
Transposition distance between a permutationand its reverseJo~ao Meidanis15 Maria Emilia M. T. Walter213 Zanoni Dias141 University of Campinas, Institute of Computing, Brazil.2 University of Brasilia, Computer Science Department, Brazil.3 Partially supported by Brazilian agency CAPES.4 Supported by Brazilian agency CNPq.5 Partially supported by Brazilian agencies FAPESP and CNPq.Abstract. In this note we solve an open question posed by Bafna andPevzner [1], regarding chromosome distance with respect to transposi-tions: we show that the distance between a permutation and its reverse(without complementation) is bn=2c + 1, where n is the size of the per-mutations. We also present an algorithm to compute an optimal seriesof transpositions.1 IntroductionThe huge amount of data resulting from genome sequencing in Molecular Bi-ology is giving rise to an increasing interest in the development of algorithmsfor comparing genomes of related species. Particularly these data prompted re-search on mutational events acting on large portions of the chromosomes. Suchevents can be used to compare genomes for which the traditional methods ofcomparing DNA sequences are not conclusive. The �eld originated by the studyof large mutations on chromosomes is known as genome rearrangements.There are several mutational events a�ecting large fragments of genomesof organisms, including duplication, reversal, transposition (acting on a singlechromosome), translocation, fusion, and �ssion (involving more than one chro-mosome). Each such event or combination of events gives rise to a theoreticalproblem of �nding, given two genomes, the shortest series of events that trans-forms one genome into the other. We seek the shortest series because it has thelargest likelihood of occurrence under a general principle of parsimony. Noticethat in general more than one shortest series exists. The length of the shortestseries is called the distance between the two genomes.Chromosomes are usually represented as permutations of integers in a givenrange, each integer representing a gene. Sometimes the integers are signed toindicate the orientation of the gene. However, when the gene orientations areunknown or not relevant (as in the case of transpositions), the integers areunsigned.In the last few years we have witnessed formidable advances in our under-standing of genome rearrangements. A partial list of known results follows. Withrespect to the reversal event, Hannenhalli and Pevzner [6] presented the �rst



polynomial time algorithm to �nd the distance, later improved on its runningtime by Berman and Hannenhalli [2], and Kaplan, Shamir, and Tarjan [7]. Theseresults concern signed permutations. For the unsigned case, also involving rever-sals, Caprara [3] showed that �nding the distance is NP-hard. Hannenhalli andPevzner [5] studied a multichromosomal distance problem for signed genomesinvolving reversals, fusion, �ssion, and a speci�c form of translocation, produc-ing a polynomial time algorithm in this case as well. Bafna and Pevzner [1]analyzed the problem with respect to transpositions, presenting several approx-imation algorithms, and leaving a number of open questions, among them thecomplexity of the problem and the diameter (largest possible distance betweentwo permutations of size n). Gu, Peng, and Sudborough [4] gave approximationalgorithms for the combination of events of reversal and transposition.In this note we solve an open question posed by Bafna and Pevzner [1],regarding chromosome distance with respect to transpositions: we show thatthe distance between a permutation and its reverse (without complementation)is bn=2c + 1, where n is the size of the permutations. Besides, we present analgorithm to compute an optimal series of transpositions.2 De�nitionsChromosomes are represented by permutations of integers in the range 1..n,where n is the number of genes of interest in the chromosome. For instance,(3 4 2 6 1 5) represents a chromosome with six genes. A transposition is anoperation that transforms a permutation into another one, \cutting" a certainportion of the permutation and \pasting" it elsewhere in the same permutation.A transposition �(i; j; k) is de�ned by three integers i, j, and k such that 1 �i < j � n+ 1, 1 � k � n+ 1, and k 62 [i; j], in the following way. It \cuts" theportion between positions i and j � 1, including the extremes, and \pastes" itjust before position k. Thus, we can write�(i; j; k) � (�1�2 : : : �i : : : �j : : : �k : : : �n) =(�1�2 : : : �i�1�j : : : �k�1�i : : : �j�1�k : : : �n);if i < j < k, and�(i; j; k) � (�1�2 : : : �k : : : �i : : : �j : : : �n) =(�1�2 : : : �k�1�i : : : �j�1�k : : : �i�1�j : : : �n);if k < i < j. Notice that �(i; j; k) = �(j; k; i) when i < j < k.Given two permutations � and �, the transposition distance or just distancebetween them is the minimum number t of transpositions %1 : : : %t such that%t%t�1 : : : %1 � � = �:We denote such distance by d(�; �). Because the inverse of a transposition isalso a transposition, we have that d(�; �) = d(�; �).



