
IEEE SIGNAL PROCESSING MAGAZINE 1The Multisale Nature of Network TraÆ:Disovery, Analysis, and ModellingPatrie Abry, Rihard Baraniuk, Patrik Flandrin, Rudolf Riedi, Darryl VeithAbstratThe omplexity and rihness of teleommuniations traÆ is suh that one may despair to �nd any regularity or explanatory priniples.Nonetheless, the disovery of saling behavior in tele-traÆ has provided hope that parsimonious models an be found. The statistis ofsaling behavior present many hallenges, espeially in non-stationary environments. In this paper, we overview the state of the art in thisarea, fousing on the apabilities of the wavelet transform as a key tool for unravelling the mysteries of traÆ statistis and dynamis.KeywordsComputer network traÆ, Tele-traÆ, Wavelets, Saling, Self-similarity, Long-Range Dependene, Fratals, Multifratals, Casade Pro-esses, Multipliative Proesses, In�nitely Divisible Casades, Frational Brownian Motion.I. Traffi and SalingBy the term teleommuniations traÆ or tele-traÆ we mean the ow of information, or data, in teleommuniationsnetworks of all kinds. From its origins as an analog signal arrying enoded voie over a dediated wire or \iruit", traÆnow overs information of all kinds, inluding voie, video, text, telemetry, and real-time versions of eah, inludingdistributed gaming. Instead of the dediated iruits of traditional telephone networks, paket swithing tehnologyis now used to arry traÆ of all types in a uniform format (to a �rst approximation): as a stream of pakets, eahontaining a header with networking information and a payload of bytes of \data".Box 1: Tele-TraÆ: A Turbulent River over a Rugged LandsapeThe geographi and topologial om-plexity of the Internet \infoways" hasreahed a point that it is now asigni�ant hallenge to provide evenrough maps of the major tribu-taries. The Skitter program, a CAIDA(Cooperative Assoiation for InternetData Analysis http://www.aida.org/ )projet, attempts to provide maps suhas the one shown here, traing onne-tivity of hosts throughout the Internetby sending messages out to diverse des-tinations and ounting the number oflinks traversed to reah them. Eahline represents a logial link betweennodes, passing from red on the out-bound side to blue on the inbound.The data visible here is only a smallpart of a large dataset of around 29,000destinations.(Figure reprodued with the kind per-mission of CAIDA. opyright 2001CAIDA/UC Regents. Mapnet Author:Bradley Hu�aker, CAIDA. The threedimensional rendering is provided bythe hypviewer tool.)

Although reated by manand mahine, the omplex-ity of teletraÆ is suh thatin many ways it requirestreatment as a natural phe-nomenon. It an be likenedto a turbulent, pulsatingriver owing along a highlyonvoluted landsape, butwhere streams may ow inall diretions in de�ane ofgravity. The landsape isthe network. It onsistsof a deep hierarhy of sys-tems with omplexity atmany levels. Of these, the\geographial" omplexityor onnetivity of networklinks and nodes, illustratedin Box 1, is of entral im-portane. Other key as-pets inlude the size orbandwidth of links (the vol-ume of the river beds), andat the lowest level, a widevariety of physial trans-port mehanisms (opper,opti �bre, et.) exist with their own reliability and onnetivity harateristis. Although eah atomi omponentis well-understood, the whole is so omplex that it must be measured and its emergent properties \disovered". Com-prehensive simulation is diÆult.P. Abry and P. Flandrin are with the ENS Lyon, Frane, E-mail: fpabry,flandring�ens-lyon.fr.R. Baraniuk and R. Riedi are with the ECE Dept., Rie University, E-mail: frihb,riedig�rie.edu.D. Veith is with EMUlab, University of Melbourne, Vitoria, Australia. E-mail: d.veith�ee.mu.oz.au.



2 IEEE SIGNAL PROCESSING MAGAZINEA key onept in networking is the existene of network protools, and their enapsulation. Let us explain with anexample: The Internet protool (IP) is used to allow the transport of pakets over heterogeneous networks. The protoolunderstands and knows how to proess information suh as addressing details ontained in the header of IP pakets.However, by itself IP is only a forwarding mehanism without any guarantee of suessful delivery. At the next higherlevel, the transfer ontrol protool (TCP) provides suh a guarantee by establishing a virtual onnetion between twoend points and monitoring the safe arrival of IP pakets, and managing the retransmission of any lost pakets. On astill higher level, web-page transfers our via the Hypertext transport protool (HTTP), whih uses TCP for reliabletransfer.The resulting enapsulation \HTTP over TCP over IP", therefore means that HTTP oversees the transfer of text andimages et, while the atual data �les are handed over to TCP for reliable transfer. TCP hops the data into datagrams(pakets) whih are handed to IP for proper routing through the network. This organization o�ers hierarhal struturingof network funtionality and traÆ but also adds omplexity: eah level has its own dynamis and mehanisms, as wellas time sales.Over this landsape ows the teletraÆ, whih has even more levels of omplexity than the underlying network. Threegeneral ategories an be distinguished.Geographi omplexity plays a major role. Although one an think of the Internet as onsisting of a \ore" of very highbandwidth links and very fast swithes, with traÆ soures at the network \edge", the distanes from the edge to the oreBox 2: Temporal Burstiness in TraÆHere, we present an analysis of a standard trae of Ethernet traÆ, \pAug" from[14℄. An entry Y (k) of this time series represents the number of bytes observedon the Ethernet at Bellore during the k-th time slot of duration Æ = 12ms of themeasurement. Denote by Y (m) the aggregated series of level m; for example Y (3)(1) =(Y (1) + Y (2) + Y (3))=3 represents then the average traÆ observed in time slots ofduration 3Æ. Through this averaging operator, sale invariane an be illustrated ina simple but powerful way . From top to bottom, the �rst 512 points of four seriesare plotted: Y (k) = Y (1)(k), Y (8)(k), Y (64)(k), and Y (512)(k), with Æ varying fromÆ = 12ms to Æ = 12 � 8 � 8 � 8ms, or 6.1s.
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The derease in variability with inreased smoothing is very slow, onsistent withVar[Y (m)℄ = O(m��); � � 0:4 2 (0; 1)the so alled \slowly deaying variane" of long memory proesses.A wavelet analysis of this series appears in Figure 8, middle plot.

vary greatly, and the topologyis highly onvoluted. Aessbandwidths vary widely, fromslow modems to gigabit Ether-net loal area networks, and mo-bile aess reates traÆ whihhanges its spatial harater-istis. Soures are inhomo-geneously distributed, for ex-ample onentrations are foundin loations suh as univer-sities and major orporations.Furthermore traÆ streams aresplit and reombined in swithesin possibly very heterogeneousways, and what is at one level asuperposition of soures an beseen at another level, loser tothe ore, as a single, more om-plex kind of \soure".O�ered TraÆ omplexity re-lates to the multilayered na-ture of traÆ demands. Users,generating web browsing ses-sions for example, ome and goin random patterns and remainfor widely varying periods oftime, during whih their ativitylevels (number of pages down-loaded) may vary both qualita-tively and quantitatively. Theusers' appliations will them-selves employ a variety of proto-ols that generate di�erent traf-� patterns, and �nally, theunderlying objets themselves,text, audio, images, video, havewidely di�ering properties.Temporal omplexity is omnipresent. All of the above aspets of traÆ are time varying, and take plae over a verywide range of time-sales, from miroseonds for protools ating on pakets at the loal area network level, throughdaily and weekly yles, up to the evolution of the phenomena themselves over months and years.



