MIT 2.852
 Manufacturing Systems Analysis Lectures 2-5: Probability

Basic probability, Markov processes, $M / M / 1$ queues, and more

Stanley B. Gershwin

http://web.mit.edu/manuf-sys
Massachusetts Institute of Technology

Spring, 2010

Probability and Statistics Trick Question

I flip a coin 100 times, and it shows heads every time.
Question: What is the probability that it will show heads on the next flip?

Probability and Statistics

$\underline{\text { Probability } \neq \text { Statistics }}$
Probability: mathematical theory that describes uncertainty.
Statistics: set of techniques for extracting useful information from data.

Interpretations of probability Frequency

The probability that the outcome of an experiment is A is $\operatorname{prob}(A)$
if the experiment is performed a large number of times and the fraction of times that the observed outcome is A is prob (A).

Interpretations of probability Parallel universes

The probability that the outcome of an experiment is A is $\operatorname{prob}(A)$
if the experiment is performed in each parallel universe and the fraction of universes in which the observed outcome is A is $\operatorname{prob}(A)$.

Interpretations of probability Betting Odds

The probability that the outcome of an experiment is A is $\operatorname{prob}(A)=P(A)$
if before the experiment is performed a risk-neutral observer would be willing to bet $\$ 1$ against more than $\$ \frac{1-P(A)}{P(A)}$.

Interpretations of probability State of belief

The probability that the outcome of an experiment is A is $\operatorname{prob}(A)$
if that is the opinion (ie, belief or state of mind) of an observer before the experiment is performed.

Interpretations of probability Abstract measure

The probability that the outcome of an experiment is A is $\operatorname{prob}(A)$ if prob () satisfies a certain set of axioms.

Interpretations of probability

 Abstract measureAxioms of probability
Let U be a set of samples. Let E_{1}, E_{2}, \ldots be subsets of U. Let ϕ be the null set (the set that has no elements).

- $0 \leq \operatorname{prob}\left(E_{i}\right) \leq 1$
- $\operatorname{prob}(U)=1$
- $\operatorname{prob}(\phi)=0$
- If $E_{i} \cap E_{j}=\phi$, then $\operatorname{prob}\left(E_{i} \cup E_{j}\right)=\operatorname{prob}\left(E_{i}\right)+\operatorname{prob}\left(E_{j}\right)$

Probability Basics

- Subsets of U are called events.
- $\operatorname{prob}(E)$ is the probability of E.

Probability Basics

- If

$$
\begin{aligned}
& \quad U_{i} E_{i}=U \text {, and } \\
& E_{i} \cap E_{j}=\phi \text { for } \\
& \text { all } i \text { and } j,
\end{aligned}
$$

- then $\sum_{i} \operatorname{prob}\left(E_{i}\right)=1$

Probability Basics Set Theory

Venn diagrams

Probability Basics
 Set Theory

Venn diagrams

$\operatorname{prob}(A \cup B)=\operatorname{prob}(A)+\operatorname{prob}(B)-\operatorname{prob}(A \cap B)$

Probability Basics Independence

A and B are independent if

$$
\operatorname{prob}(A \cap B)=\operatorname{prob}(A) \operatorname{prob}(B)
$$

Probability Basics Conditional Probability

$$
\operatorname{prob}(A \mid B)=\frac{\operatorname{prob}(A \cap B)}{\operatorname{prob}(B)}
$$

$\operatorname{prob}(A \cap B)=\operatorname{prob}(A \mid B) \operatorname{prob}(B)$.

Probability Basics Conditional Probability

Example
Throw a die.

- A is the event of getting an odd number $(1,3,5)$.
- B is the event of getting a number less than or equal to $3(1,2,3)$.

Then $\operatorname{prob}(A)=\operatorname{prob}(B)=1 / 2$ and $\operatorname{prob}(A \cap B)=\operatorname{prob}(1,3)=1 / 3$.
Also, $\operatorname{prob}(A \mid B)=\operatorname{prob}(A \cap B) / \operatorname{prob}(B)=2 / 3$.

Probability Basics Conditional Probability

Note: prob $(A \mid B)$ being large does not mean that B causes A. It only means that if B occurs it is probable that A also occurs. This could be due to A and B having similar causes.

Similarly prob $(A \mid B)$ being small does not mean that B prevents A.

Probability Basics

Law of Total Probability

- Let $B=C \cup D$ and assume $C \cap D=\phi$. We have $\operatorname{prob}(A \mid C)=\frac{\operatorname{prob}(A \cap C)}{\operatorname{prob}(C)}$ and $\operatorname{prob}(A \mid D)=\frac{\operatorname{prob}(A \cap D)}{\operatorname{prob}(D)}$.
- Also

$$
\operatorname{prob}(C \mid B)=\frac{\operatorname{prob}(C \cap B)}{\operatorname{prob}(B)}=\frac{\operatorname{prob}(C)}{\operatorname{prob}(B)} \text { because } C \cap B=C .
$$

Similarly, $\operatorname{prob}(D \mid B)=\frac{\operatorname{prob}(D)}{\operatorname{prob}(B)}$

Probability Basics

Law of Total Probability

$$
\begin{gathered}
A \cap B=A \cap(C \cup D)= \\
A \cap C+A \cap D-A \cap(C \cap D)=
\end{gathered}
$$

$$
A \cap C+A \cap D
$$

Therefore,

$$
\operatorname{prob}(A \cap B)=\operatorname{prob}(A \cap C)+\operatorname{prob}(A \cap D)
$$

Probability Basics

Law of Total Probability

- Or,
$\operatorname{prob}(A \mid B) \operatorname{prob}(B)=$
$\operatorname{prob}(A \mid C) \operatorname{prob}(C)+\operatorname{prob}(A \mid D) \operatorname{prob}(D)$

SO
$\operatorname{prob}(A \mid B)=$
$\operatorname{prob}(A \mid C) \operatorname{prob}(C \mid B)+\operatorname{prob}(A \mid D) \operatorname{prob}(D \mid B)$.

