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The average waiting time and the average number of items waiting for..a service
in a service system are important measurements for a manager. Little's Law
relates these two metrics via the average rate of arrivals to the system. Thisfunda-
mental law has found numerous uses in operations management and managerial
decision making.

Introduction

Caroline is a wine buff and bon vivant. She likes to stop at her local wine store,
Transcendental Tastings, on the way home from work. She browses the aisles look-
ing for the latest releases from her favorite vineyards. Occasionally she picks up a
few bottles. She stores these in a rack in a cool corner of her cellar. She and her

partner eat out frequently but when they are at home they usually split a bottle of
wine at dinner. Sometimes they have friends over and that puts a bigger ,dentin the
wine inventory.

They have been doing this for some time. Her wine rack holds 240 bottles. She
notices that she seldom fills the rack to the top but sometimes after a good party the
rack is empty. On average it seems to be about 2/3rds full, which would equate to
160 bottles.

Many wines improve with age. After reading an article about this, Caroline
starts to wonder how long, on average, she has been keeping her wines. She went
back through a few months of wine invoices from Transcendental and estimates
that she has bought, on average, about eight bottles per month. But she certainly
doesn't know when she drank which bottle and so there seems to be no way she
can find out, even approximately, the average age of the bottles she has been
drinking.

This is a good task for Little's Law.
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Little's Law Deals with Queuing Systems

A "queuing system" consists of discrete objects we shall call "items" that "arrive" at
some rate to the "system." Within the system the items may form one or more queues
and eventually receive "service" and exit. Figure 5.1 shows this schematically.

Arrivals -~ queuing system: items in 1- Departures
queue & items in service

I

Flow of items through a queuing system

Fig. 5.1 Schematic view of a queuing system

While items are in the system, they may be in queues ,or may be in service or
some in queue and some in service. The interpretation will depend on the applica-
tion and the goals of the modeler.For example in the case of the wine cellar, we say
that a bottle (an "item") arrives to the system when it is first placed into the wine
cellar. Each bottle remains in the system until Caroline selects it and removes it
from the cellar for consumption. If 'we view the wine rack as a single channel
server, the service time is the time between successive removals. It is interesting to
note, however, that we do not know which bottle Caroline will pick and there is no
particular reason to believe that she will pick according to a first-in, first-out (FIFO)
rule. In any case, to deal with the average number of bottles in the cellar or average
time spent by a bottle in the cellar, we need to consider the complete system con-
sisting of queue plus service.

Little's Law says that, under steady state conditions, the average number of
items in a queuing system equals the average rate at which items arrive multiplied
by the average time that an item spends in the system. Letting

L =average number of items in the queuing system,
W = average waiting time in the system for an item, and
A =average number of items arriving per unit time, the law is

L=AW (1)

This relationship is remarkably simple and general. We require stationarity
assumptions about the underlying stochastic processes, but it is quite surprising
what we do not require. We have not mentioned how many servers there are,
whether each server has its own queue or a single queue feeds all servers, what the
service time distributions are, or what the distribution of inter-arrival times is, or
what is the order of service of items, etc.

In good part because of its simplicity and generality, the equation (1) is
extremely useful. It is especially handy for "back of the envelope" calculations.
The reason is that two of the terms in (1) may be easy to estimate and not the third.
Then Little's Law quickly provides the missing value.
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Thus for Caroline, the average number of bottles in the system is L =(240)*(2/3)

= 160 bottles and the average arrival rate is A =(12)*(8) =96 bottles/year. Without
ever collecting individual data on how long each bottle remains in her cellar, she
can calculate the average amount of time a bottle stays in her cellar as W =
(160)/(96) == 1.67 years. That's not very old. She needs a bigger rack and more
patience, or, alternatively, she should develop selection rules to favor holding
special bottles longer than the others. This wouldn't affect the average but might
give her some fine old wines.

Arguing Little's Law with a Picture

Figure 5.2 shows one possible realization of a particular queuing system. We can
make a heuristic argument for Little's Law by interpreting the area under the curve
in Fig. 5.2 in two different ways. Let

n( t) =the number of items in the queuing system at time t;
T =a long period of time;
A(T) =the area under the curve n( t) over the time period T;
N(T) =the number of arrivals in the time period T.

'"

On the one hand, an item in the queuing system is simply there. The number of
items can be counted at any instant of time t to give n(t). Its average value over T
is the integral of n(t) over T (i.e., A(T)) divided by T. On the other hand, at time t
each of the items is waiting and so is accumulating waiting time. By integrating n(t)
over the time period T, we obtain a cumulative measure of the waiting time, again
equal to A(T). Furthermore, the arrivals are countable too, and given by N(T).
Therefore, inspecting the figure, we define

n(t)

1stdeparture
inT

Time period T

Fig.5.2 Number of items in a queuing system versus time
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A(T) =N(T)/T =arrival rate during time period T,
L(T) =A(T)/T =average queue length during time period T,
W(T) =A(T)/N(T) =average waiting time in the system per arrival during T.
A slight manipulation gives L(T) =A(T)W(T).

All of these quantities wiggle around a little as T increases because of the sto-
chastic nature of the queuing process and because of end effects. End effects refer
to the inclusion in W(T) of some waiting by items which joined the system prior to
the start of T and the exclusion of some waiting by items who arrived during T but
have not left yet. As T increases, L(T) and A(T) go up and down somewhat as items
arrive and later leave.