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 3The huge range of time-sales in traÆ and the equally impressive range of bandwidths, from a kilobytes up toterabytes per seond over large optial bakbone links, o�ers enormous sope for sale dependent behavior in traÆ.But is this sope atually \exploited" in real traÆ? Is traÆ in fat regular on most time sales, with variability easilyreduible to, say, a diurnal yle plus some added variane arising from the nature of the most popular data-type/protoolombination? Sine the early nineties, when detailed measurements of paket traÆ were made and seriously analyzedfor the �rst time [21℄, [15℄, [14℄, we know that the answer is an emphati \No". Far from being smooth and dominatedby a single identi�able fator, paket traÆ exhibits sale invariane features, with no lear dominant omponent.For instane, long memory is a sale invariane phenomenon that an be seen in the time series Y (t) desribing thedata transfer rate over a link at time t. Other examples of time series with long memory are the number of ative TCPonnetions in suessive time intervals, or the suessive interarrival times of IP pakets shown in Figure 1.The philosophy of sale invariane or \saling" an be expressed as the lak of any speial harateristi time or spaesale desribing utuations in Y (t). Instead one needs to desribe the steady progression aross sales. In the ase oftraÆ suh a progression has been found empirially and has lead to long memory models and more generally to modelswith fratal features, as we will explore.The sale invariant features of traÆ an also be thought of as giving preise meaning to the important but potentiallyvague notion of traÆ burstiness, whih means, roughly, a lak of smoothness. In very general terms, burstiness isimportant beause from the �eld of performane analysis of networks, and in partiular that of swithes via queueingtheory, we know that inreased burstiness results in lower levels of resoure utilization for a �xed quality of servie,and therefore to higher osts. At the engineering level, servie quality refers to metris suh as available bandwidth,data transfer delay, and paket loss. The impat of sale invariane extends to network management issues suh as alladmission ontrol, ongestion ontrol, as well as poliies for fairness and priing.It is important to distinguish between two anonial meanings of the term burstiness, whih have their ounter-parts in models and analysis. Again let us take \traÆ" to be the data rate Y (t), nominally in bytes per se-ond, over a link at time t. One kind of burstiness arises from dependenies over long time periods, whih an beBox 3: Amplitude Burstiness in TraÆ.Consider a partiular time series derived from Internet data, the durations (in seonds)of suessive TCP onnetions dur(k), k = 1, 2 � � � 175223, for onnetions beginningduring a 6.4 hour long subset of a muh larger trae. The subset was seleted forapparent stationarity aross a range of riteria.The left plot shows the time series. Gaussian models an provide in some asesreasonable approximations to traÆ traes, but ertainly not here. Indeed, the samplestandard deviation to mean ratio is � 12, whih given the natural onstraint ofpositivity for the series, is deidedly non-normal!
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The marginal of the series is examined in the right plot, in a log-log plot of the sampleomplementary probability distribution funtion P (dur) > x. The roughly straightline strongly suggests a heavy power-law like tail, with an index whih is lose to theboundary of in�nite variane. The horizontal lines highlight, from top to bottom, the20%, 90%, and 95% quantiles respetively.

made preise in terms of theorrelation funtion of Y (t) (as-suming stationarity and thatseond order statistis exist).As shown in Box 2, suh tem-poral burstiness was exploredwhen saling was �rst found inpaket traÆ. More preisely,the well known Long-Range De-pendent (LRD) property of traf-� is a phenomenon de�ned interms of temporal orrelation,whose network origins are nowthought to be quite well under-stood in terms of the paradigmof heavy tails of �le sizes of re-quested objets, whih ausessoures to transmit over ex-tended periods [36℄.A seond kind of burstinessdesribes variability, the sizeof utuations in value or am-plitude, and therefore onernssmall sales. It refers thereforeto the marginal distribution ofY (t), as haraterized for exam-ple by the ratio of standard de-viation to mean if this exists,as the loal singular behavior ofmultifratal models (desribedin the next setion), or alterna-tively as a heavy tail parameterof the distribution of the instantaneous traÆ load in the ase of in�nite variane models. Box 3 illustrates this latterase for the time series of suessive TCP onnetion durations, derived from measurements taken over a 2Mbps aess



4 IEEE SIGNAL PROCESSING MAGAZINElink, made available at the University of Waikato [22℄. Even when an apparently stationary subset is seleted, the vari-ation in value or amplitude is very signi�ant, and highly non-Gaussian. Marginals of other time series do not alwaysyield suh extreme power-law tails; however Weibullian or log-normal behavior is more ommon than Gaussian, unlessthe data has already been highly aggregated or if sales above a few seonds are examined.The two types of burstiness just desribed are quite di�erent. However, often it is onvenient to work not with astationary series like Y (t), but with its integrated or \ounting proess" equivalent N(t), whih ounts the amount oftraÆ arriving in [0; t℄. It is then important to bear in mind that the statistis of N(t) are a funtion both of thetemporal and the amplitude burstiness of the rate proess Y (t).The next step in this introdution to saling in traÆ is to draw attention to the fat that, although at large sales(seonds and beyond) astonishingly lear, simple and relatively well understood saling laws are found, the same annotbe said at small sales. This is true for example of the inter-arrival time series shown in Figure 1, a disrete seriesgiving the suessive intervals (in milliseonds) between the arrival of new TCP onnetions. When examined with thenaked eye this series may be aused of having long memory, with a marginal slightly deviating from Gaussianity. Inreality, in addition to long memory, it ontains muh non-trivial saling struture at small sales (see Figure 8) whihis suggestive of a rih underlying dynamis of TCP onnetion reation. Investigation of suh dynamis is beyond thesope of this review, however knowledge of its saling properties, as examined in setion 3 (see [32℄ for more details),lays a foundation for an informed investigation.The fat is that muh work remains to be done to ahieve a lear understanding of traÆ saling over small sales,whih is haraterized by far higher variability, more omplex and less de�nitive saling laws, and the neessity ofdealing with non-Gaussian data and hene statistis beyond seond order. The high variability on small sales is shownin Figures 2 and 3 for a publily available trae olleted at the Lawrene Berkeley Laboratory. The time series ofthe number of TCP pakets arriving per time interval has very irregular loal struture, as seen in the blowups in thelower plots. While large sale behavior suh as long memory matters for many network design and management issues,
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Fig. 2. A snap shot (seonds 4150000 �4700000) of the LBL trae of paketarrival per time depiting erratiallyvarying regularity.
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Fig. 3. Zooms: 4290500 { 4320000, 4630000 { 4660000, and again: 4630700 { 4640100.Demonstrating the existene of long memory as well as the interwoven oexis-tene of smooth and bursty periods at all times.

understanding small sale behavior ispartiularly important for ow ontrol,performane and eÆieny. In terms ofnetwork performane, variability is (al-most) always an undesirable feature oftraÆ data. Therefore, a key motivationfor investigating suh saling is to helpidentify generating mehanisms leadingto an understanding of their root ausesin networking terms. If for example itwere known that a ertain feature of theTCP protool was responsible for gener-ating the observed omplex saling be-havior at small sales, then we wouldbe in a position to perhaps eliminateor moderate it via modi�ations to theprotool. Alternatively, if a property ofertain traÆ soure types was the ul-prit, then we ould predit if the salingwould persist in the future or fade awayas the nature of teleommuniations ser-vies evolve.To onlude this introdution to sal-ing in teleommuniations, we point outthat in many series derived from traÆdata, in partiular TCP/IP traÆ andinluding the data in Figure 1, (see Fig-ure 8, right most plot and Box 12), areurring feature is the existene of aharateristi sale at around 1 seond,whih separates the now lassi \mono-saling" at large sales indiative of long memory, from the more omplex, butnone-the-less saling behavior, at small sales. Multifratal models are one possible approah for the latter domain,whereas in�nitely divisible asades o�er the possibility of integrating both regimes in a single desription. In the fol-lowing two setions we will desribe these models and the assoiated traÆ phenomena in detail, together with waveletbased statistial methods whih enable them to be e�etively explored.



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 5II. Saling Models

Fig. 4. Statistial Self-Similarity. A di-lated portion of the sample path of a self-similar proess annot be (statistially)distinguished from the whole.