Probability Basics

Law of Total Probability

An important case is when $C \cup D=B=U$, so that $A \cap B=A$. Then

$$
\begin{gathered}
\operatorname{prob}(A) \\
=\operatorname{prob}(A \cap C)+\operatorname{prob}(A \cap D) \\
=\operatorname{prob}(A \mid C) \operatorname{prob}(C)+\operatorname{prob}(A \mid D) \operatorname{prob}(D)
\end{gathered}
$$

Probability Basics

Law of Total Probability

More generally, if A and $\mathcal{E}_{1}, \ldots \mathcal{E}_{k}$ are events and

$$
\mathcal{E}_{i} \text { and } \mathcal{E}_{j}=\emptyset, \text { for all } i \neq j
$$

and

$$
\bigcup_{j} \mathcal{E}_{j}=\text { the universal set }
$$

(ie, the set of \mathcal{E}_{j} sets is mutually exclusive and collectively exhaustive) then

Probability Basics Law of Total Probability

$$
\sum_{j} \operatorname{prob}\left(\mathcal{E}_{j}\right)=1
$$

and

$$
\operatorname{prob}(A)=\sum_{j} \operatorname{prob}\left(A \mid \mathcal{E}_{j}\right) \operatorname{prob}\left(\mathcal{E}_{j}\right)
$$

Probability Basics
 Law of Total Probability

Some useful generalizations:

$$
\begin{gathered}
\operatorname{prob}(A \mid B)=\sum_{j} \operatorname{prob}\left(A \mid B \text { and } \mathcal{E}_{j}\right) \operatorname{prob}\left(\mathcal{E}_{j} \mid B\right), \\
\operatorname{prob}(A \text { and } B)= \\
\sum_{j} \operatorname{prob}\left(A \mid B \text { and } \mathcal{E}_{j}\right) \operatorname{prob}\left(\mathcal{E}_{j} \text { and } B\right)
\end{gathered}
$$

Probability Basics Random Variables

Let V be a vector space. Then a random variable X is a mapping (a function) from U to V.

If $\omega \in U$ and $x=X(\omega) \in V$, then X is a random variable.

Probability Basics Random Variables

Flip of One Coin

Let $U=\mathrm{H}, \mathrm{T}$. Let $\omega=\mathrm{H}$ if we flip a coin and get heads; $\omega=\mathrm{T}$ if we flip a coin and get tails.

Let $X(\omega)$ be the number of times we get heads. Then $X(\omega)=0$ or 1 .
$\operatorname{prob}(\omega=\mathrm{T})=\operatorname{prob}(X=0)=1 / 2$
$\operatorname{prob}(\omega=\mathrm{H})=\operatorname{prob}(X=1)=1 / 2$

Probability Basics Random Variables

Flip of Three Coins

Let $U=\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}$.
Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and then tails, etc. The order matters!

- $\operatorname{prob}(\omega)=1 / 8$ for all ω.

Let X be the number of heads. The order does not matter! Then $X=0,1,2$, or 3 .

- $\operatorname{prob}(X=0)=1 / 8 ; \operatorname{prob}(X=1)=3 / 8 ; \operatorname{prob}(X=2)=3 / 8 ;$ $\operatorname{prob}(X=3)=1 / 8$.

Probability Basics Random Variables

Probability Distributions Let $X(\omega)$ be a random variable. Then prob $(X(\omega)=x)$ is the probability distribution of X (usually written $P(x))$. For three coin flips:

Dynamic Systems

- t is the time index, a scalar. It can be discrete or continuous.
- $X(t)$ is the state.
- The state can be scalar or vector.
- The state can be discrete or continuous or mixed.
- The state can be deterministic or random.
X is a stochastic process if $X(t)$ is a random variable for every t.
The value of X is sometimes written explicitly as $X(t, \omega)$ or $X^{\omega}(t)$.

Discrete Random Variables Bernoulli

Flip a biased coin. If X^{B} is Bernoulli, then there is a p such that

$$
\begin{aligned}
& \operatorname{prob}\left(X^{B}=0\right)=p . \\
& \operatorname{prob}\left(X^{B}=1\right)=1-p .
\end{aligned}
$$

Discrete Random Variables Binomial

The sum of n independent Bernoulli random variables X_{i}^{B} with the same parameter p is a binomial random variable X^{b}.

$$
\begin{aligned}
& X^{b}=\sum_{i=0}^{n} X_{i}^{B} \\
& \operatorname{prob}\left(X^{b}=x\right)=\frac{n!}{x!(n-x)!} p^{\times}(1-p)^{(n-x)}
\end{aligned}
$$

Discrete Random Variables
 Geometric

The number of independent Bernoulli random variables X_{i}^{B} tested until the first 0 appears is a geometric random variable X^{g}.

$$
X^{g}=\min _{i}\left\{X_{i}^{B}=0\right\}
$$

To calculate $\operatorname{prob}\left(X^{g}=t\right)$:

- For $t=1$, we know $\operatorname{prob}\left(X^{B}=0\right)=p$.

Therefore $\operatorname{prob}\left(X^{g}>1\right)=1-p$.

Discrete Random Variables Geometric

- For $t>1$,

$$
\begin{aligned}
& \quad \operatorname{prob}\left(X^{g}>t\right) \\
& =\operatorname{prob}\left(X^{g}>t \mid X^{g}>t-1\right) \operatorname{prob}\left(X^{g}>t-1\right) \\
& =(1-p) \operatorname{prob}\left(X^{g}>t-1\right),
\end{aligned}
$$

SO

$$
\operatorname{prob}\left(X^{g}>t\right)=(1-p)^{t}
$$

and

$$
\operatorname{prob}\left(X^{g}=t\right)=(1-p)^{t-1} p
$$

Discrete Random Variables
 Geometric

Alternative view

Consider a two-state system. The system can go from 1 to 0 , but not from 0 to 1 .