Under appropriate mathematical assumptions about the stationarity of the
underlying stochastic processes, the end effects at the start and finish of T
become negligible compared to the main area under the curve. Thus, as T

- increases, these stochastic "wiggles" in L(T), A(T), and'W(T) become smaller
and smaller percentages of their eventual values so that L(T), A(T), and W(T)
each go to a limit as we increase T to infinity. Then, using the obvious symbols
for the limits, we have:

limL(T)= L;T~oo lim A(T)= A;T~oo lim W (T):T~oo

from which we get the desired result (1).
It is interesting and important to note that the formula holds for each realization

of the queuing system over time. This was argued by Little, in his original paper
(Little 1961), noting that the relationship (1) held for each evolution of the time
series of a particular queuing system. In other words, if we watch a specific case or
realization designated, say, by OJ,as it develops over time, then we will find that
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L( m) =A(m) W(my,given the steady state and other assumptions made. Averaging
cross-sectionally across the many possible realizations of a particular system gives
(1), but it is a useful insight to know that the formula holds for each evolving time
series as it is observed over a long time period.

Law or Tautology?

Equation (1) is commonly called Little's Law and we have cheerfully adopted
that terminology. However, as pointed out by various people, including Little
(1992), Eq. (1) is a mathematicaltheorem and therefore a tautology.The relationship
tu'rns out to be useful in practice, but there is no need to go out on the factory
floor and collect data to test it. This would be required in the case of a physical
law such as Newton's Law of Gravitation. Each side of Newton's equation has
to be measured and it is an empirical question whether they are equal within the
measurement error. For a mathematical theorem, if the assumptions are satis-
fied by the application, the result will hold. Note that calling a mathematical
theorem a law is not without precedent. The Law of Large Numbers would be
another instance.

Usefulness of Little's Law in Practice

In this section we try to convey the generality of the result and its usefulness in
different contexts by means of simple examples. In each case we see how ,the
observation of two of the three measures provides the third. We try to bring out
why such back-of-the-envelope analyses are of interest and value in different
situations.

Semiconductor Factory: Semiconductor devices are manufactured in extremely
capital-intensive fabrication facilities. The manufacturing process entails starting
with a silicon wafer anti then building the electronic circuitry for multiple identical
devices through hundreds of process steps. Suppose that the semiconductor factory
starts 1,000 wafers per day, on average; this is the input rate. The start rate has'
remained fairly stable over the past 9 months. We track the amount of work-in-
process (WIP) inventory. The WIP varies between 40,000 and 50,000 wafers; the
average WIP is 45,000 wafers.

Then we can infer the average flow time in the factory. The arrival rate to the
factory is the wafer start rate: A.= 1,000 wafers per day. The WIP is the system
queue length: L =45,000 wafers. Thus the wait time or expected time in the system
is W =45 days. In a manufacturing context, we often refer to this as the flow time,
the time between when a job starts and finishes in a factory. For instance, if we
think of one wafer as being a job, then it takes the factory on average 45 days to
process it, that is, to convert it from a blank wafer into a finished wafer comprised
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of electronic devices. Knowing the flow time is critical for planning and schedul-
ing the factory, and for making delivery commitments to customers. We shall
return later to the connection between Little's Law and operations management.

E-Mail: Managing our e-mail is a common and,time-consuming daily activity.
For many it is hard to keep up with the volume of messages, let alone provide
timely responses. A student Sue might receive 50 messages each day to which she
must generate a response. Can we easily assess how well this student handles her
e-mail duties?

Indeed we can apply Little's Law to get a quick sense of how promptly Sue
responds to messages. Suppose that she receives about 50 messages every day;
then this is the arrival rate: A=50 messages/day. Suppose we can also track how
many messages have yet to be answered. For instance, suppose that Sue
removes a message from her InBox once she has responded to it. Then the
remaining messages in her InBox are the messages that are waiting to be
answered. Over the last semester, the size of the InBox has varied between one
and two hundred messages with an average of 150 messages. Then we can
regard this to be the system queue length: L = 150 messages. From Little's Law
we immediately have an estimate of how long it takes Sue to answer a message,
on average: W = 3 days.

Hospital Ward: We wish to determine the size and staffing levels for the
maternity ward for a local hospital. From historical records we know that the
birth rate for the local community is about five births per day. We also know that
most women stay in the maternity ward for 2 days before going home with child;
however occasionally, there are complications with the birth that require much
longer stays. Over the past 6 months, we find that 90% of the births have
resulted in 2-day stays; for the remaining 10% of the cases, the average length
of time in the maternity ward is 7 days. Thus, on average, the length of stay is
0.9 x 2 + 0.1 x 7 = 2.5 days.

We can use Little's Law to predict the average number of mothers in the mater-
nity ward. The arrival process corresponds to the women arriving to deliver their
babies; the arrival rate is A =5 mothers per day. The relevant waiting time in the
system is the length of stay in the maternity ward: W =2.5 days. Thus, the expected
queue length or number in the system is L =12.5 mothers. This would be useful in
determining the size of the maternity ward (e.g., beds) and the staffing require-
ments. However, the law only provides the average requirements, and one would
need to design the maternityward to accommodateits peak requirements.For instance,
we would certainly want more than 12.5or 13beds in order to handle the variability
in the occupancy of the ward. One needs to use queuing models and/or simulation
to explore the trade-offs between the utilization of the beds and the likelihood of
not having a bed for an expectant mother. Nevertheless, Little's Law provides a
starting point for this investigation, since we know the average number of beds that
are needed.