A powerful tool for studying the transposition distance is the reality anddesire diagram of two permutations. Suppose we want to compute d(�; �). Weconstruct this diagram writing the origin permutation � in the following way.Replace each integer i by a pair of points �i and +i, in this order, and addtwo extra points, one called +0 at the beginning of the sequence, and one called�(n+1) at the end of the sequence. Now draw oriented reality edges from ��1to +0, from ��i+1 to +�i, and from �(n + 1) to +�n. Finally, draw orienteddesire edges from +0 to ��1, from +�i to ��i+1, and from +�n to �(n+ 1).The diagram has exactly n+ 1 reality edges and the same number of desireedges. The idea is that reality edges indicate the situation as it is now, while de-sire edges indicate the situation sought. When reality equals desire in all edges,we have � = � and d = 0. Therefore, in a way, our goal is to apply trans-positions so that reality becomes closer to desire. Figure 1 shows the diagramcorresponding to a pair of permutations.
π  =

-8 +8+0 -5 +5 -1 +1 -4 +4 -3 +3 -2 +2 -7 +7 -6 +6 -9

σ  =   ( 1  2  3  4  5  6  7  8 )

 ( 8  5  1  4  3  2  7  6 )

Fig. 1. Reality and desire diagram for two permutations, � and �, as showed. In this�gure, reality edges are represented by thick lines and desire edges by thin lines.Bafna and Pevzner [1] made several useful results regarding the reality anddesire diagram. One of them is that the diagram is composed of a number ofcycles, with each cycle alternating between reality and desire edges. The lengthof a cycle is the number of reality edges in it (which is the same as the numberof desire edges in it). One important remark follows.Lemma 2.1 The sum of the lengths of all cycles in any reality and desire dia-gram is always equal to n+ 1.Moreover, a transposition can a�ect the number of cycles in a very speci�cway, as the following lemma shows [1]. Denote c(�; �) the number of cycles inthe diagram of � and �.



Lemma 2.2 For any permutations � and � and any transposition % we havec(% � �; �) = c(�; �) + x;where x = �2, 0, or 2.A transposition % is called a �2-move, a 0-move, or a 2-move according tox being �2, 0, or 2 in the previous lemma. Since c(�; �) = n+ 1, the maximumpossible, we would like to perform 2-moves as much as possible.If fact, a stronger statement can be made regarding the e�ect of a transpo-sition on a diagram. Denote by codd(�; �) the number of cycles of odd length inthe diagram of � and �.Lemma 2.3 For any permutations � and � and any transposition % we havecodd(% � �; �) = codd(�; �) + x;where x = �2, 0, or 2.From this lemma we have the following lower bound on the distance:Theorem 2.1 For any permutations � and � we haved(�; �) � (n+ 1)� codd2Now we make some de�nitions used in the following sections.First we show a way to represent a cycle by its reality edges. We numberthe reality edges of the diagram assigning label i to a reality edge from �i+1to �i, with 0 � i � n, so we label them from 1 to n + 1. Let us consider acycle C of size k, taking the reality edges in the order they appear in the cycle,(i1; : : : ; ik). A cycle C can be represented in k possible ways, depending on thechoice of the �rst reality edge. We will consider a canonical representative ofa cycle C, taking the initial reality edge i1 as the rightmost edge of C in �,that is, i1 = max1�t�k it. In the diagram of Figure 1 we have three cycles, withcanonical representatives C1 = (9; 7; 5; 2), C2 = (8; 1; 3) and C3 = (6; 4).Let us consider now three reality edges x; y; z belonging to the same cycleC in the diagram. C forces an order on x; y; z, and we have three possiblerepresentations of this order. We will choose as the canonical representative ofa triple (x; y; z) the one starting from the rightmost reality edge max(x; y; z).A triple in the canonical order is non-oriented if x > y > z and oriented ify < z < x. In the diagram of Figure 1 we have the following non-orientedtriples: (9; 7; 5), (9; 7; 2), and (7; 5; 2); and the oriented triple (8; 1; 3).Finally, we say that a cycle is oriented if it admits a 2-move, and non-orientedif there is no possible 2-moves acting on it. In the diagram of Figure 1 we haveC1 and C3 non-oriented and C2 oriented.