Let p be the conditional probability that the system is in state 0 at time $t+1$, given that it is in state 1 at time t. That is,

$$
p=\operatorname{prob}[\alpha(t+1)=0 \mid \alpha(t)=1] .
$$

Discrete Random Variables
 Geometric

Let $\mathbf{p}(\alpha, t)$ be the probability of the system being in state α at time t. Then, since

$$
\left.\begin{array}{rl}
\mathbf{p}(0, t+1) & =\operatorname{prob}[\alpha(t+1)=0 \\
& +\operatorname{prob}[\alpha(t)=1
\end{array}\right] \begin{aligned}
& \operatorname{prob}[\alpha(t)=1] \\
& \operatorname{prob}[\alpha(t)=0],
\end{aligned}
$$

(Why?)
we have

$$
\begin{aligned}
\mathbf{p}(0, t+1) & =p \mathbf{p}(1, t)+\mathbf{p}(0, t), \\
\mathbf{p}(1, t+1) & =(1-p) \mathbf{p}(1, t),
\end{aligned}
$$

and the normalization equation

$$
\mathbf{p}(1, t)+\mathbf{p}(0, t)=1 .
$$

Discrete Random Variables Geometric

Assume that $\mathbf{p}(1,0)=1$. Then the solution is

$$
\begin{aligned}
& \mathbf{p}(0, t)=1-(1-p)^{t} \\
& \mathbf{p}(1, t)=(1-p)^{t}
\end{aligned}
$$

Discrete Random Variables Geometric

Geometric Distribution

Discrete Random Variables Geometric

Recall that once the system makes the transition from 1 to 0 it can never go back. The probability that the transition takes place at time t is

$$
\operatorname{prob}[\alpha(t)=0 \text { and } \alpha(t-1)=1]=(1-p)^{t-1} p .
$$

The time of the transition from 1 to 0 is said to be geometrically distributed with parameter p. The expected transition time is $1 / p$. (Prove it!)

Note: If the transition represents a machine failure, then $1 / p$ is the Mean Time to Fail (MTTF). The Mean Time to Repair (MTTR) is similarly calculated.

Discrete Random Variables Geometric

Memorylessness: if T is the transition time,

$$
\operatorname{prob}(T>t+x \mid T>x)=\operatorname{prob}(T>t) .
$$

Digression: Difference Equations
 Definition

A difference equation is an equation of the form

$$
x(t+1)=f(x(t), t)
$$

where t is an integer and $x(t)$ is a real or complex vector.
To determine $x(t)$, we must also specify additional information, for example initial conditions:

$$
x(0)=c
$$

Difference equations are similar to differential equations. They are easier to solve numerically because we can iterate the equation to determine $x(1), x(2), \ldots$. In fact, numerical solutions of differential equations are often obtained by approximating them as difference equations.

Digression: Difference Equations Special Case

A linear difference equation with constant coefficients is one of the form

$$
x(t+1)=A x(t)
$$

where A is a square matrix of appropriate dimension.
Solution:

$$
x(t)=A^{t} c
$$

However, this form of the solution is not always convenient.

Digression: Difference Equations Special Case

We can also write

$$
x(t)=b_{1} \lambda_{1}^{t}+b_{2} \lambda_{2}^{t}+\ldots+b_{k} \lambda_{k}^{t}
$$

where k is the dimensionality of $x, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are scalars and $b_{1}, b_{2}, \ldots, b_{k}$ are vectors. The b_{j} satisfy

$$
c=b_{1}+b_{2}+\ldots+b_{k}
$$

$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the eigenvalues of A and $b_{1}, b_{2}, \ldots, b_{k}$ are its eigenvectors, but we don't always have to use that explicitly to determine them. This is very similar to the solution of linear differential equations with constant coefficients.

Digression: Difference Equations Special Case

The typical solution technique is to guess a solution of the form

$$
x(t)=b \lambda^{t}
$$

and plug it into the difference equation. We find that λ must satisfy a k th order polynomial, which gives us the $k \lambda$ s. We also find that b must satisfy a set of linear equations which depends on λ.
Examples and variations will follow.

Markov processes

- A Markov process is a stochastic process in which the probability of finding X at some value at time $t+\delta t$ depends only on the value of X at time t.
- Or, let $x(s), s \leq t$, be the history of the values of X before time t and let A be a set of possible values of $X(t+\delta t)$. Then

$$
\operatorname{prob}\{X(t+\delta t) \in A \mid X(s)=x(s), s \leq t\}=
$$

$$
\operatorname{prob}\{X(t+\delta t) \in A \mid X(t)=x(t)\}
$$

- In words: if we know what X was at time t, we don't gain any more useful information about $X(t+\delta t)$ by also knowing what X was at any time earlier than t.

Markov processes

States and transitions

Discrete state, discrete time

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time can be numbered $0,1,2,3, \ldots$ (or $0, \Delta, 2 \Delta, 3 \Delta, \ldots$ if more convenient).
- The probability of a transition from j to i in one time unit is often written $P_{i j}$, where

$$
P_{i j}=\operatorname{prob}\{X(t+1)=i \mid X(t)=j\}
$$

Markov processes

States and transitions

Discrete state, discrete time
Transition graph

$P_{i j}$ is a probability. Note that $P_{i i}=1-\sum_{m, m \neq i} P_{m i}$.

Markov processes

States and transitions

Discrete state, discrete time

- Define $\mathbf{p}_{i}(t)=\operatorname{prob}\{X(t)=i\}$.
- $\left\{\mathbf{p}_{i}(t)\right.$ for all $\left.i\right\}$ is the probability distribution at time t.
- Transition equations: $\mathbf{p}_{i}(t+1)=\sum_{j} P_{i j} \mathbf{p}_{j}(t)$.
- Initial condition: $\mathbf{p}_{i}(0)$ specified. For example, if we observe that the system is in state j at time 0 , then $\mathbf{p}_{j}(0)=1$ and $\mathbf{p}_{i}(0)=0$ for all $i \neq j$.
- Let the current time be 0 . The probability distribution at time $t>0$ describes our state of knowledge at time 0 about what state the system will be in at time t.
- Normalization equation: $\sum_{i} \mathbf{p}_{i}(t)=1$.