TollBooths: The TedWilliamsTunnel travelsunder the Boston harbor,connecting
East Boston to South Boston. During the course of a day, about 50,000 vehicles go
through the tolls at the entry point to the Tunnel in East Boston. The Massachusetts
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Transit Authority (MTA) tries to modulate the number of toll booths that are open
at any point in time so that the average number of vehicles waiting at the tolls
(including those at the booths) never exceeds 20 vehicles. For instance, all six
booths are open during the peak time in the morning from 6:00 AM to 10:00 AM.
During this morning rush hour, the tunnel handles up to 4,000 cars per hour, and
the MTA estimates that the average number of vehicles waiting at any point of time
is near the target maximum of 20 vehicles.

With the assumption that the alTivalsoccur at a relatively stable rate over the
morning rush hour, we can then use Little's Law to ask what quality of service is
being delivered in terms of average waiting time per vehicle. Suppose that the anival
rate to the toll booths is A.=3,600 vehicles per hour (or I vehicle per second),and the
expected number of vehicles in the system is L =20 vehicles. Thus, on average, the
time a vehicle spends at the toll booths is W = 20/3,600h = 20 s.

Housing Market: The local real estate agent in your community estimates
that it takes 120 days on average to sell a house; whereas this number changes
some with the economy and season, it has been fairly stable over the past decade.
You observe from monitoring the classified ads that over the past year the
number of houses for sale has ranged from 20 to 30 at any point in time, with
an average of 25. What can we say about the number of transactions in the
past year?

From Little's Law we can estimate this by viewing the real estate market as a
queuing system. We regard a house being put up for sale as an arrival to the sys-
tem. We assume that an unsold house remains on the market until it is sold. Thus,
when a house "completes its service" and departs from the market, we infer that it
has been sold. We have estimates of the average time in the system and the average
number in the system, namely, W = 120 days and L = 25 houses. From this, we can
estimate the arrival rate to the system, A.= 25/120 houses per day ==75 houses

per year.
Doughnut Shop: From your daily morning trip to the doughnut shop, you know

they have a healthy business, at least financially speaking. As you might want to
invest in a franchise, you wonder what amount of revenue they generate. Over the
course of several months; you visit the shop at random times between 6:00 AM and
9:00 AM; you observe that the queue averages about 10 customers, and that it takes
you about 3 min to get in and out of the shop.

If you assume your experience is typical, then you can apply Little's Law
to estimate what.the throughput rate is for the enterprise for the morning peak
period. The expected number in the system is L = 10 customers and the
expected time in the system is W = 3 min. We can then estimate the arrival

rate to the system, namely A.= 10/3 customers per minute =200 customers per
hour. We also term this the throughput rate as arriving customers become
throughput once served. To get an estimate for the revenue potential from this
shop, we need to estimate how much each customer spends. If you typically
spend $5 per visit, then with the assumption that you are a typical customer,
we have a rough estimate of the shop's revenue during these morning hours,
i.e., $1,000 per hour.
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The Robustness and Generality of Little's Law
in Certain Systems

So far we have developed and discussed Little's Law as a relationship among
steady-state stochastic processes. The contexts we have examined have been well-
behaved, stable, and on-going. In particular we assume that the characteristics of
the arrival and service processes are stationary over time. For example, in the case
of the maternity ward, we assume that the average arrival rate of mothers has been

: steady at five per day for some time, and that this rate does not vary with day of
week or season of the year. Similarly, we have regarded the service process as

, beingstationary;for instance,weread andprocessour e-mailat roughlythe same
average rate, day in and day out, independent of the backlog of unread messages.
For some of our examples, we have focused on an interval of time, e.g., the morn-
ing rush hour through the toll booths. However, in these instances due to the huge
volume of arrivals, we contend that the system behavior is virtually equivalent to
that of a steady-state system.

The purpose of this section is to show the great robustness and generality of
Little's Law under certain circumstances. Indeed Little's Law is exact in these
cases even though arrival and service process may be nonstationary. The essential
condition is to have a finite window of observation that starts and stops when
the system is empty. We use an example to motivate and illustrate the validity
of Little's Law in this situation. Consider the Sweet & Sour supermarket, which
opens every day at 7:00 AM and closes 16 h later at 11:00 PM. When S&S opens
at 7 AM, there are no customers in the store. When it closes at 11 PM, all of
the customers depart. Between opening and closing, customers arrive to the
store, do their shopping and leave. The arrivals over the course of the day are
quite varied. They include several customer segments, each with quite distinct
shopping habits. Families with school-age children will shop between 9AM and
2 PM, and tend to have fairly lengthy shopping forays as they stock up for a
week at a time. Seniors will tend to shop at quiet times of the day, like first
thing in the morning, and will also be fairly leisurely in their shopping, taking
up to an hour to complete a visit. Working couples will shop at night after work
or on the weekends; their evening visits are often to run in, grab something and
run out. '

We propose to model S&S as a queuing system with the arrivals being the
customers as they enter the store and service being the duration of their time in
the store selecting and purchasing their groceries. However, from the above dis-
cussion, we see that this is anything but a stable system. The supermarket is never
in a steady-state. It starts and ends each day with zero customers. Over the course
of the day, customers arrive at varying rates, and the nature of their shopping trips
also varies over the day, due to the different clienteles. Nevertheless, we will
show next that Little's Law applies each and every day to this supermarket in an
exact way.
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An Analytic Interlude

Let N denote the number of customers that shop on a particular day. Suppose that
we keep track of when customers arrive and when they depart from the store. Then
we can define and create two processes, one for the arrivals and the other for the
departures. We define time t =0 to correspond to the opening at 7 AM, and time
t = 16 to be the store closing at 11 PM, 16 h later.