3 Computing the transposition distanceGiven the permutations � = (n n � 1 n � 2 : : : 2 1) and � = (1 2 : : : n �2 n�1 n) we want to compute the transposition distance d(�; �). Of course, thisdistance will be the same for any pair consisting of a permutation and its reverse.Theorem 3.1 below establishes that d(�; �) = 1 if n = 2 and d(�; �) = �n2 �+1 ifn > 2.However, in the proof of this theorem we need the following lemma, whichcan be easily proved. Bafna and Pevzner [1] mention part of this result in theirwork.Lemma 3.1 Let C be a cycle and (x; y; z) a triple of C in the canonical repre-sentation. Then we have(x; y; z) is oriented if and only if %(y; z; x) is a 2-moveand (x; y; z) is non-oriented if and only if %(y; z; x) is a 0-moveNow we will state and prove the main theorem.Theorem 3.1 Given the permutations � = (n n � 1 n � 2 : : : 2 1) and � =(1 2 : : : n� 2 n� 1 n), we have for n � 2d(�; �) =8<: 1 if n = 2�n2 �+ 1 if n > 2Proof: From the work of Bafna and Pevzner [1], given � = (n n � 1 n �2 : : : 2 1) we have codd(�; �) =8<: 1 if n is even0 or 2 if n is oddApplying the lower bound given by Theorem 2.1 for d(�; �) we have(n+ 1)� codd2 =8<: (n+1)�12 = n2 if n is evenn+12 or n�12 if n is oddNotice that in order to attain the lower bound every transposition used mustincrease the number of odd cycles.For � and � as de�ned earlier in this section Bafna and Pevzner [1] provedthe following upper bound d(�; �) � jn2 k+ 1for all n � 1.We have two cases:



1. When n is odd:{ for the case of 0 odd cycles:n+ 12 = jn2 k+ 1In that case, the lower bound is exactly equal to the upper bound,and then d(�; �) = �n2 �+ 1.{ For the case of 2 odd cycles:n� 12 < jn2 k+ 1and the gap is exactly 1. But here we have two non-oriented oddcycles. This implies that the next move cannot increase codd , andtherefore we cannot reach the lower bound.So, when n is odd then we have d(n n� 1 n� 2 : : : 2 1) = �n2 �+ 1.2. When n is even: n2 < jn2k+ 1and the gap is exactly 1. In this case, we have to prove that there is neces-sarily a transposition that will not increase codd during any transpositionsequence that transforms � into � .The �rst transposition is either a 0-move or a 2-move. We cannot apply a�2-move because this �rst diagram is formed by just one cycle.If we apply a 0-move, the unique odd cycle is transformed into anotherodd cycle, not increasing codd .So, we have to verify what happens if we apply a 2-move. We will showthat any 2-move gives rise to a diagram with all cycles non-oriented. Thiswill imply the result as follows. We have two possibilities. If the resultingdiagram has one odd cycle and two even cycles, the �rst transpositiondid not increase codd . On the other hand, if we end up with three oddcycles, the second transposition of the series cannot increase codd , becauseall three cycles are non-oriented.Let us now study what happens when the �rst transposition is a 2-move.From Lemma 3.1 we know that every 2-move corresponds to an orientedtriple in the unique cycle of the diagram. The order of reality edges in thiscycle is such that all even labels appear together, in decreasing order, andall odd labels appear together, also in decreasing order. It follows that thepossible 2-moves are of the form %(i; j; k) with i and j of opposite parity,k of same parity as i, and 1 � i < j < k � n+ 1.



We now have to apply one such transposition and analyze the resultingdiagram. Because i < j < k, we have%(i; j; k) � (n n� 1 n� 2 : : : 2 1) =( n� 1 : : : n� i+ 2 n� j + 1 : : : n� k + 2n� i+ 1 : : : n� j + 2 n� k + 1 : : : 2 1):Figure 2 shows examples of such 2-moves.
+8 -9+0 -8 -7   +7 -6   +6 -5   +5 -4   +4 -3   +3 -2   +2 -1   +1

(b)

(a)
π

+0 -9-8   +8 -7   +7 -5   +5 -6   +6 -4   +4 -3   +3 -1   +1-2   +2

+0 -9-8   +8 -4   +4 -3   +3 -2   +2 -7   +7 -6   +6 -5   +5 -1   +1

πρ(3,4,5) .

π.ρ(2,5,8)

+0 -9-1   +1 -8   +8 -7   +7 -6   +6 -5   +5 -4   +4 -3   +3 -2   +2

π.ρ(1,8,9)Fig. 2. This �gure shows the diagram created by a strictly decreasing sequence withrespect to the identity, and the diagrams created by some possible 2-moves applied tothe �rst diagram. (a) The diagram created by the decreasing cycle � = (8 7 6 5 4 3 2 1)with respect to � = (1 2 3 4 5 6 7 8). (b) The diagrams created by some transpositionsapplied to � as indicated.The important fact here is that, because of the opposite parity of j andk, and of i and j, the cycle involving reality edge (n � i+ 1; n� k + 2) isnon-oriented. Likewise, the cycle involving reality edge (n�k+1; n�j+2)is non-oriented because of the opposite parity of i and j (regardless of theparity of k), and the cycle involving reality edge (n � j + 1; n � i + 2) isalso non-oriented because j and k have opposite parity (regardless of the