Markov processes

States and transitions

Discrete state, discrete time

- Steady state: $\mathbf{p}_{i}=\lim _{t \rightarrow \infty} \mathbf{p}_{i}(t)$, if it exists.
- Steady-state transition equations: $\mathbf{p}_{i}=\sum_{j} P_{i j} \mathbf{p}_{j}$.
- Steady state probability distribution:
- Very important concept, but different from the usual concept of steady state.
- The system does not stop changing or approach a limit.
- The probability distribution stops changing and approaches a limit.

Markov processes

States and transitions

Discrete state, discrete time
Steady state probability distribution: Consider a typical (?) Markov process. Look at a system at time 0.

- Pick a state. Any state.
- The probability of the system being in that state at time 1 is very different from the probability of it being in that state at time 2, which is very different from it being in that state at time 3 .
- The probability of the system being in that state at time 1000 is very close to the probability of it being in that state at time 1001, which is very close to the probability of it being in that state at time 2000.

Then, the system has reached steady state at time 1000.

Markov processes

States and transitions

Discrete state, discrete time
Transition equations are valid for steady-state and non-steady-state conditions.

(Self-loops suppressed for clarity.)

Markov processes

States and transitions

Discrete state, discrete time Balance equations - steady-state only. Probability of leaving node $i=$ probability of entering node i.

$$
\mathbf{p}_{i} \sum_{m, m \neq i} P_{m i}=\sum_{j, j \neq i} P_{i j} \mathbf{p}_{j}
$$

(Prove it!)

Markov processes Unreliable machine

$1=$ up; $0=$ down.

Markov processes
 Unreliable machine

The probability distribution satisfies

$$
\begin{aligned}
& \mathbf{p}(0, t+1)=\mathbf{p}(0, t)(1-r)+\mathbf{p}(1, t) p \\
& \mathbf{p}(1, t+1)=\mathbf{p}(0, t) r+\mathbf{p}(1, t)(1-p)
\end{aligned}
$$

Markov processes
 Unreliable machine

Solution
Guess

$$
\begin{aligned}
& \mathbf{p}(0, t)=a(0) X^{t} \\
& \mathbf{p}(1, t)=a(1) X^{t}
\end{aligned}
$$

Then

$$
\begin{aligned}
a(0) X^{t+1} & =a(0) X^{t}(1-r)+a(1) X^{t} p \\
a(1) X^{t+1} & =a(0) X^{t} r+a(1) X^{t}(1-p)
\end{aligned}
$$

Markov processes
 Unreliable machine

Solution
Or,

$$
\begin{aligned}
a(0) X & =a(0)(1-r)+a(1) p, \\
a(1) X & =a(0) r+a(1)(1-p) .
\end{aligned}
$$

or,

$$
\begin{aligned}
& X=1-r+\frac{a(1)}{a(0)} p, \\
& X=\frac{a(0)}{a(1)} r+1-p .
\end{aligned}
$$

so

$$
X=1-r+\frac{r p}{X-1+p}
$$

or,

$$
(X-1+r)(X-1+p)=r p .
$$

Markov processes
 Unreliable machine

Solution
Two solutions:
$X=1$ and $X=1-r-p$.
If $X=1, \frac{a(1)}{a(0)}=\frac{r}{p}$. If $X=1-r-p, \frac{a(1)}{a(0)}=-1$. Therefore

$$
\begin{aligned}
& \mathbf{p}(0, t)=a_{1}(0) X_{1}^{t}+a_{2}(0) X_{2}^{t}=a_{1}(0)+a_{2}(0)(1-r-p)^{t} \\
& \mathbf{p}(1, t)=a_{1}(1) X_{1}^{t}+a_{2}(1) X_{2}^{t}=a_{1}(0) \frac{r}{p}-a_{2}(0)(1-r-p)^{t}
\end{aligned}
$$

Markov processes
 Unreliable machine

Solution
To determine $a_{1}(0)$ and $a_{2}(0)$, note that

$$
\begin{aligned}
& \mathbf{p}(0,0)=a_{1}(0)+a_{2}(0) \\
& \mathbf{p}(1,0)=a_{1}(0) \frac{r}{p}-a_{2}(0)
\end{aligned}
$$

Therefore

$$
\mathbf{p}(0,0)+\mathbf{p}(1,0)=1=a_{1}(0)+a_{1}(0) \frac{r}{p}=a_{1}(0) \frac{r+p}{p}
$$

So

$$
a_{1}(0)=\frac{p}{r+p} \quad \text { and } \quad a_{2}(0)=\mathbf{p}(0,0)-\frac{p}{r+p}
$$

Markov processes
 Unreliable machine

Solution
After more simplification and some beautification,

$$
\begin{aligned}
\mathbf{p}(0, t)= & \mathbf{p}(0,0)(1-p-r)^{t} \\
& +\frac{p}{r+p}\left[1-(1-p-r)^{t}\right], \\
\mathbf{p}(1, t)= & \mathbf{p}(1,0)(1-p-r)^{t} \\
& +\frac{r}{r+p}\left[1-(1-p-r)^{t}\right] .
\end{aligned}
$$

Markov processes Unreliable machine

Solution
Discrete Time Unreliable Machine

Markov processes

Unreliable machine

Steady-state solution
As $t \rightarrow \infty$,

$$
\begin{aligned}
& \mathbf{p}(0) \rightarrow \frac{p}{r+p}, \\
& \mathbf{p}(1) \rightarrow \frac{r}{r+p}
\end{aligned}
$$

which is the solution of

$$
\begin{aligned}
& \mathbf{p}(0)=\mathbf{p}(0)(1-r)+\mathbf{p}(1) p \\
& \mathbf{p}(1)=\mathbf{p}(0) r+\mathbf{p}(1)(1-p)
\end{aligned}
$$

Markov processes Unreliable machine

Steady-state solution
If the machine makes one part per time unit when it is operational, the average production rate is

$$
\mathbf{p}(1)=\frac{r}{r+p}=\frac{1}{1+\frac{p}{r}} .
$$

Markov processes

States and Transitions

Classification of states
A chain is irreducible if and only if each state can be reached from each other state.