We let N(t) denote the cumulative number of arrivals to the store by time t. Thus,
as we start the day with zero customers, we have N(O)=0; as we assume a total of
N customers arrive during the day, we have N(16) = N. The cumulative arrivals
increase in a stair-case fashion, as shown in Fig. 5.3, over 0 < t < 16.

In similar manner we define D(t) to denote the cumulative number of depar-
tures from the store by time 1. Again, we have D(O) = 0, D(16) = N, and the
cumulative departures increase in a stair-case fashion over the time interval
0 < t < 16; see Fig. 5.3.

We note that at all time instants we have N(t) ~ D(t), as the number of departures
can never exceed the number of arrivals. Indeed, the difference between the two
cumulative processes is the number of customers in the supermarket at time t:

L(t) =N(t) - D(t).

With this observation we can determine the average number in the supermarket
over the course of the day from the following integral:

Q5
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Z
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E
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:J
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Fig. 5.3 Cumulative arrivals to and departures from a system, for example, the supermarket
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1 1=16

L=-x f (N(t)-D(t))dt.
16 1=0

(2)

To model the average time in the supermarket for each customer is a bit more
involved. We define {Sl,S2' ... SN} to be the sequence of arrival or start times for
the N customers, where s. denotes the start time for the jth arriving customer. WeJ

define {Cj ,C2 ' ...CN}to be the sequence of departure or completion times for the N
customers, where c. denotes the completion time for the jth arriving customer. Thus,J

the time in the supermarket for the jth arriving customer is W.=C.- s.. AveragingJ J J

this over all the customers gives:

1

(

N N

)
W=-x LCj- LSj .

N j=1 j=1

(3)

To compute (3) we shall develop an equivalent expression based on the
geometry in Fig. 5.3. Let us define {CI,C2,...CN}to be the sequence of depar-
ture or completion times for the N customers, where cj denotes the completion
time for the jth departing customer. Since customers need nOt exit the store in
the order that they arrive, we shall often have c. =Fd. However, the sequence

I 2 N" . .J
{c , C ,..., C } IS Just a permutatIOn or reordenng of the sequence {c I ' C2 ,...
CN} as the departure time for each customer must appear exactly once in
each sequence.

As shown in Fig. 5.3, we can define the jth wait time as W =d - S., equal to theJ

difference between the departure time for the jth departing customer and the start
time for the jth arriving customer. Now let us consider the average of these
wait times:

1 N 1

(

N N

)
-xLWj=-x Lcj-LSj .
N j=l N j=l j=l

N N

But this will equal W given by (3), since LCj = Lcj. Hence we conclude that
j=l j=l

1 N 1

(

N N

)
W=-xLwj=-x Lcj-LSj'

N j=l N j=l j=]

(4)

Now we need to relate our expression for L, given by (2) to our expression for
W, given by (4). From the geometry in Fig. 5.3, we observe the following
equivalence:

1=16 N

f (N(t)-D(t))dt= IWJ.
1=0 J=l

(5)
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That is, on each side of the equation, we have an expression for the area between the
cumulative anivals and the cumulative departures. On the left side we compute the area
by integration over time of the function that tracks the number in the system; on the
right side we compute the area by summing up the time in system for N customers.

From (2), (4) and (5), we can now write Little's Law for the supermarket:

1 (=16 1 N N
L=-x f (N(t)-n(t»)dt=-xLWj =-xW.

16 (=0 16 j=1 16
(6)

N

We recognize 16to be the arrival rate in customers per hour for the particular

day, and we define A= N ; thus we have (6) in its familiar form, L =Itw.
16 -.

With this simple example we have shown that Little's Law can be true over a
finite time window (16 h) with nonstationary arrivals and with no notion of any
steady state for the system in question. On reflection, there were two essential con-
ditions for this result:

. Boundary conditions-we specify the finite time window to start and end with
an empty system. This was a natural condition for the supermarket, and indeed,
would be common for many service systems.. Conservation of customers-we assume that all arriving customers will eventu-
ally complete service and exit from the system; there are no lost customers, so
that the number of arrivals equals the number of departures. Again, this is a valid
assumption for many systems of interest.

We really needed nothing else beyond these conditions in order to establish the
law in our case. We have no assumptions about N, the number of customers;
indeed, all the equations hold true for any N, e.g., for N = 1. We have no assump-
tions about the process for arrivals, or about how customers are serviced within
the store. There might be a long period of no arrivals followed by the arrival of
several busloads of customers; there might be periods of no service completions,
say, if all the cash registers stopped working for an hour. The only conditions are
as stated above: we need to start and end with an empty system and we need to
conserve customers.

