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Abstract. A transposition is an operation that exchanges two consecu-
tive, adjacent blocks in a permutation. A prefix transposition is a trans-
position that moves the first element in the permutation. In this work
we present the first results on the problem of sorting permutations with
the minimum number of prefix transpositions. This problem is a varia-
tion of the transposition distance problem, related to genome rearrange-
ments. We present approximation algorithms with performance ratios of
2 and 3. We conjecture that the maximum prefix transposition distance
isD(n) =n— L%J and present the results of several computational tests
that support this. Finally, we propose an algorithm that decides whether
a given permutation can be sorted using just the number of transposi-

tions indicated by the breakpoint lower bound.

1 Introduction

Sequence comparison is one of the most studied problems in computer science.
Usually we are interested in finding the minimum number of local operations,
such as insertions, deletions, and substitutions that transform a given sequence
into another given sequence. This is the edit distance problem, described in many
Computational Biology textbooks [19]. Several studies, however, have shown that
global operations such as reversals and transpositions (also called rearrangement
events) are more appropriate when we wish to compare the genomes of two
species [18].

A new research area called Genome Rearrangements appeared in the last
years to deal with problems such as, for instance, to find the minimum number
of rearrangement events needed to transform one genome into another. In the
context of Genome Rearrangements, a genome is represented by an n-tuple of
genes (or gene clusters). When there are no repeated genes, this n-tuple is a
permutation. We proceed with a brief overview of the literature related to the
present work.

The best studied rearrangement event is the reversal. A reversal inverts a
block of any size in a genome. Caprara [5] proved that finding the minimum
number of reversals needed to transform one genome into another is an NP-Hard
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problem. Bafna and Pevzner [3] have presented an algorithm with approximation
factor 2 for this problem. Later Christie [6] presented the best known algorithm
for the problem, with factor 2.

Hannenhalli and Pevzner [10] have studied the reversal distance problem
when the orientation of genes is known. In this case they proved that there is
a polynomial algorithm for the problem. This algorithm has been refined suc-
cessively until Kaplan, Shamir and Tarjan [14] presented a quadratic algorithm.
When just the distance is needed, a faster, linear algorithm due to Bader, Moret,
and Yan [2] can be used. Meidanis, Walter e Dias [17] have shown that all the
reversal theory developed for linear genomes can be easily adapted to circular
genomes.

Another interesting variation of this problem is the so-called prefix reversal
problem or pancake problem as it was originally called [8]. In this variation only
reversals involving the first consecutive elements of a genome are permitted. Hey-
dari and Sudborough [11] have proved that this problem is N P-Hard. Gates and
Papadimitriou [9] and Heydari and Sudborough [12] have studied the diameter
of prefix reversals (see further details on diameter problems in Section 4).

The rearrangement event called transposition has the property of exchang-
ing two adjacent blocks of any size in a genome. The transposition distance
problem, that is, the problem of finding the minimum number of transpositions
necessary to transform one genome into another, has been studied by Bafna and
Pevzner [4], who presented the best approximation algorithm for the problem,
with factor % The transposition distance problem is still open: we do not know
of any N P-Hardness proof, and there are no evidences that an exact polynomial
algorithm exists. Christie [7] and Meidanis, Walter and Dias [16] have proved
partial results on the transposition diameter.

In this work we present the first known results on the variation of the trans-
position distance problem that we call prefix transposition distance, that is, the
rearrangement distance problem where only transpositions affecting two con-
secutive blocks of the genome, with one of these blocks formed by the first
consecutive elements of the genome.

The paper is divided as follows. Initially, in Section 2, we define important
concepts that will be used throughout. In Section 3 we present two approximation
algorithms for the prefix transposition distance problem, with factors 3 and 2.
In Section 4 we present several results on the prefix transposition diameter,
leading to the conjecture that D(n) =n— | 2], and tests with programs that we
implemented to help validate our conjectures. We show in Section 5 an algorithm
that verifies whether a given genome can be sorted using the minimum number
of prefix transpositions according to the breakpoint lower bound (Lemma 5).
Finally, in Section 6, we exhibit our conclusions and suggestions for future work.



