a value α is called α -quantile or 100α -percentile (x_{α})

$$P(x \le x_{\alpha}) = F(x_{\alpha}) = \alpha$$

 Median - The 50-percentile (or 0.5quantile) of a random variable

• Mode - The most likely value, x_i , that has the highest probability p_i or at which the pdf is maximum

Indices of Central Tendencies

Indices of Central Tendencies

· Mean:

- total of all observation is of interest,
- affected by outlier
- usefulness depends on the number of samples, variance and skewness (ratio between maximum and minimum values)
- Median and Mode ignores the total information;
- Median and mean always exists, there can be more than one mode;

Mean

TABLE 12.1 System Response Times for 5 Days

	System A	System B
	10	5
	9	5
	11	5
	10	4
	10	31
Sum	50	50
Mean	10	10
Typical	10	5

Geometric Mean

- Cache hit ratio over several layers of caches
- Cache miss ratios
- Average error rate per hop on a multihop path in a network

$$\left(\dot{x} = \prod_{i=1}^{n} x_i\right)^{1/n}$$

Geometric Mean

 The geometric mean of a ratio is the ratio of the geometric means of the numerator and denominator (physical meaning). The choice of bases does not change the conclusion.

$$gm\left(\frac{x_{1}}{y_{1}}, \frac{x_{2}}{y_{2}}...\frac{x_{n}}{y_{n}}\right) = \frac{gm(x_{1}, x_{2},...x_{n})}{gm(y_{1}, y_{2},...y_{n})} = \frac{1}{gm\left(\frac{y_{1}}{y_{1}}, \frac{y_{2}}{y_{2}},...\frac{y_{n}}{y_{n}}\right)}$$

Geometric Mean

TABLE 12.2 Improvement in Each Layer of Network Protocol

Protocol Layer	Performance Improvement (%)
7	18
6	13
5	11
4	8
3	10
2	28
1	5

Variability

- 5-percentile and 95-percentile (fractile, quantile) - minimum and maximum
- Xth decile = 10X-percentile
- Xth quartile = 25xth quartile
- Median = second quartile
- Intequartile range (SIQR) = third first quartile