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Abstract. In this note we solve an open question posed by Bafna and
Pevzner [1], regarding chromosome distance with respect to transposi-
tions: we show that the distance between a permutation and its reverse
(without complementation) is |n/2] + 1, where n is the size of the per-
mutations. We also present an algorithm to compute an optimal series
of transpositions.

1 Introduction

The huge amount of data resulting from genome sequencing in Molecular Bi-
ology is giving rise to an increasing interest in the development of algorithms
for comparing genomes of related species. Particularly these data prompted re-
search on mutational events acting on large portions of the chromosomes. Such
events can be used to compare genomes for which the traditional methods of
comparing DNA sequences are not conclusive. The field originated by the study
of large mutations on chromosomes is known as genome rearrangements.

There are several mutational events affecting large fragments of genomes
of organisms, including duplication, reversal, transposition (acting on a single
chromosome), translocation, fusion, and fission (involving more than one chro-
mosome). Each such event or combination of events gives rise to a theoretical
problem of finding, given two genomes, the shortest series of events that trans-
forms one genome into the other. We seek the shortest series because it has the
largest likelihood of occurrence under a general principle of parsimony. Notice
that in general more than one shortest series exists. The length of the shortest
series is called the distance between the two genomes.

Chromosomes are usually represented as permutations of integers in a given
range, each integer representing a gene. Sometimes the integers are signed to
indicate the orientation of the gene. However, when the gene orientations are
unknown or not relevant (as in the case of transpositions), the integers are
unsigned.

In the last few years we have witnessed formidable advances in our under-
standing of genome rearrangements. A partial list of known results follows. With
respect to the reversal event, Hannenhalli and Pevzner [6] presented the first



polynomial time algorithm to find the distance, later improved on its running
time by Berman and Hannenhalli [2], and Kaplan, Shamir, and Tarjan [7]. These
results concern signed permutations. For the unsigned case, also involving rever-
sals, Caprara [3] showed that finding the distance is NP-hard. Hannenhalli and
Pevzner [5] studied a multichromosomal distance problem for signed genomes
involving reversals, fusion, fission, and a specific form of translocation, produc-
ing a polynomial time algorithm in this case as well. Bafna and Pevzner [1]
analyzed the problem with respect to transpositions, presenting several approx-
imation algorithms, and leaving a number of open questions, among them the
complexity of the problem and the diameter (largest possible distance between
two permutations of size n). Gu, Peng, and Sudborough [4] gave approximation
algorithms for the combination of events of reversal and transposition.

In this note we solve an open question posed by Bafna and Pevzner [1],
regarding chromosome distance with respect to transpositions: we show that
the distance between a permutation and its reverse (without complementation)
is [n/2] + 1, where n is the size of the permutations. Besides, we present an
algorithm to compute an optimal series of transpositions.

2 Definitions

Chromosomes are represented by permutations of integers in the range 1..n,
where n is the number of genes of interest in the chromosome. For instance,
(34261 5) represents a chromosome with six genes. A transposition is an
operation that transforms a permutation into another one, “cutting” a certain
portion of the permutation and “pasting” it elsewhere in the same permutation.
A transposition p(i, j, k) is defined by three integers i, j, and k such that 1 <
i<j<n+1,1<k<n+1,and k ¢ [i,j], in the following way. It “cuts” the
portion between positions ¢ and j — 1, including the extremes, and “pastes” it
just before position k. Thus, we can write

pli, g, k) - (mme .. Wi W T Tp) =

(Mg o TG AT o M 1T o 1T« - ),
ifi <j<k,and

pli,j k) - (mmy o T Ty T Ty) =

(Mg o TR o T 1T o T 1T o T,

if k <i < j. Notice that p(i,7,k) = p(4,k,i) when ¢ < j < k.
Given two permutations 7 and o, the transposition distance or just distance
between them is the minimum number ¢ of transpositions g; ... g; such that

Ot0t—1...01 T =0.

We denote such distance by d(w,0). Because the inverse of a transposition is
also a transposition, we have that d(w, o) = d(o, 7).