The notion of saling is de�ned loosely, as a negative property of a time series:the absene of harateristi sales. Its main onsequene is that the whole andits parts annot be statistially distinguished from eah other. The absene ofsuh sales means that new signal proessing tools are needed both for analy-sis and modelling, whilst standard tehniques built on harateristi times (forexample simple Markov models) must be abandoned. This setion provides anintrodutory review of various models used to give esh to the spirit of saling.Self-Similarity. The purest formal framework for saling is undoubtedly thatof exatly self-similar proesses. Self-similarity (see Figure 4 for an illustration,Box 4 for a tehnial de�nition and, e.g., [33℄ for further information) means thatthe sample paths of the proess X(t) and those of a resaled version HX(t=),obtained by simultaneously dilating the time axis by a fator  > 0, and theamplitude axis by a fator H , annot be statistially distinguished from eahother. H is alled the self-similarity or Hurst parameter. Equivalently, it impliesthat an aÆne dilated subset of one sample path annot be distinguished from itswhole. It is therefore not possible to identify a referene sale of time, and thusthere is no suh referene sale. Exat statistial self-similarity thereby ful�ls theintuition of saling in a simple and preise way.Self-similar proesses are, by de�nition, non stationary, as an be seen from equation (2). However the most impor-tant sublass, namely self-similar proesses with stationary inrements (H-sssi proesses), are non-stationary in a veryhomogeneous way. They an be thought as the integral of some stationary proess. Frational Brownian motion is theunique Gaussian self-similar proess with stationary inrements, and is the most widely used proess to model salingBox 4: Self Similar Proesses with Stationary Inrements.A proess X(t) is said to be self-similar, with self similarity parameter H > 0, iffX(t); t 2 Rg d= fHX(t=); t 2 Rg; 8 > 0; (1)where d= means equality for all �nite dimensional distributions. A major onsequeneof this de�nition is that the moments of X , provided they exist, behave as power-lawsof time: IEjX(t)jq = IEjX(1)jqjtjqH : (2)For appliations, one usually restrits the lass of self-similar proesses to that ofself-similar proesses with stationary inrements (or H-sssi proesses). A proess Xis said to have stationary inrements Y (Æ; t) iffY (Æ; t) := YÆ(t) := X(t+ Æ)�X(t); t 2 Rg d= fX(Æ)�X(0)g;8Æ; (3)or, in other words, if none of the �nite dimensional laws of Y (Æ; t) depend on t.For a H-sssi proess X , the self-similarity parameter neessarily falls in 0 < H < 1and the ovariane funtion, when it exists, takes a spei�, unique, and onstrainedform: IEX(t)X(s) = �22 �jtj2H + jsj2H � jt� sj2H� ; �2 = IEjX(1)j2. Moreover, it anbe shown that the autoovariane funtion of the inrement proess YÆ reads:IEYÆ(t)YÆ(t+ s) = �22 �js+ Æj2H + js� Æj2H � 2jsj2H� : (4)The self similarity of the proess X is transferred to its inrements insofar as:Y (Æ; t) d= HY (Æ=; t=); (5)IEjY (Æ; t)j2 = IEjX(t+ Æ)�X(t)j2 = �2jÆj2H : (6)

properties in empirial times se-ries. For example it has beenused to model the data shown inBox 2, more spei�ally to modelthe variability of the number ofEthernet bytes in the interval [0; t℄.Pratially, self-similarity is usuallytested for and analyzed through itsinrements and the relation (6).Limitations of Self-Similarity.Self-similar proesses with station-ary inrements, and more spei�-ally frational Brownian motions,are very attrative models to de-sribe saling beause they aremathematially well-de�ned andwell-doumented. In addition, theirgreat advantage lies in being sim-ple and parsimonious: eah of theirproperties is de�ned and ontrolledby the same parameter, H . Theirmain drawbak however, lies inthem being . . . simple. It is indeedunlikely that the wide variety ofsaling enountered in data an bemodelled by a proess with a sin-gle parameter. The model is overlyrigid in several respets. First, def-inition 1 is valid for all positive real, whih means that the saling ex-ists for all sales or dilation fatorsranging from 0 to 1. Equivalently,one an say, looking at equation (5), that the saling relation holds whatever the value of the saling fator. In atualreal world data, saling an naturally exist only within a �nite range of sales and will typially only be approximative.



6 IEEE SIGNAL PROCESSING MAGAZINEMoreover, one may �nd evidene for saling only in the asymptoti regions, i.e., only within the very large (or the verysmall) sales. Seond, self-similarity implies (see equation (2) that saling holds for eah moment order q (providedit exists), with saling exponent qH . In empirial data, moments of di�erent orders may have saling exponents thatare not ontrolled by a single parameter, and some moments may simply not exhibit saling at all. Even worse, theBox 5 : Long-Range DependeneLet fX(t); t 2 Rg denote a seond-order stationary stohasti proess,and rX and �X its ovariane funtion and spetral density. We will saythat the proess fX(t); t 2 Rg is Long-Range Dependent (LRD) if eitherrX(Æ) � 1jÆj�1; Æ ! +1;  2 (0; 1) (7)or �X(�) � 2j�j� ; � ! 0;  2 (0; 1) ; (8)with 2 = 2(2�)��() sin((1 � )�=2)1 . In most pratial situations,rX is regularly varying or even asymptotially monotone, in whih asethese relations are in fat equivalent.With this de�nition, the autoovariane funtion dereases so slowly, thepast is so weighty, that its sum diverges, i.e., for any A > 0,Z 1A rX (Æ)dÆ =1:

empirial moments might be misleading whenthe theoretial moments of the true distributiondo not exist at all, as is the ase with stable laws.In the ase of traÆ data, most often salingmodels with a single parameter are appropriateat large sales, but at small sales more param-eters are required. In rarer ases, de�nitive ev-idene for saling is laking altogether. In�nitemoments an play a role for quantities suh asTCP onnetion durations, but in term of sal-ing models, those most ommonly used are of the�nite (positive) moment type.The remainder of this setion details more ex-ible models that enable suh deviations from ex-at self-similarity. We �rst explore those thatonentrate on saling in seond order statis-tis, that is, involving autoovariane funtionsand spetra or power spetral densities. Pro-esses whose spetra obey a power-law within agiven (and suÆiently wide) range of frequenies(sales) are often referred to as 1=f proesses:�X(�) = C0j�j� ; �m � j�j � �M :The two speial ases where the sale range is semi-in�nite, either at small frequenies, �m ! 0 (equivalently, largesales) or at large frequenies, �M ! 1 (small sales), de�ne two interesting models, namely those of Long-RangeDependent proesses (see Box 5) and monofratal proesses (see Box 6).Long-Range Dependene. Long-range dependene (LRD) or long memory [5℄ is a model for saling observedin the limit of the largest sales, and is de�ned in terms of seond-order statistis (see Box 5). LRD is usually equated
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Fig. 5. Hurst and H�older in frational Brownianmotion. The larger the Hurst exponent H, thesmoother the sample path (top row). The H�olderharaterization of roughness an be visualized bybinding together a number of realizations at somearbitrary point, and by superimposing (in red) theright-hand side of eq.(10), with h = H and K =3� (bottom row).

with an asymptoti power law derease of the autoovariane funtion, thatshould be ompared to the exponential one enountered in more lassialmodels (like ARMA proesses). An exponential behavior implies, by de�ni-tion, a harateristi time while a power law, in ontrast, is naturally saleinvariant.All proesses with exat self-similarity exhibit LRD. Indeed, let X be aH-sssi proess with �nite variane. Then it follows from equation (4) that,asymptotially, the ovariane funtion of its inrements YÆ readsrYÆ (s) := IEYÆ(t+ s)YÆ(t) � �2H(2H � 1) s2(H�1); s� Æ:whih shows that, for 1=2 < H < 1, the inrements are long-range dependentproesses with  = 2H � 1.Long range dependene is often theoretially and pratially studiedthrough the tehnique of aggregation. As explained and illustrated in Box 2,aggregation onsists of studying windowed average versions of the data as afuntion of the window width T . The ovariane funtions of the aggregatedLRD proesses onverge to the form given in equation (4) for the frationalGaussian noise (the inrement proess of fBm), whih is itself invariant underaggregation. This explains its anonial role in analyzing long-range depen-dene in empirial time series. The variane of the aggregated LRD proessalso behaves as a power-law of the aggregation length with an exponent on-trolled by  (Box 2). This property provides the basis for simple time domainestimators for the exponent (see, e.g., [34℄). For traÆ data, LRD modelshave been the most widely used. For example both the Ethernet data ofBox 2 and the TCP data of Figure 1 exhibit strong LRD.