Notice that our formula is exact, but after the fact. In other words, we cannot
complete our calculation until the supermarket door shuts. This is not a complaint.
It merely says that we are observing and measuring not forecasting. Another point
to mention is that the numbers will be different each day because of different sets
of shoppers on different days of the week, the weather, holidays, and other changes
in the store's internal and external environment. Nevertheless, the relationship
L = A."f. as measured for that day, will be exact and the ability to measure two of
the parameters and deduce the third still holds.
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Further Discussion of "Average"

Little's Law holds exactly, but let us examine further what we mean by "average"
wait, queue, and arrival rate. We have no probability distributions and so these are not
expected values. Looking at the derivation of the result, we see that we are talking
about everyday sample averages in the case of waits and arrival rates and finite time
averages in the case of queues. So Little's Law here shows us an exact relation among
sample and time averages. Next, consider a customer segment at the Sweet & Sour

supermarket that consists of men with children in strollers. We can compute sample
: or time averages for their arrival rate, time in store, and number in store. Little's Law

will hold exactly. Therefore, Little's Law is true for these averages for any identifiable
segment. To use the relationship in practice, it will be necessary to collect data
observing how many people of the target segment enter the store during the day.

To summarize, Little's Law is robust and remarkably general for queuing sys-
tems for which a finite window of observation starts and stops when the system is
empty. Interpretation of the area between cumulative arrivals and cumulative depar-
tures permits an analytic argument that Little's Law is exact despite possibly non-
stationary arrival and service processes. What we have discussed here turns out to
be the tip of a fascinating mathematical iceberg that has been developed in recent
years, called sample path analysis of queuing systems. An adequate discussion of
it is beyond the scope of this chapter but the interested reader is referred to the book
of EI-Tahaand Stidham(1999). .

Evolution of Little's Law in Operations Management

Over the past 15 years or so, Little's Law has played an increasingly important role
in the teaching and practice of operations management. However,the law is usually
stated in a modified format to emphasize its applicability to operations. For
instance, we cite as an example the very successful textbook of Hopp and Spearman
-(2000) who refer to Little's Law as a "... an interesting and fundamental, relation-
ship between WIP, cycle time and throughput." They go on to state the law as

TH = WIP
CT '

(7)

where they define throughput (TH) as "the average output of a production process
(machine, workstation, line, plant) per unit time," work in process (WIP) as "the
inventory between the start and end points of a product routing," and cycle time
(CD as "the average time from release of a job at the beginning of the routing until
it reaches an inventory point at the end of the routing (that is, the time the part
spends as WIP)." They note that cycle time is also referred to as flow time, through-
put time, and sojourn time, depending on the context.
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We easily see that (7) is equivalent to Little's Law with TH =Il,WI?=LandCT
= W. However, there is a more fundamental difference in that the law is stated in
terms of the average output or departure rate for the system, rather than the arrival
rate. This reflects the perspective of a typical operating system, especially a manu-
facturing operation. Output is a primary attribute of any manufacturing system,
since it is nominally its raison d'etre. As stated, we see that any increase in output
requires either an increase in work-in-process inventory or a reduction in cycle time
or both.

Furthermore in many contexts, the output rate is determined exogenously and is
given to the manufacturing system; it reflects actual sales and/or a forecast of sales.
The manufacturing system must then manage its operations to achieve this output
rate. It will need to determine how to release work to the operation so as to meet
the output target. In effect, the arrival process is endogenous. The operations man-
ager decides the arrivals to the system based on the desired outputs. There is exten-
sive research in the operations literature on how best to set the work release (or
arrival process) to achieve the output targets. The best policies are dynamic policies
that depend on the state of the manufacturing shop, e.g., depend on the
work-in-process. .

Our originaldevelopmentof Little's Law assumesa stablesystemwith a stationary
arrival process; as discussed above, we cannot assume a stationary arrival process
for the typical context in which we might apply (7). Thus, we ask what conditions
are necessary for (7) to be valid. At a minimum we must have conservation of
flow. Thus, the average output or departure rate (TH) equals the average input or
arrival rate (A). Furthermore, we need to assume that all jobs that enter the shop
will eventually be completed and will exit the shop; there are no jobs that get lost
or never depart from the shop. In addition, we need some notion of system
stability. We consider two possibilities, as this issue raises another important
consideration.

First, we might assume that the shop will occasionally empty, i.e., WI? = O.
Then, as with the supermarket example, we will see that Little's Law holds exactly
between any two time instances at which the shop is empty.

However, in many mapufacturing systems, the WI? never drops to zero. In some
contexts, this occurs for behavioral reasons; as the WI? decreases, the shop naturally
slows down so as to not run out of work. The shop adjusts its service rate dynami-
cally so as to keep from driving the WI? to zero. In other contexts, there might be
an explicit control rule that maintains some target level or range of WI? For
instance, a very effective control policy is the so-called CONWIP policy that main-
tains an absolutely constant level of WI? (Hopp and Spearman, 2000); that is, the
control rule releases one unit of new work to the system whenever one unit of work
completes processing and exits the system. In either case, Little's Law applies, at
least as an approximation, as long as we select a time interval that is long enough
for two conditions to hold.