Let $f_{i j}$ be the probability that, if the system is in state j, it will at some later time be in state i. State i is transient if $f_{i j}<1$. If a steady state distribution exists, and i is a transient state, its steady state probability is 0 .

Markov processes

States and Transitions

Classification of states
The states can be uniquely divided into sets $T, C_{1}, \ldots C_{n}$ such that T is the set of all transient states and $f_{i j}=1$ for i and j in the same set C_{m} and $f_{i j}=0$ for i in some set C_{m} and j not in that set. If there is only one set C, the chain is irreducible. The sets C_{m} are called final classes or absorbing classes and T is the transient class.
Transient states cannot be reached from any other states except possibly other transient states. If state i is in T, there is no state j in any set C_{m} such that there is a sequence of possible transitions (transitions with nonzero probability) from j to i.

Markov processes

States and Transitions

Classification of states

Markov processes

States and Transitions

Discrete state, continuous time

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time is a real number, defined on $(-\infty, \infty)$ or a smaller interval.
- The probability of a transition from j to i during $[t, t+\delta t]$ is approximately $\lambda_{i j} \delta t$, where δt is small, and

$$
\lambda_{i j} \delta t=\operatorname{prob}\{X(t+\delta t)=i \mid X(t)=j\}+o(\delta t) \text { for } j \neq i
$$

Markov processes

States and Transitions

Discrete state, continuous time

Transition graph no self loops!!!!

$\lambda_{i j}$ is a probability rate. $\lambda_{i j} \delta t$ is a probability.

Markov processes

States and Transitions

Discrete state, continuous time

- Define $\mathbf{p}_{i}(t)=\operatorname{prob}\{X(t)=i\}$
- It is convenient to define $\lambda_{i i}=-\sum_{j \neq i} \lambda_{j i}$
- Transition equations: $\frac{d \mathbf{p}_{i}(t)}{d t}=\sum_{j} \lambda_{i j} \mathbf{p}_{j}(t)$.
- Normalization equation: $\sum_{i} \mathbf{p}_{i}(t)=1$.

Markov processes

States and Transitions

Discrete state, continuous time

- Steady state: $\mathbf{p}_{i}=\lim _{t \rightarrow \infty} \mathbf{p}_{i}(t)$, if it exists.
- Steady-state transition equations: $0=\sum_{j} \lambda_{i j} \mathbf{p}_{j}$.
- Steady-state balance equations: $\mathbf{p}_{i} \sum_{m, m \neq i} \lambda_{m i}=\sum_{j, j \neq i} \lambda_{i j} \mathbf{p}_{j}$
- Normalization equation: $\sum_{i} \mathbf{p}_{i}=1$.

Markov processes
 States and Transitions

Discrete state, continuous time
Sources of confusion in continuous time models:

- Never Draw self-loops in continuous time Markov process graphs.
- Never write $1-\lambda_{14}-\lambda_{24}-\lambda_{64}$. Write
- $1-\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right) \delta t$, or
- $-\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right)$
- $\lambda_{i i}=-\sum_{j \neq i} \lambda_{j i}$ is NOT a probability rate and NOT a probability. It is ONLY a convenient notation.

Markov processes
 Exponential

Exponential random variable: the time to move from state 1 to state 0 .

Markov processes
 Exponential

$\mathbf{p}(0, t+\delta t)=$

$$
\left.\begin{array}{l}
\text { prob }[\alpha(t+\delta t)=0 \\
\text { prob }[\alpha(t)=1]
\end{array} \begin{array}{l}
\operatorname{prob}[\alpha(t)=1]+ \\
{[\alpha t)=0}
\end{array} \alpha(t)=0\right] \quad \operatorname{prob}[\alpha(t)=0] .
$$

or

$$
\mathbf{p}(0, t+\delta t)=p \delta t \mathbf{p}(1, t)+\mathbf{p}(0, t)+o(\delta t)
$$

or

$$
\frac{d \mathbf{p}(0, t)}{d t}=p \mathbf{p}(1, t)
$$

Markov processes
 Exponential

Since $\mathbf{p}(0, t)+\mathbf{p}(1, t)=1$,

$$
\frac{d \mathbf{p}(1, t)}{d t}=-p \mathbf{p}(1, t)
$$

If $\mathbf{p}(1,0)=1$, then

$$
\mathbf{p}(1, t)=e^{-p t}
$$

and

$$
\mathbf{p}(0, t)=1-e^{-p t}
$$

Markov processes Exponential

Density function

The probability that the transition takes place in $[t, t+\delta t]$ is

$$
\operatorname{prob}[\alpha(t+\delta t)=0 \text { and } \alpha(t)=1]=e^{-p t} p \delta t .
$$

The exponential density function is $p e^{-p t}$.
The time of the transition from 1 to 0 is said to be exponentially distributed with rate p. The expected transition time is $1 / p$. (Prove it!)

Markov processes
 Exponential

Density function

- $f(t)=p e^{-p t}$ for $t \geq 0 ; f(t)=0$ otherwise; $F(t)=1-e^{-p t}$ for $t \geq 0 ; F(t)=0$ otherwise.
- $E T=1 / p, V_{T}=1 / p^{2}$. Therefore, $\mathrm{cv}=1$.