A powerful tool for studying the transposition distance is the reality and
desire diagram of two permutations. Suppose we want to compute d(mw, o). We
construct this diagram writing the origin permutation 7 in the following way.
Replace each integer ¢ by a pair of points —i and +i, in this order, and add
two extra points, one called +0 at the beginning of the sequence, and one called
—(n+ 1) at the end of the sequence. Now draw oriented reality edges from —m;
to 40, from —m;11 to +m;, and from —(n + 1) to +m,. Finally, draw oriented
desire edges from 40 to —oy, from +0; to —o;41, and from +o,, to —(n + 1).

The diagram has exactly n + 1 reality edges and the same number of desire
edges. The idea is that reality edges indicate the situation as it is now, while de-
sire edges indicate the situation sought. When reality equals desire in all edges,
we have 7 = ¢ and d = 0. Therefore, in a way, our goal is to apply trans-
positions so that reality becomes closer to desire. Figure 1 shows the diagram
corresponding to a pair of permutations.

m=(85143276)

Q
I

(1234567 8)

+0 -8 +8 -5 +5 -1 +1 -4 +4 -3 +3 -2 +2 -7 +7 -6 +6 -9

Fig. 1. Reality and desire diagram for two permutations, 7 and o, as showed. In this
figure, reality edges are represented by thick lines and desire edges by thin lines.

Bafna and Pevzner [1] made several useful results regarding the reality and
desire diagram. One of them is that the diagram is composed of a number of
cycles, with each cycle alternating between reality and desire edges. The length
of a cycle is the number of reality edges in it (which is the same as the number
of desire edges in it). One important remark follows.

Lemma 2.1 The sum of the lengths of all cycles in any reality and desire dia-
gram is always equal to n + 1.

Moreover, a transposition can affect the number of cycles in a very specific
way, as the following lemma shows [1]. Denote ¢(m, o) the number of cycles in
the diagram of 7 and o.



Lemma 2.2 For any permutations © and o and any transposition o we have
clo-m,0) =c(m o)+,
where x = =2, 0, or 2.

A transposition p is called a —2-mowve, a 0-move, or a 2-move according to
x being —2, 0, or 2 in the previous lemma. Since ¢(o,0) = n + 1, the maximum
possible, we would like to perform 2-moves as much as possible.

If fact, a stronger statement can be made regarding the effect of a transpo-
sition on a diagram. Denote by ¢,qq4(7, o) the number of cycles of odd length in
the diagram of = and o.

Lemma 2.3 For any permutations m and o and any transposition ¢ we have
Codd(0 - T,0) = Cogq(m,0) +
where x = =2, 0, or 2.
From this lemma we have the following lower bound on the distance:

Theorem 2.1 For any permutations m and o we have

(n+1) = Coaa

>
d(m, ) 2 =

Now we make some definitions used in the following sections.

First we show a way to represent a cycle by its reality edges. We number
the reality edges of the diagram assigning label i to a reality edge from ;11
to m;, with 0 < ¢ < n, so we label them from 1 to n + 1. Let us consider a
cycle C of size k, taking the reality edges in the order they appear in the cycle,
(i1,...,ik). A cycle C can be represented in k possible ways, depending on the
choice of the first reality edge. We will consider a canonical representative of
a cycle C, taking the initial reality edge i1 as the rightmost edge of C in 7,
that is, ¢1 = max;<¢<y ;- In the diagram of Figure 1 we have three cycles, with
canonical representatives Cy = (9,7,5,2), Co = (8,1,3) and C5 = (6,4).

Let us consider now three reality edges z,y, z belonging to the same cycle
C in the diagram. C forces an order on z,y,z, and we have three possible
representations of this order. We will choose as the canonical representative of
a triple (x,y,z) the one starting from the rightmost reality edge max(x,y, z).
A triple in the canonical order is non-oriented if x > y > z and oriented if
y < z < z. In the diagram of Figure 1 we have the following non-oriented
triples: (9,7,5), (9,7,2), and (7,5, 2); and the oriented triple (8,1, 3).

Finally, we say that a cycle is oriented if it admits a 2-move, and non-oriented
if there is no possible 2-moves acting on it. In the diagram of Figure 1 we have
C: and C3 non-oriented and C5 oriented.