First, we need the size of the WI? to be roughly the same at the beginning and
end of the time interval so that there is neither significant growth nor decline in the
size of the WI?
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Second, we need some assurance that the average age or latency of the WI? is
neither growing nor declining. We have previously assumed that all jobs that enter
the shop will eventually be completed and will exit the shop. But if the WI? never
drops to zero, it is possible for the jobs to be getting older or younger, in which case
the law does not hold.

To illustrate the problem, consider a doll store that offers a line of international
folk dolls. Each doll is adorned with traditional folk clothes from a particular
country. The artist who produces the dolls gives each doll a distinctive hat in
one of 10 different colors, which span the rainbow; the choice of color is
completely at random. So, sometimes the Irish folk doll has a green hat, and
sometimes a red hat. The store stocks 100 of these dolls so as to have a rich

. assortment of dolls from which to choose; whenever it sells a doll, the store
immediately obtains a replacement from the supplier so as to maintain its in-store
stock at 100 dolls. The supplier chooses the replacement'doll at random from
its supply.

Demand for the dolls has been quite good, as customers appreciate the artistry
and novelty of the dolls. Indeed, the dolls sell consistently at a rate of about two per
week. However, customers have a subtle but strong subconscious dislike for dolls
with mauve hats. Dolls with mauve hats seldom sell; indeed, these mauve-hat dolls
sell at a rate of about one every 2 years.

A naIve application of Little's Law might assume a doll arrival rate, equal to the
demand rate, A =2 per week and an average number in system L =100 dolls, and
then conclude that the average time in the store for a doll is W=50 weeks. However,
this is not likely to be an accurate estimate over any moderate time interval, like a
few years. Suppose we start with none of the hundred dolls having mauve hats.
Every time we sell a doll there is a 1 in 10 chance that it will be replaced with a
doll with a mauve hat, as the artist has 10 colors from which to choose. Since these
mauve-hat dolls sell much, much less frequently than any other doll, the mix of
dolls will gradually change over time. Indeed, the number of mauve-hat dolls in the
store grows by about 10 dolls per year. Dolls without mauve hats make up a smaller
percentage, but continue to sell at a rate of two per week; the time in system for
these dolls actually shrinks as they make up a smaller percentage of the store
assortment.However,the dolls with mauvehats do not sell andjust accumulate more
and more waiting time. Hence, the average age of the dolls in the store's assortment
continues to grow older until at some point, the entire assortment has mauve hats.
As a consequence, we cannot apply Little's Law during this transient period.

For instance, suppose we observe the system for 5 years, and then use Little's
Law to estimate W = L/A = 100/2 = 50 weeks; this estimate overstates the actual
time in system for those dolls that have sold. Over the first 5 years, the number of
mauve-hat dolls in the store grows from zero to about 50. As a consequence the
active inventory, namely the dolls without mauve hats, drops from 100 to about 50.
These dolls stay in the system, on average, less than 50 weeks, whereas the mauve-
hat dolls just sit and get older. Of course, if we extend the time interval, in 10 years
the entire assortment becomes mauve and the demand rate falls to one doll every 2
years; eventually (about 200 years) the mauve inventory turns over and Little's Law
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will now apply. Presumably, the store would recognize the trend a bit earlier and do
something about it! Nevertheless, the example shows how Little's Law might not
hold over some time interval during which the average age of the WI? or queue is
changing.

A quite different approach to the problem of nonzero WIP is motivated by what
we learned in the supermarket problem. There we noted that Little's Law applies
independently to each customer segment, but we have to be able to identify the
customers in each segment and collect data on them.

So, in the case of non-zero WIP (or, actually, any existing WIP!), we can ignore
all of it and focus on a group of new items, which, for example, might be colored
blue. The system starts empty of blue items, even though it may be cluttered with
others. We count blues as they enter the system (the rate may be controlled if we
wish-stationarity is not required). The observations we make depend on what we
wanUo learn and what is easy to measure. Suppose we want to observe and process
N blue items. And suppose we want to know the cycle time CT = W, the average
time a blue item spends in processing. At regular intervals we take an inventory of
blues so that we can estimate WIP = L (for blues only) by simple averaging.

Eventually all N leave, say at T and so the average arrival rate is A=TH =NIT. Then
CT =W can be calculated by Little's Law. The underlying theory is exact, although
we have introduced some sampling error in estimating the blue WIP. However, this
is something we can control by putting whatever resources we think are worthwhile
to reduce it.

Alternatively, we might have a way of determining blue cycle time CT = W
exactly and wish to know the average inventory of blue items, i.e., the blue WIP = L.
This is the case in the followingexample. .

Consider a toy manufacturer that contracts with a third party logistics firm, 3PL,
to handle its on-line business. The toy manufacturer will supply inventory to 3PL to
fill orders. When the toy manufacturer receives an order on-line, it will instruct 3PL
to fill it.

The toy manufacturer pays 3PL to provide this service. The contract terms
depend on two factors: the number of orders shipped and the amount of inventory
space occupied by the t~ys at 3PL. The toy manufacturer pays 3PL $10 for every
order that is shipped and $0.03 per day for each unit in inventory.