2 Definitions

Here we introduce a number of basic concepts used in Genome Rearrangements.
Notice that some definitions, for instance that of transposition, is different from
the definition used in other areas.

Definition 1. An arbitrary genome formed by n genes will be represented as a
permutation T = [r[1] w[2] ... w[n]] where each element of w represents a gene.
The identity genome v, is defined as 1, =[12 ... nj.

Definition 2. A transposition p(x,y,z), where 1 <z <y <z <n+1, is an
rearrangement event that transforms w into the genome pw = [n[1] ... w[x — 1]
wly] ... wz=1] wlz] ... 7wy —1] w[e] ... w[n]].

Definition 3. A prefiz transposition p(1,x,y), where 1 <z <y <n+1, is an
rearrangement event that transforms m into the genome pr = [r[z] ... 7wy — 1]
(1] ... wlz = 1] 7ly] ... «w[n]].

Definition 4. Given two genomes w and o we define the transposition distance
d,(m,0) between these two genomes as being the least number of transpositions
needed to transform w into o, that is, the smallest r such that there are transpo-
sitions p1, p2,...pr With py...paprm = o. We call sorting distance by transpo-
sitions, d.(m), the transposition distance between the genomes w and v, that is,
d.(7) =d (7, tn)-

Definition 5. Given two genomes m and o we define the prefix transposition
distance d(m, o) between these two genomes as being the least number of prefix
transpositions needed to transform w into o, that is, the smallest r such that
there are prefiz transpositions p1, p2, - - - pr With py ... p2p1m = 0. We call sorting
distance by prefiz transpositions, d(w), the prefiz transposition distance between
genomes 7 and v, that is, d(w) = d(m,t,).

3 Approximation Algorithms

The first important observation is the following.
Lemma 1. For any permutation m, we have d(m) > d,(r).

Proof: This follows from the observation that every prefix transposition is a
transposition. The converse is not always true. O

3.1 Approximation Algorithm with Factor 3

Lemma 2. For every transposition p(z,y,z) with x # 1, there are prefiz trans-
positions p1(1,7,s) and pa(1,t,u) such that papym = pm.

Proof: Indeed, it sufficesto taker =y, s=z,t=z—y+landu=2z—y+ =z,
or, alternatively, r =z, s =y,t =y — 2z + 1 and u = 2. Figure 1 shows how two
prefix transpositions can simulate a transposition. O
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Fig. 1. Two examples of how it is possible to obtain prefix transpositions p; and p2
such that pm = p2p1m, for a given transposition p = p(z,y, z), with © # 1

Lemma 3. Any k-approzimation algorithm for the transposition distance prob-
lem can be transformed into a 2k-approximation algorithm for the prefix trans-
position distance problem.

Proof: Immediate from Lemma 2. O

Therefore it is easy to obtain an approximation algorithm with factor 3 for the
prefix transposition distance problem using the approximation algorithms with
factor % for the transposition distance problem given by Bafna and Pevzner [4]
and by Christie [7].

3.2 Approximation Algorithm with Factor 2
We need to define a few important concepts before proceeding.

Definition 6. A breakpoint for the prefiz transposition problem is a position i
of a permutation © such that w[i] — w[i — 1] # 1, and 2 < i < n. By definition,
position 1 (beginning of the permutation) is always considered a breakpoint. Po-
sition n + 1 (end of the permutation) is considered a breakpoint when w[n] # n.
We denote by b(w) the number of breakpoints of permutation 7.

By the former definition b(7) > 1 for any permutation 7 and the only per-
mutations with exactly one breakpoint are the identity permutations (7 = ¢,,,
for all n).

Definition 7. A strip is a subsequence [i..j] of m (i < j) such that i and j+1
are breakpoints and there are no breakpoints between these positions.

Definition 8. Given a permutation m and a prefiz transposition p, we define
Ab(w, p) as the variation on the number of breakpoints due to operation p, that
is, Ab(m, p) = b(pm) — b().