3 Computing the transposition distance

Given the permutations 7t = (nn—1n—-2 ... 2 1) and 7 =(12 ... n—
2 n—1n) we want to compute the transposition distance d(, 7). Of course, this
distance will be the same for any pair consisting of a permutation and its reverse.
Theorem 3.1 below establishes that d(w,7) = 1if n =2 and d(w,7) = | 2] + 1 if
n > 2.

However, in the proof of this theorem we need the following lemma, which
can be easily proved. Bafna and Pevzner [1] mention part of this result in their
work.

Lemma 3.1 Let C be a cycle and (z,y,z) a triple of C in the canonical repre-
sentation. Then we have

(z,y,2) is oriented if and only if o(y, z,x) is a 2-move

and
(x,y, z) is non-oriented if and only if o(y, z,x) is a 0-move

Now we will state and prove the main theorem.

Theorem 3.1 Given the permutations 7t = (nn—1n—2 ... 2 1) and 7 =
(12 ... n—2n—1n), we have for n > 2

1 ifn=2
d(7T,7')=
2] +1 ifn>2

Proof: From the work of Bafna and Pevzner [1], given 7 = (n n — 1 n —
2 ...21) we have

1 if n is even

Codd(ﬂ-a T) =
Oor2 ifnisodd

Applying the lower bound given by Theorem 2.1 for d(m,7) we have

=2 ifniseven

(+)—-1 _ n
2 2

(n+1) ~coas _

2 _ . .
ol or 221 if nis odd

Notice that in order to attain the lower bound every transposition used must
increase the number of odd cycles.

For 7 and 7 as defined earlier in this section Bafna and Pevzner [1] proved
the following upper bound

for all n > 1.
We have two cases:



1. When n is odd:

— for the case of 0 odd cycles:

n+1_{n

= 1
= lale

In that case, the lower bound is exactly equal to the upper bound,
and then d(m,7) = | 2] + L.

— For the case of 2 odd cycles:

n-1_ PJ+1
2 2

and the gap is exactly 1. But here we have two non-oriented odd
cycles. This implies that the next move cannot increase c,qq, and
therefore we cannot reach the lower bound.

So, when n is odd then we haved(nn—1n—2 ... 21) = [2]| +1.

2. When n is even:

n [EJ 1

5 < |3t
and the gap is exactly 1. In this case, we have to prove that there is neces-
sarily a transposition that will not increase c,q44 during any transposition
sequence that transforms 7 into 7.

The first transposition is either a 0-move or a 2-move. We cannot apply a
—2-move because this first diagram is formed by just one cycle.

If we apply a 0-move, the unique odd cycle is transformed into another
odd cycle, not increasing coqq-

So, we have to verify what happens if we apply a 2-move. We will show
that any 2-move gives rise to a diagram with all cycles non-oriented. This
will imply the result as follows. We have two possibilities. If the resulting
diagram has one odd cycle and two even cycles, the first transposition
did not increase c,q4- On the other hand, if we end up with three odd
cycles, the second transposition of the series cannot increase c,q44, because
all three cycles are non-oriented.

Let us now study what happens when the first transposition is a 2-move.
From Lemma 3.1 we know that every 2-move corresponds to an oriented
triple in the unique cycle of the diagram. The order of reality edges in this
cycle is such that all even labels appear together, in decreasing order, and
all odd labels appear together, also in decreasing order. It follows that the
possible 2-moves are of the form ¢(i, j, k) with i and j of opposite parity,
k of same parity as i, and 1 <i <j <k <n+1.



We now have to apply one such transposition and analyze the resulting
diagram. Because ¢ < j < k, we have

0(i,j,k)-(nn—1n—-2...21) =
(n—1...n—i4+2 n—j+1...n—k+2
n—i+l...n—j+2 n—k+1...21).

Figure 2 shows examples of such 2-moves.