At the start of each month, the toy manufacturer ships a batch of toys to 3PL.
These toys typically sell out within the month, but not always. For accounting rea-
sons, the toy manufacturer insists that 3PL submit an invoice for its services for
each batch of toys. Hence, 3PL waits until the entire batch has been sold before it
can finalize an invoice. In preparing the invoice 3PL can easily determine the
shipping-cost component, as it just depends on the number of toys in the batch.
However, 3PL is less clear about how to account for how much inventory space is
attributable to a batch of toys. One approach would be to count its inventoryeach day.
However, it would be quite difficult to track the inventory associated with a partic-
ular batch since the toys from all batches, as well as from other suppliers, are stored
together in one section of the warehouse. Thus, it would be cost prohibitive to do
an inventory count each day.
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A much simpler approach is to use Little's Law. Suppose that whenever 3PL
receives a batch of toys, it records the arrival date for each toy. 3PL can also
record the date at which the toy is shipped, and hence obtain the time in system
for each toy.

For instance, if there were an RFID tag attached to each toy, then 3PL can easily
record these transactions with RFID readers at its shipping docks. Thus, 3PL knows
the wait times W. for i = 1,2, .. .N, where W.is the difference between the ship time
and receipt time 'for the ithtoy and N is the 'number of toys in a batch. The average
wait time for the batch is

1 N

W=-L~'
N i=l

If it takes T days to sell the batch of N toys, then the average arrival rate for the
batch is

'A=N
T'

By Little's Law we now can find the average inventory attributable to this
batch:

I N

L='AW=-L~'
T i=l

Since L represents the average inventory over a period of T days, 3PL will
charge the toy manufacturer for Lx T unit-days of inventory storage, at $0.03 per
unit-day.

Concluding Remarks

We have given a variety of examples showing the kinds of situations where Little's
Law can usefully convert an estimate of an average queue into an estimate of aver-
age waiting time and vice versa when one may be relatively easy to measure and
the other not.

We have also briefly examined how Little's Law has been used in operations
management. Here we observe that a different terminology and set of symbols is
usually adopted. Operations managers are concerned with their throughput rate
rather than an arrival rate; their queue length is usually WI?, their wait time is
termed cycle or flow time. We also discussed two differences in orientations
between the use of the law in operations management and its original derivationand
application:
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. For operations management the law is often expressed in terms of output rates
rather than arrival rates.Furthermore, the arrivalprocess to most operatingsystems
is not a stationary process, and, indeed, may be controlled.

. Many operating systems are never empty. That is, the number in the system or
WIP is always positive.

In each case we see that Little's Law can apply, albeit with some required condi-
tions and thoughtful attention to the goals of the application.

Historical Background

We trace the evolution of Little's Law from the early days of queuing theory in
operations research and management science to our own chapter in this book. .

The earliest paper we have found that makes use of Little's Law simply assumes
it to be true. Cobham (1954), in an article on priority queues, writes, "... it is suffi-
cient to observe that the expected number of units of priority k waiting to be serviced
is AkWk,where Wkis the expected wait for a unit of priority k." (Akis the arrival rate
of priority k items.)

We attribute the explicit formula "L = AW' to Philip Morse and his book,
Queues, Inventories and Maintenance, (Morse, 1958). He does not give the law
a name but simply talks about "the relation between mean number and mean
delay." In Chap. 7 he proves the relationship for a single channel queuing sys-
tem having Poisson arrivals and a service time distribution of the general class
known as k-Erlang. The proof of L =AW is, in a certain sense, incidental to his
main task of solving for the steady-state joint probabilities of the number of
items in the system and the stage of item in service. Using the fairly standard
approach of describing the system with a set of differential equations, Morse
solves the system by building a two variable generating function of the desired
joint probabilities. One variable relates to the number of items in the system
and the other to the stage of the item in service. The generating function can
then be used rather e,\sily to find both Land W. Examination shows that L
and W differ only by the constant of proportionality A. This is a nice piece of
analysis of the particular system, but it does not readily suggest a route to
greater generality.

Morse was clearly interested in the general case. After the above analysis he
wrote, "we have now shown that... the relation between the mean number and mean
delay is via the factor A, the arrival rate: L = AWand We will find, in all the
examples encountered in this chapter and the next, for a wide variety of service and
arrival distributions, for one or for several channels, that this same relationship
holds. Those readers who would like to experience for themselves the slipperiness
of fundamental concepts in this field and the intractability of really general
theorems, might try their hand at showing under what circumstances this simple
relationship between Land W does not hold."
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The next paper to appear was Little (1961) and had the title "A Proof of the
Queuing Formula: L =AW."Little essentially analyzes the picture shown in Fig. 5.2
of our chapter. His argument uses ergodic theorems for strictly stationary stochastic
processes, as drawn from Doob (1953). The basic analytic task is to get rid of "end
effects" as discussed below Fig. 5.2 in this chapter. However,Little does something
else not done previously. His proof argues that the law holds in any specific realiza-
tion of the queuing system when observed over a long period of time. This is dif-
ferent from finding steady state probabilities for the number iri the system and
calculating L and performing a corresponding analysis of the distribution of waiting
times to find W. The idea that the theorem is true for each evolution of the system
provides a deeper understanding of the importance of the relationship L =AW in the
queuing process itself. It also lays a basis for sample path proofs of the relationship
that are to come.