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 7Fratal Proesses. Loal H�older regularity (see Box 6) desribes the regularity of sample paths of stohastiproesses by means of a loal omparison against a power-law funtion, and is therefore losely related to saling inthe limit of small sales [9℄. The exponent of this power-law, h(t), is alled the (loal) H�older exponent and dependstypially on both time and the sample path of X . Proesses for whih the H�older exponent h(t) is the same for allt, suh as frational Brownian motion, exhibit onstant regularity along their sample paths; they are often referred toas monofratal proesses. The H�older exponent h(t) provides a measure of loal path-regularity or roughness whihgeneralizes the notion of di�erentiability: sample paths exhibit more and more variability as h is dereased from 1 to 0.This is learly seen for frational Brownian motion in the top row of Figure 5.While a rigorous proof is hard, it is easy to onvine oneself of the monofratal harater of frational Brownian motionexploiting its H-sssi property ombined with the entered nature of the Gaussian marginals. Indeed, from equation (6)the autoovariane of the inrements YÆ of a seond order H-sssi proess X behaves asIEjY (Æ; t)j2 = IEjX(t+ Æ)�X(t)j2 = �2jÆj2H :whih is independent of t. In Box 6 we �nd in equation (9) an asymptotially equivalent property for some stationaryproesses with a ertain autoorrelation funtion. Let us add the assumption that our proess X is Gaussian, i.e.,restrit X to frational Brownian motion. Sine the Gaussian distribution is well entered, meaning that most samplesare within a few standard deviations from the mean, the net result is that the osillations of X over intervals of length Æare roughly of the size ÆH �pIE[X2(1)℄. Indeed, it an be shown that for any h < H (and for no h > H) almost all samplepaths satisfy (10) at eah t0. Thus, the variability (osillations) of fBm are of equal strength everywhere, on�rming itsBox 6: Loal H�older RegularityLet fX(t); t 2 Rg denote a seond-order stationary stohasti proess, whose auto-ovariane funtion has the usp-like behavior IEX(t)X(t+ Æ) � (�2=2C)(1�CjÆj2h)(with h > 0) when Æ ! 0. This implies that small step inrements of X satisfy:IEjX(t+ Æ)�X(t)j2 � �2jÆj2h; Æ ! 0: (9)This relation gives an information on the regularity of X sine the ondition h > 0guarantees mean-square ontinuity, whereas di�erentiability an only be ahieved ifh > 1. In other words, within the range 0 < h < 1, sample paths of X are everywhereontinuous and nowhere di�erentiable.The desription of suh \wild" trajetories an be made more preise by referring toH�older exponents. A signal X(t) is said to be of H�older regularity h � 0 in t0 if onean �nd a loal polynomial Pt0(t) of degree n = bh and a onstant K > 0 suh thatjX(t)� Pt0(t)j � K jt � t0jh: In the ase where 0 � h < 1, the regular part of X(t)redues to Pt0(t) = X(t0), leading to the simpler relation, based on inrements only:jX(t0 + Æ)�X(t0)j � K jÆjh; (10)and the largest suh value of h is the H�older exponent.H�older regularity is also losely onneted to the algebrai behavior (9) of the inre-ments variane, and even in the ase of non-stationary proesses, provided they havestationary inrements. Stohasti proesses that present a loal H�older regularitythat is onstant along their sample paths are often referred to as monofratal pro-esses. More sophistiated situations an be enountered, where the H�older exponentis no longer unique, but an vary from point to point. This is espeially the ase inmultifratal situations (see Box 7).

monofratal harater whih it isentirely ontrolled by H . An-other heuristi argument usesself-similarity to re-sale time andspae through X(t) = HX(t)(see (1)) with the same ra-tio between time and spae at\all" times. Similar as forlong-range dependene, also loalH�older regularity is often stud-ied through the inrements of theproess, aording to relation (9).Moving beyond monofratality,one ould think of allowing theexponent h in relation (9) to bea funtion of time:IEjX(t+Æ)�X(t)j2 � C(t) jÆj2h(t):Suh a proess ould desribedata whih have loally fratalproperties whih evolve slowlyand fairly smoothly over time. If0 < h(t) < 1 is a deterministifuntion with enough regularity,the proess X is said to be mul-tifrational or, when Gaussian,loally self-similar. This meansthat loally around time t, X(t)is very muh like a fBm with pa-rameter H = h(t) (see [25℄ for details). Suh a multifrational model learly no longer has stationary inrements, sinetheir distributions depend by de�nition on the deterministially hanging h(t). Also, suh a model is not multifratalin the true sense: although loally fratal with a varying exponent h(t), it su�ers from two de�ienies. First, the loalirregularity h(t) at a given time t is \deterministi", meaning that it is the same for almost all realizations, whereas it israndom for truly multifratal proesses. Seond, h(t) varies very slowly or \smoothly" while true multifratal proessesexhibit a full range of di�erent values h(t) in any time interval, however small. For these two reasons, multifrationalmodels really aim at desribing a form of non-stationarity. Network traÆ, however, an exhibit rih, true multifratalbehavior (see Figures 1 and 2).Multifratals. When the regularity h(t) is itself a highly irregular funtion of t, possibly even a
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random proess rather than a onstant or a �xeddeterministi funtion, the proess X is said tobe multifratal. In suh situations, the utua-tions in regularity along paths are no longer de-sribed in terms of a funtion h(t) but throughthe so-alledmultifratal spetrumD(h) (see Box7 and [9℄, [29℄). Tele-traÆ time series, for ex-ample those in Figures 1, 2, in fat often haveloal H�older exponents h(t) whih hange errat-ially with loation t. Suh behavior is looselytermed multifratal. A model lass whih is rihenough to apture multifratal properties is thatof multipliative asades. One of the most elebrated examples is that of the Binomial asade X , de�ned here foronveniene on [0; 1℄ through:X((2k + 1)=2n+1)�X(2k=2n+1) d=Mn+12k � (X((k + 1)=2n)�X(k=2n)) d= n+1Yi=1M iki � (X(1)�X(0)) : (11)Box 7: MultifratalsLet fX(t); t 2 Rg denote a stohasti proess. The loal H�older exponent h(s)of the proess at time s is a random variable de�ned pathwise as the largesth > 0 suh that jX(t)� Ps(t)j � K jt� sjh: Here, Ps(t) is the loal polynomialof degree n = bh as in Box 6. If the Taylor polynomial of degree n exists, thenthis polynomial is neessarily that Taylor polynomial; but in general the pathof X might not have n derivatives.In the ase where the loal polynomial Ps is onstant then h(s) is the largesth suh that jX(s+ Æ)�X(s)j � K jÆjh: (12)holds. Note that h(s) may very well be larger than 1, as is the ase withall asades. A simple argument yields [31℄ the more useful dual statement:if the largest h satisfying (12) is non-integer, then the loal polynomial Ps isneessarily onstant and h(s) an be omputed using (12).Fig 5 demonstrates the simple saling struture of frational Brownian motion;for almost every path and at any time instane one �nds the same loal salingexponent: h(t) = H . In real world data suh as network traÆ the loal salingh(t) hanges erratially and randomly in time. The multifratal spetrum D ofa proess X provides a mean to apture this omplexity; it is de�ned path-wiseand is, thus, random. Denoting the Hausdor� dimension of a set E by dim(E)the spetrum is D(a) := dim(ft 2 R : h(t) = ag) (13)The multifratal spetrum of asades and self-similar proesses is the same foralmost all paths. In partiular, for fBm it onsists of only one point: D(H) = 1,while it has an inverted-\U" shape for multipliative asades.While estimating D from traes is very hard, there exist almost sure upperbounds whih are easier to estimate (see Box 11). For an overview see [31℄.