The first important observation about breakpoints is the following.

Lemma 4. Given a permutation © and a prefic transposition p, we have that
Ab(m,p) € {-2,-1,0,1,2}.



Lemma 5. For every permutation 7, we have that d(w) > [%-I

Proof: Immediate from Lemma 4. O

Lemma 6. Given a permutation m # t,,, where n = |r|, it is always possible to
obtain a prefiz transposition p such that Ab(m,p) < —1.

Proof: Let k be the last element of the first strip of 7. If & < n, then there
is a strip beginning with the element k + 1, such that 7=1[k] < 7~ 1[k + 1] and
p=p(l, 77 k] + 1,77 [k + 1]) suffices. If k = n, take p = p(1, 7~ [k] + 1,n+1).
O

Lemma 7. Let 7 be a permutation and p(1,x,y) a prefix transposition such that
pT = tpn, where n = |mw|. Then w[z] =1 and Ab(w,p) = —2.

Lemma 8. For every permutation 7, we have d(w) < b(w) — 2.

Proof: Immediate by Lemmas 6 and 7. O
Theorem 1. For every permutation 7, we have [%—I <d(m) < b(m) — 2.

Theorem 2. Any algorithm that produces the prefix transpositions according
to Lemmas 6 and 7 is an approximation algorithm with factor 2 for the prefix
transposition distance problem.

Another important point regarding genome rearrangments is the possibility
of sorting a permutation without ever increasing the number of breakpoints.
Christie [7] has proved that this is true for transposition events. The following
lemma establishes the analogous result for prefix transpositions. The proof is a
bit lengthy and is omitted here, but appears in the full version of this paper.

Lemma 9. Let 7 be an arbitrary permutation and d(w) = k its prefiz transpo-
sition distance. Then there exists an optimal sequence of prefix transpositions
P1,- -+, Pk, Such that py ...p17 =, where n = |xw|, and Ab(p;—1...p17m,pi) <0
for every 1 <i <k.

4 The Diameter of Prefix Transpositions

We call rearrangement diameter the largest rearrangement distance between two
permutations of a certain size n. We Denote by D(n) the diameter of prefix trans-
positions and by D.(n) the diameter of transpositions. Bafna and Pevzner [4]
proved the following result.

Theorem 3. The diameter of transpositions for permutations of size n is such
that 2 < D;(n) < 32,

We can present a similar result for the prefix transposition distance problem.



Theorem 4. The diameter of prefiz transpositions for permutations of size n is
such that 5§ < D(n) <n —1.

Proof: To begin with note that D(n) > D,(n), since d(n) > d.(w) for any
permutation 7 (Lemma 1). We can then use the result of Aigner and West [1] that
says that the diameter for the rearrangement distance problem that considers
only insertion of the first element, that is, transpositions of the form p(1,2, z),
isn—1.0

The following result was proved independently by Christie [7] and Meidanis,
Walter and Dias [16].

Theorem 5. For n > 3, we have d-(R,) = [ 2] + 1.

When dealing with prefix transpositions, we could state, based solely on
Theorem 1, that [2] < d(R,) < n — 1. However, a stronger statement holds.

Theorem 6. Forn >4, we have d(R,) <n— [2].

Proof: The algorithm of Figure 2 sorts R,, using exactly n — | 2| prefix trans-
positions. A step-by-step execution of this algorithm on permutation Ry3 can be
seen in Figure 3. O

ALGORITHM TO SORT R, ()

1 Input: 7 = Ry, withn >4
Y
{Phase 1: Shuffling}
for i < 1to (§)—1
do m+ p(1,5,m —2(i — 1))w
mp(1,3, 2 +2)7
{Phase 2: Greedy Phase}
z 7 n]+1

9 y+—m+1
10 for i+ 1 to 2(%)
11 do z « wx]

R~ O T W

12 m < p(l,z,y)w

13 yerm ' z—1]+1
14 w7yl —1

15 T+ 7w +1

16 {Phase 3: Positioning the Last Elements}
17 for i+ (m+1)ton

18 do w <+ p(1,i,i+ )7

19 Output: n— | %]

Fig. 2. Algorithm to sort R,

Lemma 10. For n > 1, we have d(Rp+1) > d(Ry).
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Fig. 3. Steps to sort Ri3

Proof: It is easy to see that any series of prefix transpositions that sorts R, 41
will also sort R,, provided we adapt the movements that include the element
n+1.0

Christie [7] and Meidanis, Walter and Dias [16] have proposed the following
conjecture, still open today.