Not too long afterward, Jewell (1967) came along with "A Simple Proof of
L = AW." He draws a picture very similar to our Fig. 5.3 and makes the assumption
that the event when the system becomes empty is a recurrent event. By definition the
times between such events are mutually independent random variables having
the same distribution.Thus the time line alternatesbetween intervalsduring which the
system is empty and ones during which the system is busy. Jewell assumes that
arrival and waiting mechanisms are reset at the start of each busy period. In other
words, in each busy period, the random variables in those mechanisms have the
same joint distribution, and their values are new random draws, independent of
previous busy periods. An advantage of Jewell's paper was that it used a vocabulary
more familiar to queuing system analysts than the measure-theoretic arguments of
stationary stochastic processes invoked by Little (1961).

Jewell's paper was followed by Eilon (1969), which had the title "A Simpler
Proof of L = AW." He shows essentially the same picture as Jewell and as our
Fig. 5.3 and makes the same heuristic analysis that we do under Fig. 5.2. He notes
that, if the limits of L(T), W(T), and A(T)exist as T goes to infinity, the result is
proven. Most writers on the subject, however, consider that a further argument
is required to be certain that end-effects go away in the limit.

As time went on, the number and importance of applications of queuing systems
. increased and with them the applications of Little's Law. One major area lay in the

design and analysis of computer systems. Kleinrock (1975, 1976) develops and
summarizes a set of tools to assist this. One of the present authors (Little) recalls
receiving a telephone call out of the blue from a computer engineer on the West
Coast during the 1970s. The caller asked, "Do you have anymore laws? I use
Little's Lawall the time and find it really helpful." But the response from the East
Coast was "Sorry, we're fresh out of new laws today."

Although researchers in the field had no doubt about the remarkable generality
of Little's Law, there developed among some of them the belief that its validity
could be proven deterministically by sample path analysis. Such an approach would
produce a reader-friendly proof without recourse to probability, somewhat in the
manner that this chapter argues the deterministic validity of Little's Law in the
supermarket example. The net result was Stidham (1974), "A Last Word on L = AW."



5 Little's Law 99

However, as he pointed out in a later review article (Stidham, 2002), it was not the
last word at all because the research potential of sample path analysis for queuing
and other applications has ramifications far beyond Little's Law. Many results of
this sort appear in a book by Stidham and a colleague: (EI-Taha and Stidham,
1999): Sample-Path Analysis of Queueing Systems.

Over the past few years, Little's Law has become increasingly important in
operations management. The notation and type of thinking are different, but appli-
cations are growing in number and importance. The goal of this chapter has been
to facilitate such applications by providing illustrative examples, especially ones
that explore new territory.

A Note of Personal History (Little)

How did a sensible young PhD like me get involved in a crazy field like this? From
1957-1962, I taught operations research at the Case Institute of Technology in
Cleveland (now Case Western Reserve University). I was asked to teach a course
on queuing. OK. Initially I used my own notes, but when Morse (1958) came out,
I used his book extensively. Queuing was taken by most of the OR graduate stu-
dents and, indeed, one of these, Ron Wolff, went on to become a first class queuing
theorist (Wolff 1989). One year we were at the point when we had done the basic
Poisson-exponential queue and moved through multi-server queues, and some other
general cases. I remarked, as many before and after me probably have (and Morse
does), that the often reappearing formula L =AW seemed very general. In addition
I gave the heuristic proof that is essentially Fig. 5.2 at the beginning of this chapter.
After class I was talking to a number of students and one of them (Sid Hess) asked,
"How hard would it be to prove it in general?" On the spur of the moment, I oblig-
ingly said, "I guess it shouldn't be too hard." Famous last words. Sid replied, "Then
you should do it!"

The remark stuck in my mind and I started to think about the question from time
to time. Clearly there was something fundamental going on, since, when you
draw the picture you do not really seem to need any detailed assumptions about
interarrival times, service times, number of servers, order of service, and all the
other ingredients that go into the panoply of queuing models. You only seemed to
need a process that goes up and down in unit amounts and some guarantee of steady
state and conservation of items. In addition, because I could see there were end
effects in the picture, there needed to be a way to get rid of them in the limit. It
seemed to me I was in the general arena of stationary.stochastic processes. I am not
a mathematician by training, and so I bought copies.of measure theoretic stochastic
process books like Doob (1953), which mentioned stationary processes and ergodic
theorems.

My family's habit at the time was to go to Nantucket in the summer where my
wife's family had a small summer house. We would load our children in a station
wagon, drive to Woods Hole, take the ferry, and spend a couple months away from
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the world. Since the beach was the baby-sitter, I was able to split off solid blocks
of time to work on research as a good assistant professor should. (I wish I could do
that today!) I always brought a pile of books and projects with me. L ='AWwasone
of them. I soon ran into problems that required more than looking up theorems in
my new books, but I worked out approaches to the road blocks and eventually wrote
everything up, giving it my best shot. I sent the paper off to Operations Research.
It was accepted on the first round.

Nevertheless, I had learned my lesson. I decided that Borel fields and metric
transitivity were not going to be my career and retired from queuing. That was in

. 1961.My retirementhelduntil 2004whenI was accostedby emailand in person
at an INFORMS meeting by Tim Lowe. Even then, as he will tell you, I resisted

. re-entrapment, saying, "I don't know anything about OM and I haven't looked at
L = 'AW for 40 years." Being always susceptible to a new challenge and, more
importantly, thanks to much help from Steve Graves, who really does know OM,
I took a run at holding up my end of the chapter. It has been a wonderful experience
and I have learned much. Now I need to find ways to use it.
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