Markov processes
 Exponential

Density function

- Memorylessness: $\operatorname{prob}(T>t+x \mid T>x)=\operatorname{prob}(T>t)$
- $\operatorname{prob}(t \leq T \leq t+\delta t) \approx \mu \delta t$ for small δt.
- If T_{1}, \ldots, T_{n} are exponentially distributed random variables with parameters $\mu_{1} \ldots, \mu_{n}$ and $T=\min \left(T_{1}, \ldots, T_{n}\right)$, then T is an exponentially distribution random variable with parameter $\mu=\mu_{1}+\ldots+\mu_{n}$.

Markov processes Exponential

Density function

Exponential density function and a small number of actual samples.

Markov processes Unreliable machine

Continuous time

Markov processes
 Unreliable machine

Continuous time
The probability distribution satisfies

$$
\begin{aligned}
& \mathbf{p}(0, t+\delta t)=\mathbf{p}(0, t)(1-r \delta t)+\mathbf{p}(1, t) p \delta t+o(\delta t) \\
& \mathbf{p}(1, t+\delta t)=\mathbf{p}(0, t) r \delta t+\mathbf{p}(1, t)(1-p \delta t)+o(\delta t)
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{d \mathbf{p}(0, t)}{d t}=-\mathbf{p}(0, t) r+\mathbf{p}(1, t) p \\
& \frac{d \mathbf{p}(1, t)}{d t}=\mathbf{p}(0, t) r-\mathbf{p}(1, t) p
\end{aligned}
$$

Markov processes

Unreliable machine

Solution

$$
\begin{aligned}
\mathbf{p}(0, t) & =\frac{p}{r+p}+\left[\mathbf{p}(0,0)-\frac{p}{r+p}\right] e^{-(r+p) t} \\
\mathbf{p}(1, t) & =1-\mathbf{p}(0, t)
\end{aligned}
$$

As $t \rightarrow \infty$,

$$
\begin{aligned}
& \mathbf{p}(0) \rightarrow \frac{p}{r+p}, \\
& \mathbf{p}(1) \rightarrow \frac{r}{r+p}
\end{aligned}
$$

Markov processes Unreliable machine

Steady-state solution
If the machine makes μ parts per time unit on the average when it is operational, the overall average production rate is

$$
\mu \mathbf{p}(1)=\frac{\mu r}{r+p}=\mu \frac{1}{1+\frac{p}{r}}
$$

Markov processes The M/M/1 Queue

- Simplest model is the $M / M / 1$ queue:
- Exponentially distributed inter-arrival times - mean is $1 / \lambda ; \lambda$ is arrival rate (customers/time). (Poisson arrival process.)
- Exponentially distributed service times - mean is $1 / \mu ; \mu$ is service rate (customers/time).
- 1 server.
- Infinite waiting area.

Markov processes The M/M/1 Queue

- Exponential arrivals:
- If a part arrives at time s, the probability that the next part arrives during the interval $[s+t, s+t+\delta t]$ is $e^{-\lambda t} \lambda \delta t+o(\delta t) \approx \lambda \delta t . \lambda$ is the arrival rate.
- Exponential service:
- If an operation is completed at time s and the buffer is not empty, the probability that the next operation is completed during the interval $[s+t, s+t+\delta t]$ is $e^{-\mu t} \mu \delta t+o(\delta t) \approx \mu \delta t$. μ is the service rate.

Markov processes
 The M/M/1 Queue

Sample path
Number of customers in the system as a function of time.

Markov processes The M/M/1 Queue

State Space

Markov processes

The M/M/1 Queue

Performance Evaluation
Let $\mathbf{p}(n, t)$ be the probability that there are n parts in the system at time t. Then,

$$
\begin{aligned}
\mathbf{p}(n, t+\delta t)= & \mathbf{p}(n-1, t) \lambda \delta t+\mathbf{p}(n+1, t) \mu \delta t \\
& +\mathbf{p}(n, t)(1-(\lambda \delta t+\mu \delta t))+o(\delta t) \\
& \text { for } n>0
\end{aligned}
$$

and

$$
\mathbf{p}(0, t+\delta t)=\mathbf{p}(1, t) \mu \delta t+\mathbf{p}(0, t)(1-\lambda \delta t)+o(\delta t)
$$

Markov processes

The $\mathrm{M} / \mathrm{M} / 1$ Queue

Performance Evaluation
Or,

$$
\begin{aligned}
\frac{d \mathbf{p}(n, t)}{d t}= & \mathbf{p}(n-1, t) \lambda+\mathbf{p}(n+1, t) \mu-\mathbf{p}(n, t)(\lambda+\mu), \\
& n>0 \\
\frac{d \mathbf{p}(0, t)}{d t}= & \mathbf{p}(1, t) \mu-\mathbf{p}(0, t) \lambda .
\end{aligned}
$$

If a steady state distribution exists, it satisfies

$$
\begin{aligned}
& 0=\mathbf{p}(n-1) \lambda+\mathbf{p}(n+1) \mu-\mathbf{p}(n)(\lambda+\mu), n>0 \\
& 0=\mathbf{p}(1) \mu-\mathbf{p}(0) \lambda .
\end{aligned}
$$

Why "if"?

Markov processes The M/M/1 Queue

Performance Evaluation
Let $\rho=\lambda / \mu$. These equations are satisfied by

$$
\mathbf{p}(n)=(1-\rho) \rho^{n}, n \geq 0
$$

if $\rho<1$. The average number of parts in the system is

$$
\bar{n}=\sum_{n} n \mathbf{p}(n)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda} .
$$

From Little's law, the average delay experienced by a part is

$$
W=\frac{1}{\mu-\lambda}
$$

Markov processes The M/M/1 Queue

Performance Evaluation

Delay in a $\mathbf{M} / \mathbf{M} / 1$ Queue

Define the utilization $\rho=\lambda / \mu$.
What happens if $\rho>1$?