Conjecture 1. The transposition diameter D, (n), for n > 3, is given by D, (n) =
d-(Rn) = [2]| + 1.

Likewise, we believe that the following statement is true.

Conjecture 2. The diameter of prefix transpositions D(n), for n > 4, is given by

D(n) = d(R,) =n - |2].

4.1 Tests

The tests that will be presented in this section were performed in a Digital Alpha
Server GS140 computer, with 10 Alpha 21264 EV6 processors of 524MHz and 64-
bit word length, with 8 GB of physical memory and running the OSF1 version
4.0 operating system. All programs were written in C++ and compiled with
g++ using compilation directive “-O3”. Our programs use just one processor
and during the tests the machine was always executing other processes as well.
The measured times are the times effectively spent by the programs (user +
system time) and not the total time of execution (real time).

We implemented two “branch and bound” algorithms to compute the exact
distance of prefix transpositions. The first version considers all possible prefix
transpositions, while the second version considers only prefix transpositions that



do not create new breakpoints, according to Lemma 9. Using these programs it
was possible to obtain directly the prefix transposition distance for all reverse
permutations R, with n < 15. Table 1 and Figure 4 show result summaries.

To further support the correctness of Theorem 6, we implemented the al-
gorithm that sorts reverse permutations R,, in polynomial time (Figure 2). We
tested our implementation using all reverse permutations R, for n < 50000.
The algorithm correctly sorted all tested instances. Note that these instances
are several times bigger than the biggest instances used in practice in genome
rearrangement problems. Execution times for this algorithm are plotted in Fig-
ure 5.

Lastly we implemented two programs to verify the conjectures proposed in
Section 4. The two programs are based in the same strategy. We built a graph as
follows: we created a vertex for each of the n! permutations with n elements and
an edge for each pair of permutations that differ by a rearrangement event. In
this graph we search for the permutations that posses the largest distance from
the identity permutation. This strategy can be implemented in linear time on
the graph size. With this method we could certify in slightly over 20 hours that
both conjectures are true for permutations with n < 11 elements. Unfortunately
30 GB of physical memory are need to build the graph for n = 12, what made
the test of our conjectures for n > 12 impossible.

Sorting of Reverse Permutations
("branch and bound" algorithm)

10000000
__ 1000000 4
(/]
o 7
§ 1000 A-'/'/ —— Without Optmization
£ j/ -= With Optmization
o 100
£ 10 4
= ) //}_//

0 T T T T _/\/\ T T T T T T T

~—TANMOMITOONO0O®O

~—

Permutation Size

N <
-

—
~—

Fig. 4. Results for the “branch and bound” algorithm. Total approximate time of 47
days nonstop processing, with about 34 days for the version not optimized and 13 days
for the optimized version



Table 1. distance of prefix transposition for reverse permutations with 16 or less
elements. The times in column “without optimization” refer to the “branch and bound”
algorithm that considers all prefix transpositions possible, while the column “with
optimization” presents the results of the implementation that considers only prefix
transpositions that do not create new breakpoints, according to Lemma 9. We could
not compute d(R16) directly using any of the two implementations; instead we present
an estimate of the time necessary for each algorithm to compute correctly the distance.
Note also that it is possible to infer the distance d(Ri6) from Theorem 6 and Lemma 10

n  d(Ry) Time without Time with
optimization (seconds) optimization (seconds)
02 01 0 0
03 02 0 0
04 03 0 0
05 04 0 0
06 05 0 0
07 06 0 0
08 06 4 2
09 07 9 3
10 08 59 22
11 09 1011 373
12 09 8872 2607
13 10 16294 4305
14 11 118463 45168
15 12 2771374 1081631
16 12* 750 days * 300 days *
Sorting of Reverse Permutations
(polynomial algorithm)
140 /
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2 100 /
o /
§ 80 /
£ 60
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= 20 _,//
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Permutation Size