Here the M iki are independent posi-tive random variables alled the multipli-ers suh that \siblings" add up to one:Mn+12k + Mn+12k+1 = 1. Thus, (11) \re-partitions" the inrements of X iteratively.Setting X(0) = 0 and X(1) = 1) (foronveniene) de�nes the proess on [0; 1℄.This is a partiular inarnation of a gen-eral approah to the generation of multi-fratal proesses, namely the iteration of amultipliative proedure. Note that all in-rements are positive and that the aspetratios, given by the Mki;i, depend expli-itly on the loation where the re-saling isdone. This is in stark ontrast to the salingof frational Brownian motion and the re-lation (5) for self-similarity, and is the mostimmediate reason for the multifratal stru-ture of asades. An illustration of this on-strution proedure as well as an exampleof resulting sample path is shown on Fig-ure (6). Comparing by eye with the net-work time series of Figures (1, 2), a learvisual agreement is evident. A disadvan-tage of binomial asades is that they arenot even seond order stationary. Station-ary multifratal models are only just ap-pearing in the literature [20℄.One of the major onsequenes of multi-fratality in proesses lies in the fat thatquantities usually alled partition funtionspresent power law behaviors in the limit ofsmall sales: SÆ(q) = 1=ÆXk=1 jY ((k + 1)Æ; Æ))jq = 1=ÆXk=1 jX((k + 1)Æ)�X(kÆ)jq ' qjÆj�(q)�1; jÆj ! 0: (14)For instane, for the binomial asade above, assuming that all multipliers in (11) are identially distributed, (14) holds(and also (19) below), at least for lags Æ = 1=2n and with �(q) = � log IEM q. For proesses with stationary inrements,



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 9Box 8: In�nitely Divisible CasadesSelf-similarity implies that the probability density funtion (pdf) pÆ of theinrements XÆ at sale Æ, is a dilated version of the pdf of those at a largersale Æ0: pÆ(x) = (1=�0) pÆ0(x=�0) where the dilation fator is unique :�0 = (Æ=Æ0)H . In the asade model, the key ingredient is that there is nolonger a unique fator but a olletion of dilation fators � ; onsequentlypÆ will result from a weighted sum of dilated inarnations of pÆ0 :pÆ(x) = Z GÆ;Æ0(ln�) 1� pÆ0 �x�� d ln�:The funtion GÆ;Æ0 is alled the kernel or the propagator of the asade. Ahange of variable shows that the de�nition above relates the pdfs pÆ andpÆ0 of the log-inrements ln jXÆj at di�erent sales through a onvolutionwith the propagator :pÆ(ln jxj) = Z GÆ;Æ0(ln�) pÆ0(ln jxj � ln�) d ln�= (GÆ;Æ0 � pÆ0)(ln�): (15)In�nite divisibility implies by de�nition that no sale between Æ and Æ0plays any spei� role, i.e, if sale Æ00 lies between sales Æ and Æ0 thenGÆ;Æ0 = GÆ;Æ00 � GÆ00;Æ0 . This onvolutive property implies that propagatorsan be written in terms of an elementary funtion G0 onvolved with itselfa number of times, where that number depends on Æ and Æ0GÆ;Æ0(ln�) = [G0(ln�)℄�(n(Æ)�n(Æ0)) :Here, G�n denotes n fold onvolution of G with itself.Using the Laplae transform ~GÆ;Æ0(q) of GÆ;Æ0 , this an be rewritten as~GÆ;Æ0(q) = exp fH(q)(n(Æ) � n(Æ0))g, with H(q) = ln ~G0(q). This yields(ompare with eq. (20)): the following relations, fundamental for the anal-ysis [39℄: ln IEjXÆ jq = H(q)n(Æ) +Kq (16)ln IEjXÆ jq = H(q)H(p) ln IEjXÆjp + �q;p: (17)A possible interpretation of this relation is that the funtion G0 de�nes theelementary step of the asade whereas the quantity n(Æ)�n(Æ0) quanti�esthe number of times this elementary step is to be applied to proeed fromsales Æ to Æ0. The derivative of n with respet to Æ desribes in somesense the speed of the asade at sale Æ. When the funtion n takes thespei� form n(Æ) = ln Æ, the in�nitely divisible asade is said to be saleinvariant and redues to multifratal saling. The exponents �(q) assoiatedto the multifratal spetrum are then related to the Laplae transform ofthe propagator through �(q) = H(q) (see Box 8). As detailed in the text,self-similarity is also inluded as an even more speial ase. For furtherdetails on in�nitely divisible asade, see [39℄.

the time averages SÆ(q)=Æ an be seen as esti-mators for the statistial averages IEjXÆ(t)jq .Therefore, relation (14) above is highly rem-inisent of the fundamental equation (2) im-plied by self-similarity. A major di�erene,however, lies in the fat that the exponent�(q) need not a priori follow the linear be-havior qH of self-similarity. In other words,to desribe asades using one single expo-nent or parameter is impossible and an entireolletion of exponents is needed. The mea-surement of the �(q) exponents o�er, througha Legendre transform, a useful way to esti-mate the multifratal spetrum (see Box 11and [31℄).Beyond power laws. Multifratal salingo�ers an extension to self-similarity insofar asthe saling of moments is no longer governedby one single exponent H but by a olletionof exponents. However, it maintains a keyfeature: moments behave as power laws of thesales. When analyzing atual data, it mayvery well be observed that this is not the ase,see e.g., [39℄. To aount for those situations,the in�nitely divisible asade (IDC) modelprovides an extra degree of freedom.The onept of in�nitely divisible asades(IDC) was �rst introdued by B. Castaing in[6℄ and rephrased in the wavelet framework in[4℄. Box 8 briey realls its de�nition, onse-quenes and relations to other models. Theentral and de�ning quantity of an IDC is thepropagator or kernel GÆ;Æ0 . In�nite divisibil-ity generalizes the onept of self-similarity;it simply says that the marginal distributionsat di�erent sales are related to eah otherthrough a simple onvolution with the prop-agator G; thus, G ompletely aptures andontrols the multisale statistis. Leaving de-tails to Box 8, let us be expliit in the aseof self-similarity where the propagator takesa partiular simple form due to (1): GÆ;Æ0is a Dira funtion. In more preise terms,the distribution at sale Æ0 is obtained byonvolving the distribution at sale Æ withGÆ;Æ0(ln�) = Æ(ln� � H ln(Æ=Æ0))). Sinethe Laplae transform reads as ~GÆ;Æ0(q) =exp fqH ln(Æ=Æ0)g we may interpret GÆ;Æ0 asthe ln(Æ=Æ0)-fold self-onvolution of an ele-mentary propagator G0 whih desribes a\unit hange of sale". For omparison, wenote Self-Similarity IEjXÆ(t)jq = q jÆjqH = q exp(qH ln Æ) (18)Multifratal Saling IEjXÆ(t)jq = q jÆj�(q) = q exp(�(q)ln Æ) (19)In�nitely Divisible Casade IEjXÆ(t)jq = q exp(H(q)n(Æ)) (20)where the funtion n(Æ) is not neessarily ln Æ, just as the funtion H(q) is not a priori qH .