parity of i). Thus, in any case we end up with three non-oriented cycles,which proves the theorem. 24 An algorithm to compute d(�; �)We show now an algorithm to compute the transposition distance between astrictly decreasing sequence with respect to the identity. Note that the algorithmruns without using the reality and desire diagram. Instead, it uses an explicitseries of transpositions that work in the case treated in this article. As the serieshas length bn=2c+ 1, the results in the previous section guarantee that it is ashortest series.AlgorithmInput: n > 2, � = (n n� 1 : : : 2 1)Output: t = d(�; �) and %1; %2; : : : ; %tbegin1. �1  %1(1; �n2 � ; n) � �2. t 13. if n is even thent t+ 1�2  %t(n2 ; n2 + 1; n+ 1) � �1k  1p 14. if n is odd thenk  0p 05. while k < �n2 � dot t+ 1�t  %t(�n2 �� k; �n2 �� k + 2; n+ 1� k + p) � �t�1k  k + 16. return t, %1; %2; : : : ; %tendThe four initial steps create, from the initial permutation, a new permuta-tion with two decreasing subsequences on its left extremity, and an increasingsequence, on its right end. If n is even then we have�2 = ( n2 + 1 n2 : : : 3 ) ( n n� 1 : : : n2 + 2 ) ( 1 2 )



Note that the decreasing subsequences have dn2 e � 1 elements each. We markedthe subsequences with parenthesis.If n is odd then we have�1 = ( n+ 12 : : : 3 2 ) ( n n� 1 : : : n+ 12 + 1 ) ( 1 )Analogously, in this case the �rst two subsequences also have dn2 e � 1 elementseach.The loop in step 5 moves both the last element of �rst subsequence and the�rst element of second subsequence to the right end of the permutation, wheretwo other subsequences are being increased as the algorithm runs. Generically,if n is even then we have, after k � 1 iterations of the loop,�k+1 = (n2 +1 n2 : : : k+2) (n�k+1 : : : n2 +2) (1 2 : : : k+1) (n�k+2 : : : n):If n is odd then we have, after k iterations,�k+1 = (n+ 12 : : : k+2) (n�k : : : n+ 12 +1) (1 2 : : : k+1) (n�k+1 : : : n):So this algorithm correctly transforms the permutation in its inverse, usingtranspositions. Also, the algorithm runs in O(�n2 �+ 1) steps, for n > 2.Figure 3 shows examples of this algorithm executions for the decreasing se-quences for n = 6 and n = 7, with respect to the identity.
(a) 6   5   4   3   2   1 (b) 7   6   5   4   3   2   1

4   3   2   6   5   1

4   3   6   5   1   2

4   5   1   2   3   6

1   2   3   4   5   6

4   3   2   7   6   5   1

4   3   6   5   1   2   7

4   5   1   2   3   6   7

1   2   3   4   5   6   7Fig. 3. This �gure shows two executions of the algorithm. (a) Example with n even.(b) Example with n odd.



5 ConclusionsWe demonstrated that the transposition distance between a permutation and itsreverse (without complementation) is �n2 �+1 for all n > 2, where n is the size ofthe permutation. We conjecture that this is in fact the value of the transpositiondiameter.We also presented an algorithm to �nd an optimal series of sorting transpo-sitions for the case studied.References1. V. Bafna and P. Pevzner. Sorting by transpositions. In Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA'95, pages 614{623, 1995.2. P. Berman and S. Hannenhalli. Fast sorting by reversals. In Proc. 7th AnnualSymposium on Combinatorial Pattern Matching - CPM'96, pages 168{185, 1996.3. A. Caprara. Sorting by reversals is di�cult. In Proc. 1st Annual InternationalConference on Computational Molecular Biology - RECOMB'97, pages 75{83, 1997.4. Qian-Ping Gu, Shietung Peng, and Hal Sudborough. Approximating algorithms forgenome rearrangements. In Proc. 7th Worshop on Genome Informatics - GIW'96,1996.5. S. Hannenhalli and P. Pevzner. Tranforming men into mice (polynomial algorith-mic for genomic distance problem). In Proc. 36th Annual IEEE Symposium onFoundations of Computer Science - FOCS'95, pages 581{592, 1995.6. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomialalgorithm for sorting signed permutations by reversals). In Proc. 20th Annual ACMSymposium on Theory of Computing - STOC'95, pages 178{189, 1995.7. H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for sortingsigned permutations by reversals. In Proc. 8th Annual ACM-SIAM Symposium onDiscrete Algorithms - SODA'97, 1997.
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