Markov processes The M/M/1 Queue

Performance Evaluation

- To increase capacity, increase μ.
- To decrease delay for a given λ, increase μ.

Markov processes The M/M/1 Queue

Other Single-Stage Models
Things get more complicated when:

- There are multiple servers.
- There is finite space for queueing.
- The arrival process is not Poisson.
- The service process is not exponential.

Closed formulas and approximations exist for some cases.

Continuous random variables Philosophical issues

1. Mathematically, continuous and discrete random variables are very different.
2. Quantitatively, however, some continuous models are very close to some discrete models.
3. Therefore, which kind of model to use for a given system is a matter of convenience .

Example: The production process for small metal parts (nuts, bolts, washers, etc.) might better be modeled as a continuous flow than a large number of discrete parts.

Continuous random variables
 Probability density

The probability of a two-dimensional random variable being in a small square is the probability density times the area of the square. (Actually, it is more general than this.)

Continuous random variables Probability density

Continuous random variables Spaces

- Continuous random variables can be defined
- in one, two, three, ..., infinite dimensional spaces;
- in finite or infinite regions of the spaces.
- Continuous random variables can have
- probability measures with the same dimensionality as the space;
- lower dimensionality than the space;
- a mix of dimensions.

Continuous random variables Dimensionality

Continuous random variables Dimensionality

Continuous random variables Spaces

Dimensionality

Probability distribution of the amount of material in each of the two buffers.

Continuous random variables Spaces

Discrete approximation

Continuous random variables
 Example

Problem

Production surplus from an unreliable machine

Demand rate $=d<\mu\left(\frac{r}{r+p}\right)$. (Why?)
Problem: producing more than has been demanded creates inventory and is wasteful. Producing less reduces revenue or customer goodwill. How can we anticipate and respond to random failures to mitigate these effects?

Continuous random variables
 Example

Solution
We propose a production policy. Later we show that it is a solution to an optimization problem.
Model:

How do we choose u ?

Continuous random variables
 Example

Solution

Surplus, or inventory/backlog:

$$
\frac{d x(t)}{d t}=u(t)-d
$$

Production policy: Choose Z (the hedging point) Then,

- if $\alpha=1$,
- if $x<Z, \quad u=\mu$,
- if $x=Z, u=d$,
- if $x>Z, u=0$;
- if $\alpha=0$,
- $u=0$.

How do we choose Z ?

Continuous random variables Example

Mathematical model
Definitions:
$f(x, \alpha, t)$ is a probability density function.

$$
\begin{aligned}
f(x, \alpha, t) \delta x= & \operatorname{prob}(x \leq X(t) \leq x+\delta x \\
& \text { and the machine state is } \alpha \text { at time } t) .
\end{aligned}
$$

prob (Z, α, t) is a probability mass.

$$
\operatorname{prob}(Z, \alpha, t)=\operatorname{prob}(x=Z
$$

and the machine state is α at time t).
Note that $x>Z$ is transient.

Continuous random variables
 Example

Mathematical model
State Space:

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=1, \underset{x}{x, x}+\delta x] ; \quad x<Z$:

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=0,[x, x+\delta x] ; \quad x<Z:$

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=1,[x, x+\delta x] ; \quad x<Z$:

$$
\begin{gathered}
f(x, 1, t+\delta t) \delta x= \\
{[f(x+d \delta t, 0, t) \delta x] r \delta t+[f(x-(\mu-d) \delta t, 1, t) \delta x](1-p \delta t)} \\
+o(\delta t) o(\delta x)
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
Or,

$$
\begin{gathered}
f(x, 1, t+\delta t)=\frac{o(\delta t) o(\delta x)}{\delta x} \\
+f(x+d \delta t, 0, t) r \delta t+f(x-(\mu-d) \delta t, 1, t)(1-p \delta t)
\end{gathered}
$$

In steady state,

$$
\begin{gathered}
f(x, 1)=\frac{o(\delta t) o(\delta x)}{\delta x} \\
+f(x+d \delta t, 0) r \delta t+f(x-(\mu-d) \delta t, 1)(1-p \delta t)
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
Expand in Taylor series:

$$
\begin{gathered}
f(x, 1)= \\
{\left[f(x, 0)+\frac{d f(x, 0)}{d x} d \delta t\right] r \delta t} \\
+\left[f(x, 1)-\frac{d f(x, 1)}{d x}(\mu-d) \delta t\right](1-p \delta t) \\
+\frac{o(\delta t) o(\delta x)}{\delta x}
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model

Multiply out:

$$
\begin{gathered}
f(x, 1)=f(x, 0) r \delta t+\frac{d f(x, 0)}{d x}(d)(r) \delta t^{2} \\
+f(x, 1)-\frac{d f(x, 1)}{d x}(\mu-d) \delta t \\
-f(x, 1) p \delta t-\frac{d f(x, 1)}{d x}(\mu-d) p \delta t^{2} \\
+\frac{o(\delta t) o(\delta x)}{\delta x}
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
Subtract $f(x, 1)$ from both sides and move one of the terms:

$$
\begin{aligned}
& \frac{d f(x, 1)}{d x}(\mu-d) \delta t=\frac{o(\delta t) o(\delta x)}{\delta x} \\
& +f(x, 0) r \delta t+\frac{d f(x, 0)}{d x}(d)(r) \delta t^{2} \\
& -f(x, 1) p \delta t-\frac{d f(x, 1)}{d x}(\mu-d) p \delta t^{2}
\end{aligned}
$$

Continuous random variables
 Example

Mathematical model
Divide through by δt :

$$
\begin{aligned}
& \frac{d f(x, 1)}{d x}(\mu-d)=\frac{o(\delta t) o(\delta x)}{\delta t \delta x} \\
& +f(x, 0) r+\frac{d f(x, 0)}{d x}(d)(r) \delta t \\
& -f(x, 1) p-\frac{d f(x, 1)}{d x}(\mu-d) p \delta t
\end{aligned}
$$