10 IEEE SIGNAL PROCESSING MAGAZINEIII. Wavelets for Analysis and InfereneBox 9: A Wavelet PrimerIn ontrast to the Fourier transform whih analyzes signals in terms of osillating sinu-soidal waves ej2�ft, the wavelet transform onduts a loal Fourier analysis by projetingthe signal X(t) onto loally osillating waveforms, referred to as \wavelets." A wavelet (t) is a bandpass funtion whih osillates with some entral frequeny f0. Saling (bydilating or ompressing) and shifting the wavelet: j;k(t) = 2�j=2 (2�jt� k); (21)moves its entral frequeny to 2�jf0, and shifts its time enter by 2jk.
Fig. 7. Wavelets from a length-8 Daubehies �lterbank. >From top to bottom:  0;0(t),  1;3(t),  3;22(t).Besides the wavelet  (t), a wavelet deomposition makes use of a ompanion low-passfuntion �(t) (referred to as a saling funtion) whih an be saled and shifted in thesame way. Just as a signal an be built up from a sum of weighted sinusoids, it an bebuilt up from a sum of weighted saling funtions and waveletsX(t) =Xk X(j0; k)�j0;k + Xj�j0Xk dX (j; k) j;k(t): (22)The X(j0; k) are alled the saling oeÆients; and the dX (j; k) the wavelet oeÆients.The �rst term reonstruts a oarse-resolution approximation to X(t). The seond termadds in detail information at �ner and �ner sales (higher and higher frequenies) asj ! �1. By areful design, the wavelet and saling funtions an be onstruted to beorthogonal, meaning we an ompute the wavelet and saling oeÆients as simple innerproduts: X(j; k) = hX;�j;ki; dX(j; k) = hX; j;ki: (23)As an extension to the band-pass requirement (i.e.,  has zero mean), a further propertyof any wavelet is its number of vanishing moments, i.e., the largest number N � 1 suhthat Z tk  (t) dt = 0; k = 0; 1; : : :N � 1: (24)There are large families of orthogonal wavelets and saling funtions. The Daubehies{8wavelets pitured above (for whih N = 4) are but one example.From a pratial point of view, the saling and wavelet oeÆients are related by a�lterbank. To reate X(j; k), dX(j; k), we pass X(j+1; k) at the next �ner sale throughboth a lowpass and a highpass disrete-time �lter and then downsample by skipping everyother sample. The �lter responses are elegantly related to the ontinuous-time salingand wavelet funtions. This algorithm is appliable also to disrete-time signals and isextremely eÆient (O(n) time to ompute all available sales of a n point signal).

We saw from the previous se-tion that diverse signatures ofsaling an be observed bothwith respet to time (regular-ity of sample paths, slow de-ay of orrelation funtions,. . . ),or to frequeny/sale (power-lawspetrum, aggregation, zoom-ing, small sale inrements,. . . ).This suggests that to identifyand haraterize saling an ap-proah whih ombines time andfrequeny/sale, and whih for-malizes properly the idea of a si-multaneous analysis at a ontin-uum of sales, should be taken.In this respet, wavelet analy-sis appears as the most naturalframework.By de�nition, wavelet analy-sis (see Box 9 for basis and[18℄ for a omprehensive survey)ats as a mathematial miro-sope whih allows one to zoomin on �ne strutures of a sig-nal or, alternatively, to reveallarge sale strutures by zoom-ing out. Therefore, when asignal or a proess obeys someform of sale invariane, someself-reproduing property underdilation, wavelets are naturallyable to reveal it by a orre-sponding self-reproduing prop-erty aross sales. Moreover, thetime-dependene of the wavelettransform allows for a time-loalization of saling features.In its disrete version operat-ing on dyadi sales, the wavelettransform (WT) is a rigorousand invertible way of perform-ing a multiresolution analysis, asplitting of a signal into a low-pass approximation and a high-pass detail, at any level of res-olution. Iterating the proe-dure, one arrives at a represen-tation whih onsists of a low-resolution approximation, and aolletion of details of higherand higher resolution. Fromthe perspetive of more las-sial methods used for salingdata, iterating low-pass approx-imations, at oarser and oarser resolutions, is an impliit way of aggregating data, whereas evaluating high-pass details,as di�erenes between approximations, is nothing but a re�ned way of omputing inrements (of order N for a wavelet



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 11with N vanishing moments). Combining these two key elements makes of multiresolution a natural language for salingproesses.As explained in Setion II, self-similarity is the anonial referene model for saling behavior. Self-similar proesseswith stationary inrements are traditionally analyzed through their inrements, however reasons for resorting to waveletsare at least threefold:1 Saling | Due to its built-in saling struture, the wavelet transform reprodues any saling present in the data, witha geometrial progression of all (existing) moments aross sales, as:IEjdX(j; k)jq = IEjdX (0; k)jq � 2jq(H+1=2): (25)2 Stationarization | Due to the bandpass nature of admissible wavelets, sequenes of wavelet oeÆients an be seenas (�ltered) inrement proesses at di�erent sales: this makes the analysis extensible to non-stationary proesses withstationary inrements (like H-sssi proesses), resulting in stationary sequenes at eah sale.3 Almost deorrelation | Whereas diret manipulation of LRD proesses is hampered by slowly-deaying orrelations,it turns out that [11℄, [37℄ IEdX(j; k)dX (j; k +m) � C(j)jmj2H�2N ; jmj ! 1;N being the number of vanishing moments of the wavelet. Under the mild ondition N � H +1=2, global LRD existingamong the inrements of H-sssi proesses, an thus be turned, at eah sale, into short-range dependene.Box 10: Wavelet Analysis of 2nd Order SalingSaling proesses (be they LRD, 1=f -type, mono- or multifratal) share theproperty of exhibiting power-law spetra in some frequeny range, whene theidea of estimating saling exponents from a spetral estimation. The wavelettransform o�ers an alternative to lassial spetrum analysis [2℄, based on apower law behavior of the wavelet detail varianes aross salesIEjdX(j; k)j2 � C2j ; (26)reminisent of equation (25) with q = 2 for self-similarity, (28) for long rangedependene and (30) for monofratality. These are all suggestive of a linearrelationship log2 IEdX (j; k)2 �  j + C in a log-log plot.The stationarization property together with the almost deorrelation property(see points 2 and 3 in text) justify that the variane involved in (26) an beeÆiently estimated on the basis of the simple empirial estimate:�j = 1nj njXk=1 dX(j; k)2; (27)where nj is the number of oeÆients available at otave j. The graph oflog2 �j against j (together with proper on�dene intervals) is referred to asthe (seond-order) Logsale Diagram (LD) [3℄. Examples are given in Figure 8.Straight lines in suh diagrams an be understood as evidene for the existeneof saling in analyzed data, while the range of sales involved gives informationon its preise nature (self-similarity, long memory, . . . ). Estimation of salingexponents an be arried out from suh graphs via weighted linear-�t tehniques(see [3℄, [38℄, [1℄ for details). The possibility of varying the number of vanishingmoments of the mother wavelet bring robustness to the analysis proedureagainst non-stationarities.

Another advantage is that, dueto the frequeny interpretation ofwavelets, wavelet analysis an serve asa basis for useful substitutes for spe-tral analysis. Indeed, it an be shownthat for stationary proesses X withpower spetrum �X(�), we haveIEdX(j; k)2 = Z �X(�) 2j j	(2j�)j2 d�:When in addition X is a long rangedependent proess, this yieldsIEjdX(j; k)j2 � C 02j�; j ! +1; (28)and it an be shown [2℄ that the or-responding wavelet oeÆients are alsoshort range dependent as soon as N ��=2.Wavelet oeÆients are also useful tostudy H�older regularity. This relies onthe fat that if X is H�older ontinuousof degree h(t) at t then the wavelet o-eÆients at t deay asjdX(j; k)j � 2j(h(t)+1=2) (29)as the intervals [k2j ; (k+1)2j ℄ lose inon t (j ! �1). Under ertain on-ditions, the bound is asymptotiallytight [13℄, [7℄. For monofratal pro-esses, that is for proesses for whihH�older exponents h(t) remain onstantalong sample paths, we have the following relation,IEjdX (j; k)j2 � C 002j(2h+1); j ! �1; (30)to be ompared to equations (25) and (28) above.To summarize, the wavelet transform losely reprodues the saling properties that exist in data, be it self-similarity,long range dependene, or monofratality, and, at the same time, replaes one single poorly behaved (non-stationary,LRD) time series by a olletion of muh better behaved sequenes (stationary, SRD), amenable to standard statistialtools. Therefore, seond order statistial saling properties an be eÆiently estimated from marginalized salograms,that is squared wavelet oeÆients averaged over time, irumventing the diÆulties usually attahed to saling proesses.
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Fig. 8. Seond Order Logsale Diagrams. For eah of �ve di�erent time series, saling behavior is identi�edover the range �tted in red, as desribed in Box 10. Left two plots: a LRD series with saling at large sales, anda self-similar proess, where the saling is seen aross all sales. The next two plots are from the same \pAug"Ethernet trae as Box 2. Left: disrete time series of IP paket inter-arrival times showing LRD, and Right: thebytes per bin data of Box 2, showing empirial self-similarity. Far right plot: Interarrival time series of TCPonnetions (see Figure 1), showing an abrupt hange point separating two apparently di�erent saling behaviors,at a harateristi time sale of about 1s. These two saling regimes an be linked via the In�nitely DivisibleCasade model.