Fig. 5. Results for the polynomial algorithm. Total approximate time of 27 days non-

stop processing



5 Permutations that Satisfy the Breakpoint Lower-Bound

Kececioglu and Sankoff [15] conjectured that to determine whether a permu-
tation can be sorted using the minimum number of reversals indicated by the
breakpoint lower bound for reversals was an NP-Hard problem, just like the
general problem of sorting by reversals. Irving and Christie [13] and Tran [20]
independently proved that this conjecture is false, exhibiting a polynomial algo-
rithm for the problem.

In the case of prefix transpositions we know from Lemma 5 that for every
permutation 7 we have d(m) > [(b(w) — 1)/2]. However, given a permutation ,
is it possible to determine whether d(7) = (b(w) — 1)/2? The following results
prove that the answer is yes.

Lemma 11. Let w be an arbitrary permutation. Then there exists at most one
prefix transposition p such that Ab(rw, p) = —2.

Proof: Suppose that 7 and p(1, z,y) are such that Ab(w, p) = —2. In this case
we have 7 = [n[1]...7w[z — 1|x[z]...7w[y — lx[y]...] and p7 = [7w[z]... 7]y — 1]
w[l]...w[x —1]«[y]...], where n[z — 1] # w[z] = 1, wly — 1] # w[y] — 1, n[y — 1] =
7[1l] — 1 and 7[z — 1] = w[y] — 1. Finally, note that #[1] determines uniquely the
index y, and y determines uniquely the index x. O

Theorem 7. Let w be an arbitrary permutation. Then it is possible to determine

. . . _ b(m)—1

in polynomial time whether d(m) = ==5—.

Proof: Immediate by the algorithm of Figure 6, that has complexity O(n?). O
Given an integer k, is it always possible to find a permutation 7 such that

there is a series of k prefix transpositions p1, . .. , px with Ab(p;—1pi—2 ... p17, p;)

= =2, for 1 <i < k? Once again the answer is affirmative.

VERIFYING WHETHER 7 SATISFIES THE BREAKPOINTS LOWER-BOUND()

1 Input: 7

2 n<«|n

3 OK + TRUE

4 While 7 # 1, and OK

5 doy«+ m '[m[l]—1]+1
6 T+ 1 rfy] — 1] +1
7 {Verifies whether there exists a movement that removes two breakpoints}
8 ifer<y

9 then 7 + p(1,z,y)w
10 else OK « FALSE
11  Output: OK

Fig. 6. The algorithm that verifies whether 7 has distance d(w) = %



Definition 9. Let By, be the family of permutations defined as follows: By =
k+1kk+2k—1k+3k—2 ... 2k—12 2k 1]. Permutation By, possesses
2k + 1 breakpoints.

Lemma 12. For every integer k it is possible to obtain a series of k prefix
transpositions p1, p2, ..., pr that sort By such that Ab(pi_1pi—s...p17,pi) =
=2, for1 <i<k.

Proof: Immediate from the algorithm of Figure 7, that can be implemented in
linear time. O

ALGORITHM TO SORT By()

1 Input: m = By, with k> 1
2 fori+1tok

3 do 7w+ p(1,2¢,2i + 1)

4 Output: k

Fig. 7. The algorithm that sorts By

6 Conclusions

We introduced in this work a new problem of Genome Rearrangement that
we called distance of prefix transpositions. We showed a number of results for
this problem, including two approximation algorithms (the best of them with
factor 2), a proof that any permutation can be sorted without “cutting strips,”
a conjecture on the prefix transposition diameter stating that D(n) =n — [ 2],
and an algorithm for determining whether a permutation can be sorted using a
series of prefix transpositions removing two breakpoints per step. The problem

of sorting an arbitrary permutation with prefix transpositions remains open.
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