Continuous random variables
 Example

Mathematical model
Take the limit as $\delta t \longrightarrow 0$:

$$
\frac{d f(x, 1)}{d x}(\mu-d)=f(x, 0) r-f(x, 1) p
$$

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=0,[x, x+\delta x] ; \quad x<Z$:

$$
\begin{gathered}
f(x, 0, t+\delta t) \delta x= \\
{[f(x+d \delta t, 0, t) \delta x](1-r \delta t)+[f(x-(\mu-d) \delta t, 1, t) \delta x] p \delta t} \\
+o(\delta t) o(\delta x)
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
By following essentially the same steps as for the transitions to $\alpha=1,[x, x+\delta x] ; \quad x<Z$, we have

$$
\frac{d f(x, 0)}{d x} d=f(x, 0) r-f(x, 1) p
$$

Note:

$$
\frac{d f(x, 1)}{d x}(\mu-d)=\frac{d f(x, 0)}{d x} d
$$

Why?

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=1, x=Z$:

$$
\begin{gathered}
P(Z, 1)=P(Z, 1)(1-p \delta t) \\
+\operatorname{prob}(Z-(\mu-d) \delta t<X<Z, \alpha=1)(1-p \delta t) \\
+o(\delta t)
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
Or,

$$
\begin{gathered}
P(Z, 1)=P(Z, 1)-P(Z, 1) p \delta t \\
+f(Z-(\mu-d) \delta t, 1)(\mu-d) \delta t(1-p \delta t)+o(\delta t)
\end{gathered}
$$

or,

$$
\begin{gathered}
P(Z, 1) p \delta t=o(\delta t)+ \\
+\left[f(Z, 1)-\frac{d f(Z, 1)}{d x}(\mu-d) \delta t\right](\mu-d) \delta t(1-p \delta t)
\end{gathered}
$$

Continuous random variables
 Example

Mathematical model
Or,

$$
P(Z, 1) p \delta t=f(Z, 1)(\mu-d) \delta t+o(\delta t)
$$

or,

$$
P(Z, 1) p=f(Z, 1)(\mu-d)
$$

Continuous random variables
 Example

Mathematical model

$P(Z, 0)=0$. Why?

Continuous random variables
 Example

Mathematical model
Transitions to $\alpha=0, Z-(\mu-d) \delta t<x<Z$:

$$
\begin{gathered}
\operatorname{prob}(Z-d \delta t<X<Z, 0)=f(Z, 0) d \delta t+o(\delta t) \\
=P(Z, 1) p \delta t+o(\delta t)
\end{gathered}
$$

Continuous random variables Example

Mathematical model
Or,

$$
f(Z, 0) d=P(Z, 1) p=f(Z, 1)(\mu-d)
$$

Continuous random variables
 Example

Mathematical model

$$
\begin{gathered}
\frac{d f}{d x}(x, 0) d=f(x, 0) r-f(x, 1) p \\
\frac{d f(x, 1)}{d x}(\mu-d)=f(x, 0) r-f(x, 1) p \\
f(Z, 1)(\mu-d)=f(Z, 0) d \\
0=-p P(Z, 1)+f(Z, 1)(\mu-d) \\
1=P(Z, 1)+\int_{-\infty}^{Z}[f(x, 0)+f(x, 1)] d x
\end{gathered}
$$

Continuous random variables Example

Solution

Solution of equations:

$$
\begin{gathered}
f(x, 0)=A e^{b x} \\
f(x, 1)=A \frac{d}{\mu-d} e^{b x} \\
P(Z, 1)=A \frac{d}{p} e^{b Z} \\
P(Z, 0)=0
\end{gathered}
$$

where

$$
b=\frac{r}{d}-\frac{p}{\mu-d}
$$

and A is chosen so that normalization is satisfied.

Continuous random variables
 Example

Solution

Continuous random variables
 Example

Observations

1. Meanings of b :

Mathematical:
In order for the solution on the previous slide to make sense, $b>0$.
Otherwise, the normalization integral cannot be evaluated.

Continuous random variables Example

Observations
Intuitive:

- The average duration of an up period is $1 / p$. The rate that x increases (while $x<Z$) while the machine is up is $\mu-d$. Therefore, the average increase of x during an up period while $x<Z$ is $(\mu-d) / p$.
- The average duration of a down period is $1 / r$. The rate that x decreases while the machine is down is d. Therefore, the average decrease of x during an down period is d / r.
- In order to guarantee that x does not move toward $-\infty$, we must have $(\mu-d) / p>d / r$.

Continuous random variables Example

Observations

If $\quad(\mu-d) / p>d / r$,
then

$$
\frac{p}{\mu-d}<\frac{r}{d}
$$

or

$$
b=\frac{r}{d}-\frac{p}{\mu-d}>0 .
$$

That is, we must have $b>0$ so that there is enough capacity for x to increase on the average when $x<Z$.

Continuous random variables Example

Observations

Also, note that $b>0 \Longrightarrow \frac{r}{d}>\frac{p}{\mu-d} \Longrightarrow$

$$
r(\mu-d)>p d \Longrightarrow
$$

$$
r \mu-r d>p d \Longrightarrow
$$

$$
r \mu>r d+p d \Longrightarrow
$$

$$
\mu \frac{r}{r+p}>d
$$

which we assumed.

Continuous random variables
 Example

Observations

2. Let $C=A e^{b Z}$. Then

$$
\begin{gathered}
f(x, 0)=C e^{-b(Z-x)} \\
f(x, 1)=C \frac{d}{\mu-d} e^{-b(Z-x)} \\
P(Z, 1)=C \frac{d}{p} \\
P(Z, 0)=0
\end{gathered}
$$

That is, the probability distribution really depends on $Z-x$. If Z is changed, the distribution shifts without changing its shape.

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