Using this idea, Box 10details the steps lead-ing to an estimation ofthe exponent of seondorder saling, in a log-log plot known as theLogsale Diagram.Examples of suh se-ond order analysis aregiven in Figure 8 fortwo synthesized timeseries and three seriesfrom traÆ data, asdetailed further in theaption. The plotsgrouped in the box aretwo di�erent time series extrated from the same elebrated Ethernet trae [14℄ disussed in Box 2. Series from thistrae provided one of the �rst lear indiations of long range dependene in traÆ. The advent of wavelet-based analysisadded preision and ompleteness to the study of the empirial saling, and to the orresponding measurements of theHurst parameter [3℄, [38℄, as well as estimates of the prefator C 0 (equation 28), of importane in appliations. Cruially,it also helped settle ontroversy as to the interpretation of the disovery, by showing that the observed saling in thetime series was not the result of orrupting non-stationarities, but atually orresponded to long range dependenies.The diversity of behavior in the examples of Figure 8 illustrates an important advantage of a semi-parametri analysisframework, suh as the wavelet approah desribed here. The analysis need not make any a priori assumption about therange of sales over whih saling may exist. The range is rather inferred from the analysis itself, leading to an identi�a-tion of the saling type, suh as LRD at large sales and/or multifratality at small sales, prior to any estimation phase.Indeed, the rightmost plot shows two di�erent saling regimes for a series derived from Internet data, whih (from a purelyseond order viewpoint), requires two independent estimations. In ontrast, parametri methods an easily give very mis-leading results if the data is not lose to the assumed model lass, making them unsuitable for the exploration of real, and
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omplex, data. Theomments of theprevious paragraphould be expressedas \robustness withrespet to modellass". Anotherform of robustnessenjoyed by waveletsis their insensitiv-ity to determinis-ti trends whihmay be superim-posed onto a pro-ess of interest, withundesirable onse-quenes. Theseinlude invalidat-ing the stationar-ity property of the LRD proess under study, or mimiking LRD orrelations when added to a short-range dependentproess [1℄. Wavelets are a versatile solution to this ruial issue, sine they o�er the possibility of being blind to poly-nomial trends. Reall that any admissible wavelet has zero mean. This is equivalent to having a zeroth order vanishingmoment, or in other words, to be orthogonal to onstants. In fat N vanishing moments implies that the wavelet isblind to polynomials up to order p � N � 1. Trends whih are \lose" to polynomial an be e�etively eliminated inthis manner [3℄, and the advantage of being able to do so without even testing for their presene is an important onewhen making sense of real data, and in partiular when trying the distinguish non-stationarity from saling behavior.Building on the advantages of the wavelet approah, a statistial test for the onstany of a saling exponent an bede�ned [40℄ whih helps resolve this diÆult issue.Finally, the analysis of saling proesses is often faed, and partiularly so in the ase of tele-traÆ, with enormous



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 13quantities of data, thereby requiring methods whih are eÆient from a omputational point of view. Beause of theirmultiresolution struture and the related ability to be implemented as a �lter bank, wavelet-based methods are assoiatedwith fast algorithms, out performing FFT-based ompetitors with a omplexity of only O(n) in omputation (omparedto O(n log(n))) and O(log(n)) in memory, for n data points. These advantages hold not only at seond order, but moregenerally, inluding for the more advaned types of analysis we now disuss.Beyond Seond Order Analysis As explained in Setion 2, saling may involve statistis beyond seond order,whih if observed in the limit of small sales, alls for a multifratal interpretation. Multifratal analysis provides a\�nger print" of loal saling properties of the paths of a proess X through the multifratal spetrum D(h), andthe multifratal formalism provides a powerful approah to numerially estimating it. Just as for seond order salinganalysis, estimates an be based on inrements of the proess or time series, however, from arguments lose to thosedeveloped at seond order, wavelet oeÆients o�er themselves as an ideal alternative. Notably, tuning the number ofvanishing moments of the mother wavelet allows the analysis of proesses with H�older exponents larger than 1. Box 11gives a more detailed pitures of this wavelet based multifratal analysis.Box 11: Wavelet-based Multifratal FormalismThe wavelet based partition funtion,Sj(q) =Xk j2�j=2dX(j; k)jq ; (31)onstitutes the wavelet ounterpart of the traditional partition funtion (equa-tion (14)). It an be bounded from below by summing only over a subset of indiesk, say those for whih j2�j=2dX(j; k)j � 2jh. For the sake of argument we assumethat this marks the loations where the H�older regularity of the path is indeed h(ompare (29)). It follows then from box-ounting methods, a standard tehniquein fratal geometry, that the number of suh indies grows asymptotially at leastas 2�jD(h), implying that Sj(q) grows at least as 2j(qh�D(h)). Sine the hoie ofh was arbitrary, we arrive at the asymptoti boundSj(q) � 2infh(j(qh�D(h))); (32)whih is provably tight in the limit 2j ! 0 using a steepest desent argument.Estimating �(q) from the deay of estimates of the moments Sj(q) � 2j�(q), wearrive at an asymptoti estimateD(h) � D��(h) = ��(h); (33)where g�(x) = infy(xy�g(y)) denotes the Legendre transform of a funtion g. Notethat applying the transform twie yields the onave hull g�� of g. It is notable, thatthe statistially and numerially robust global estimator � provides information onthe deliate loal properties aptured in D(h), whih would be almost impossibleto aess diretly.In pratie, �(q) is estimated as the least square slope of a log-log plot of thepartition sum against sale, i.e., log(Sj(q)) against log 2j . Comparing with Box 10,this demonstrates quite expliitly how multifratal analysis goes beyond seondorder statistis. Figure 9 shows examples. This wavelet based estimator an befurther developed using the wavelet maxima method [23℄, [4℄ whih addresses inpartiular the invertibility of (29).

Figure 9 depits log-log plots ofSj(q) against 2j for a real world trae(the LBL-TCP3 trae of [24℄) and asyntheti asade whih has been de-signed to math the seond momentsof the series on all dyadi sales. It isnotable that also the sample momentsof orders �3:2 � q � 3:2 agree losely.Consequently, the funtions �(q) andthe estimated spetrum D(h) = ��(h)are very lose. This is demonstrated inFigure 10 where the spetrum of an ad-ditive tree model is added for ompar-ison. This additive model mathes thesame seond order moments as the as-ade, but it is Gaussian in nature withonly little variation in its loal H�olderexponents and onsequently shows anarrow spetrum di�erent from thereal trae. This example again showsthat in numerous omputer networktime series, saling ourring at smallsales annot be desribed by a singleexponent but require an entire family.Current researh fousses on its im-pat on performane evaluation, net-work design and ontrol [8℄, [28℄.The in�nitely divisible asade model,introdued in Box 8 using inrementsfor simpliity, an also be rephrasedin wavelet terms [4℄, [39℄ with, again,many advantages similar to those de-tailed above for the seond order ase.Box 12 illustrates the analysis, esti-mation, and veri�ation proedure ofthis more pratial wavelet inarna-tion. The time series is that of Fig-ure 1, the list of suessive inter-arrival times of TCP onnetions. The study of the nature of suh a series gives usdiret insight into the statistial genesis of TCP onnetions in a heterogeneous environment. The series was extratedfrom exeptionally preise TCP/IP trae made available by the WAND group at the University of Waikato. Thisarhive, the \Aukland II" traes, are taken from both diretions of the aess link of the University of Aukland tothe external Internet [22℄. As detailed in Box 12, an in�nitely divisible asade model provides a relevant desriptionof the analyzed time series on a wide range of sales: 23 � 2j � 214. The key observation is that no other salingmodel ould have been applied over the full range, beause of the hange in behavior at the hange point at around j�.
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Fig. 11. Saling for a TCP/IP onnetion Inter Arrivaltime series.