Tt

@

+0 38 +8°-7 +7°-6 +6°-5 +5 -4 +4 -3 +3°-2 +2°-1 +1 -9

(b)

p(3,4,5)- 1

P e

+0 -8 +8 -7 +7°-5 +5°-6 +6 -4 +4°-3 +3°-2 +2 -1 +1" -9

p(2,5,8) . T

+0 -8 +8 -4 +4 -3 +3 -2 +2 -7 +7 -6 +6 -5 +5 -1 +1 -9

p(1,8,9)-

O e e e T

+0°-1 +1 -8 +8 -7 +7°-6 +6°-5 +5°-4 +4°-3 +3°-2 +2° -9

Fig. 2. This figure shows the diagram created by a strictly decreasing sequence with
respect to the identity, and the diagrams created by some possible 2-moves applied to
the first diagram. (a) The diagram created by the decreasing cyclem = (8 76 543 2 1)
with respect to 7 = (123456 78). (b) The diagrams created by some transpositions
applied to 7 as indicated.

The important fact here is that, because of the opposite parity of j and
k, and of i and j, the cycle involving reality edge (n —i 4+ 1,n — k + 2) is
non-oriented. Likewise, the cycle involving reality edge (n—k+1,n—j+2)
is non-oriented because of the opposite parity of i and j (regardless of the
parity of k), and the cycle involving reality edge (n —j + 1,n — i+ 2) is
also non-oriented because j and k have opposite parity (regardless of the



parity of ¢). Thus, in any case we end up with three non-oriented cycles,
which proves the theorem.

4 An algorithm to compute d(m, )

We show now an algorithm to compute the transposition distance between a
strictly decreasing sequence with respect to the identity. Note that the algorithm
runs without using the reality and desire diagram. Instead, it uses an explicit
series of transpositions that work in the case treated in this article. As the series
has length |n/2] + 1, the results in the previous section guarantee that it is a
shortest series.

Algorithm

Input: n>2,r=mn—-1...21)
Output: t = d(mw,7) and 1, 02, - - -, 0¢
begin

1. m + 01(1, [%] ,n) T
2. t+1
3. if n is even then

t+—t+1
¢ o(5, 5 +1L,n+1)-m
k<1
p+1
4. if n is odd then
k<0
p+0
5. while k < L%J do

t—t+1
T o(| 2] =k |2 —k+2,n+1—k+p) my
k+—k+1

6. return t, 01,02,--.,0¢
end

The four initial steps create, from the initial permutation, a new permuta-
tion with two decreasing subsequences on its left extremity, and an increasing
sequence, on its right end. If n is even then we have

+1 3 ..3)(nn-=1... §+2)(12)

n
7T2:(§



Note that the decreasing subsequences have [2] — 1 elements each. We marked
the subsequences with parenthesis.
If n is odd then we have

1 1
"; ..32)(nn—1... ";r

= ( +1)(1)

Analogously, in this case the first two subsequences also have [ ] — 1 elements
each.

The loop in step 5 moves both the last element of first subsequence and the
first element of second subsequence to the right end of the permutation, where
two other subsequences are being increased as the algorithm runs. Generically,
if n is even then we have, after £ — 1 iterations of the loop,

n

Tht1 = (g+1 5 kE+2) (n—k+1 ... g+2) (12 ... k+1) (n—k+2 ... n).

If n is odd then we have, after k iterations,

1 1
k) (k... ”; Y1 (L2 . kD) (n—k+1 ... n)

Tk+1 = (

So this algorithm correctly transforms the permutation in its inverse, using
transpositions. Also, the algorithm runs in O(| ] + 1) steps, for n > 2.

Figure 3 shows examples of this algorithm executions for the decreasing se-
quences for n = 6 and n = 7, with respect to the identity.

(@ 654321 ) 7654321
1 |
432651 4327651

j 4
436512 4365127
1 1
451236 4512367
1 1
123456 1234567

Fig. 3. This figure shows two executions of the algorithm. (a) Example with n even.
(b) Example with n odd.



5 Conclusions

We demonstrated that the transposition distance between a permutation and its
reverse (without complementation) is |2 | +1 for all n > 2, where n is the size of
the permutation. We conjecture that this is in fact the value of the transposition
diameter.

We also presented an algorithm to find an optimal series of sorting transpo-
sitions for the case studied.
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