The IDC model is used hereto analyze the TCP onnetioninter-arrival time series of Fig-ure 1. The top left plot showsthat the third order moments ofthe wavelet oeÆients do notbehave as power-laws of saleover the full range of sales, dis-allowing a self-similar or evena multifratal model over thisrange. The top right plot showsthat relative power-laws do ex-ist over the full range for the(for example, �fth order) mo-ments, suggesting an In�nitelyDivisible Casade model an ap-ply. Note the on�dene inter-vals in both diretions, as esti-mates are plotted on both axes.The middle plots show respe-tively the estimates of the fun-tions n(2j) and H(q), de�ningthe IDC propagator. The bot-tom left plot shows the esti-mated probability density fun-tions of the wavelet oeÆientsat sales 26 to 211. In the bottomright plot, those densities havebeen numerially \propagated"through the asade, using theestimated propagator. The ol-lapse of the urves illustrates themeaningfulness of the �tted In-�nitely Divisible Casade model,as well as the auray of the es-timated propagator.

Here as in many other se-ries extrated from Inter-net traes, j� orresponds toa harateristi time of 2:5to 3:5 seonds, in keepingwith �ndings in [10℄, andof our own measurements ofround trip times of TCP/IPonnetions. Indeed, whenexamining individual log-logplots suh as the top leftin Box 12 (or the far rightin Figure 8), without theIDC framework one wouldbe fored to onlude thattwo entirely di�erent salingmodels apply, over two dif-ferent saling ranges. Usingthe IDC formalism it is pos-sible to note that the hangeis restrited to n(2j), thewavelet ounterpart of then(Æ) funtion introdued inBox 8, whereas H(q) is typ-ially observed to be loseto linear. We an there-fore integrate the observa-tions into a single salingpiture over the full rangeof sales, and interpret thepieewise-log form of n(2j)as an abrupt hange of speedof some underlying mul-tipliative mehanism, de-sribed by H(q), whih isitself unhanged. Although\only statistial", suh a spe-i� hypothesis leads us tosearh for ausal explana-tions, in traÆ soures, net-works themselves and their protools, that ould be apable of generating e�ets of this type. Using in�nitely divisibleasades to model a variety of time series desribing di�erent aspets of the same raw Internet data, is a starting pointfor ongoing modelling work, some early results of whih an be found in [39℄, [32℄.IV. Seleted appliations of multisale traffi modelsA triumph of multisale analysis tehniques in networking has been the disovery of strong saling phenomena as wellas onvining evidene pointing to auses behind it: networking mehanisms, protools, soure harateristis and soon. But the multisale onept is appliable to network related problems beyond the mere analysis of traÆ traes. Inthis setion, we briey outline some appliations that diretly leverage the multisale framework.Multisale Queuing Analysis Sine the onstrution of network routers onsists largely in ombining queues(bu�ers), queuing analysis plays a ruial role in their design and performane. In the simplest queuing analysis, anaggregate traÆ input X(t) is fed into a single-server queue of size B bytes with servie rate s bytes/s, and we wish todetermine information about Q(t), the queue size in bytes at time t. For example, we might desire the average queuesize or the probability that the queue will overow, the tail queue probability P (Q > B). Queuing analysis in generalis extremely diÆult, owing to the inherent non-linearities assoiated with a queue emptying (few paket arrivals) andoverowing (too many paket arrivals).A distint advantage of the lassial Poisson traÆ model for X(t) is the existene of analyti formulae for P (Q > B)[17℄. However, the fat that real traÆ is not Poisson renders these results of limited utility in real-world situations.



ABRY, BARANIUK, FLANDRIN, RIEDI AND VEITCH 15Another, approximate approah is to study only the so-alled ritial time sale that dominates queue overow.But as we have seen, real traÆ is not typially dominated in a simple way by a single time sale. Real traÆ ismultisale, and so we should study the queue size Q(t) at multiple time sales and fuse the results into a single statisti.A multisale model for X(t) (suh as fBm or a binomial asade) failitates the investigation of the distribution ofQ(t) at multiple sales, inorporating the full multisale struture. In this framework, the distributions of the waveletoeÆients of the fBm model, or multipliers in the asade models, are ombined into a simple formula that provides alose approximation to the tail queue probability. See [27℄ for more details.Multisale Path Probing To understand and predit the performane of end-to-end protools suh as TCP andmodern streaming protools, it is ruial to understand the dynamis of the end-to-end paths through a network. Inpartiular, we ould have interest in the delays and losses experiened by pakets transmitted end-to-end. Here we fouson delay rather than loss.Information on paket delay an be obtained either by atively probing the path with pakets or by passively monitoringpakets as they pass a �xed point. We will fous on an ative strategy. The delay a paket will inur is bounded belowby the propagation delay from the transmitter to reeiver. However, it an be onsiderably larger if there is signi�antross-traÆ that fores the paket to wait in a bu�er before it is servied. Clearly, modelling the end-to-end paket delayproess impliitly involves modelling the ross-traÆ, sine large delays are aused by large traÆ ows along the path.A typial Internet end-to-end path an easily pass through �fteen or more queues, whih ompliates analysis andmodelling onsiderably. Fortunately, in ertain ases, an end-to-end path an be replaed by single \bottlenek" queuethat is driven both by the probe traÆ and an \e�etive ross-traÆ" stream that models the ontributions of allompeting traÆ along the path. Our fundamental observation for this bottlenek queue model is as follows: the delayspread at the reeiver between two probe pakets transmitted losely spaed in time orresponds diretly to the amountof ross-traÆ along the path.Inherent in any probing sheme is an unertainty priniple, or \auray/sparsity tradeo�." The volume of ross-traÆ entering the bottlenek queue between the two probes an be omputed essentially exatly from the delay spreadof the two pakets at the reeiver provided the queue does not empty in between. Unfortunately, this emptying willertainly our unless the probes are spaed very losely. Even worse, long probing trains of losely spaed pakets willoverwhelm the very network we are trying to model. If the probes are spaed far apart, then the queue an empty inbetween, whih results in unertainty in the ross-traÆ measurement.Again, help is on the way with a multisale model. Modelling the ross-traÆ as a multisale proess (fBm or binomialasade for example), we an transmit a stream of pakets that probes simultaneously at several time sales. For example,by spaing the pakets exponentially (two pakets with small spaing T followed by a paket every 2kT , k = 1, 2; : : :,we probe the bottlenek queue at a multitude of dyadi sales.This so-alled \hirp paket train" balanes the auray/sparity tradeo� by being highly aurate initially and highlysparse at the end [28℄. Paket hirps allows us to estimate the ross-traÆ volume (or equivalently delay distribution) atany dyadi sale of interest. The algorithm works quite well in simulation studies; urrently it is under more exhaustivetesting on real networks. V. ConlusionsIn this paper, we have seen that the omplexity and rihness of tele-traÆ is well mathed by the multisale analysis andmodelling frameworks of self-similarity, long-range dependene, fratals, multifratals, and in�nitely divisible asades.These frameworks not only allow us to on�rm and formalise the presene of multisale behavior in traÆ, but also pointto possible auses of multisale struture in the physial networking infrastruture. The hoie of framework, from asimple fBm to a more ompliated multifratal or asade, learly depends on the appliation and the data at hand. Butwhatever the framework, the multisale wavelet transform provides a parsimonious and eÆient domain for proessing.Finally, we note that the tools overviewed here have found a home in numerous other areas of siene and engineering,inluding turbulene and perolation, among many others1.Aknowledgements This work was supported by grants from USA DARPA, DOE, and NSF, the Frenh CNRS,and by Erison.
1Matlab routines implementing the analysis/estimation proedures desribed throughout this text are available at the following URLs:www.emulab.ee.mu.oz.au/�darryl and www.dsp.rie.edu/
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