
Sorting by Pre�x TranspositionsZanoni Dias1 ? and Jo~ao Meidanis1 ??University of Campinas, Institute of Computing,P.O.Box 6167, 13084-971,Campinas, Brazilfzanoni,meidanisg�i
.uni
amp.brAbstra
t. A transposition is an operation that ex
hanges two
onse
u-tive, adja
ent blo
ks in a permutation. A pre�x transposition is a trans-position that moves the �rst element in the permutation. In this workwe present the �rst results on the problem of sorting permutations withthe minimum number of pre�x transpositions. This problem is a varia-tion of the transposition distan
e problem, related to genome rearrange-ments. We present approximation algorithms with performan
e ratios of2 and 3. We
onje
ture that the maximum pre�x transposition distan
eis D(n) = n��n4 � and present the results of several
omputational teststhat support this. Finally, we propose an algorithm that de
ides whethera given permutation
an be sorted using just the number of transposi-tions indi
ated by the breakpoint lower bound.1 Introdu
tionSequen
e
omparison is one of the most studied problems in
omputer s
ien
e.Usually we are interested in �nding the minimum number of lo
al operations,su
h as insertions, deletions, and substitutions that transform a given sequen
einto another given sequen
e. This is the edit distan
e problem, des
ribed in manyComputational Biology textbooks [19℄. Several studies, however, have shown thatglobal operations su
h as reversals and transpositions (also
alled rearrangementevents) are more appropriate when we wish to
ompare the genomes of twospe
ies [18℄.A new resear
h area
alled Genome Rearrangements appeared in the lastyears to deal with problems su
h as, for instan
e, to �nd the minimum numberof rearrangement events needed to transform one genome into another. In the
ontext of Genome Rearrangements, a genome is represented by an n-tuple ofgenes (or gene
lusters). When there are no repeated genes, this n-tuple is apermutation. We pro
eed with a brief overview of the literature related to thepresent work.The best studied rearrangement event is the reversal. A reversal inverts ablo
k of any size in a genome. Caprara [5℄ proved that �nding the minimumnumber of reversals needed to transform one genome into another is an NP-Hard? Resear
h supported by FAPESP?? Resear
h supported in part by CNPq and FAPESP

problem. Bafna and Pevzner [3℄ have presented an algorithm with approximationfa
tor 2 for this problem. Later Christie [6℄ presented the best known algorithmfor the problem, with fa
tor 32 .Hannenhalli and Pevzner [10℄ have studied the reversal distan
e problemwhen the orientation of genes is known. In this
ase they proved that there isa polynomial algorithm for the problem. This algorithm has been re�ned su
-
essively until Kaplan, Shamir and Tarjan [14℄ presented a quadrati
 algorithm.When just the distan
e is needed, a faster, linear algorithm due to Bader, Moret,and Yan [2℄
an be used. Meidanis, Walter e Dias [17℄ have shown that all thereversal theory developed for linear genomes
an be easily adapted to
ir
ulargenomes.Another interesting variation of this problem is the so-
alled pre�x reversalproblem or pan
ake problem as it was originally
alled [8℄. In this variation onlyreversals involving the �rst
onse
utive elements of a genome are permitted. Hey-dari and Sudborough [11℄ have proved that this problem is NP -Hard. Gates andPapadimitriou [9℄ and Heydari and Sudborough [12℄ have studied the diameterof pre�x reversals (see further details on diameter problems in Se
tion 4).The rearrangement event
alled transposition has the property of ex
hang-ing two adja
ent blo
ks of any size in a genome. The transposition distan
eproblem, that is, the problem of �nding the minimum number of transpositionsne
essary to transform one genome into another, has been studied by Bafna andPevzner [4℄, who presented the best approximation algorithm for the problem,with fa
tor 32 . The transposition distan
e problem is still open: we do not knowof any NP -Hardness proof, and there are no eviden
es that an exa
t polynomialalgorithm exists. Christie [7℄ and Meidanis, Walter and Dias [16℄ have provedpartial results on the transposition diameter.In this work we present the �rst known results on the variation of the trans-position distan
e problem that we
all pre�x transposition distan
e, that is, therearrangement distan
e problem where only transpositions a�e
ting two
on-se
utive blo
ks of the genome, with one of these blo
ks formed by the �rst
onse
utive elements of the genome.The paper is divided as follows. Initially, in Se
tion 2, we de�ne important
on
epts that will be used throughout. In Se
tion 3 we present two approximationalgorithms for the pre�x transposition distan
e problem, with fa
tors 3 and 2.In Se
tion 4 we present several results on the pre�x transposition diameter,leading to the
onje
ture that D(n) = n� �n4 �, and tests with programs that weimplemented to help validate our
onje
tures. We show in Se
tion 5 an algorithmthat veri�es whether a given genome
an be sorted using the minimum numberof pre�x transpositions a

ording to the breakpoint lower bound (Lemma 5).Finally, in Se
tion 6, we exhibit our
on
lusions and suggestions for future work.

2 De�nitionsHere we introdu
e a number of basi

on
epts used in Genome Rearrangements.Noti
e that some de�nitions, for instan
e that of transposition, is di�erent fromthe de�nition used in other areas.De�nition 1. An arbitrary genome formed by n genes will be represented as apermutation � = [�[1℄ �[2℄ : : : �[n℄℄ where ea
h element of � represents a gene.The identity genome �n is de�ned as �n = [1 2 : : : n℄.De�nition 2. A transposition �(x; y; z), where 1 � x < y < z � n + 1, is anrearrangement event that transforms � into the genome �� = [�[1℄ : : : �[x� 1℄�[y℄ : : : �[z � 1℄ �[x℄ : : : �[y � 1℄ �[z℄ : : : �[n℄℄.De�nition 3. A pre�x transposition �(1; x; y), where 1 < x < y � n+ 1, is anrearrangement event that transforms � into the genome �� = [�[x℄ : : : �[y � 1℄�[1℄ : : : �[x� 1℄ �[y℄ : : : �[n℄℄.De�nition 4. Given two genomes � and � we de�ne the transposition distan
ed� (�; �) between these two genomes as being the least number of transpositionsneeded to transform � into �, that is, the smallest r su
h that there are transpo-sitions �1; �2; : : : �r with �r : : : �2�1� = �. We
all sorting distan
e by transpo-sitions, d� (�), the transposition distan
e between the genomes � and �n, that is,d� (�) = d� (�; �n).De�nition 5. Given two genomes � and � we de�ne the pre�x transpositiondistan
e d(�; �) between these two genomes as being the least number of pre�xtranspositions needed to transform � into �, that is, the smallest r su
h thatthere are pre�x transpositions �1; �2; : : : �r with �r : : : �2�1� = �. We
all sortingdistan
e by pre�x transpositions, d(�), the pre�x transposition distan
e betweengenomes � and �n, that is, d(�) = d(�; �n).3 Approximation AlgorithmsThe �rst important observation is the following.Lemma 1. For any permutation �, we have d(�) � d� (�).Proof: This follows from the observation that every pre�x transposition is atransposition. The
onverse is not always true. ut3.1 Approximation Algorithm with Fa
tor 3Lemma 2. For every transposition �(x; y; z) with x 6= 1, there are pre�x trans-positions �1(1; r; s) and �2(1; t; u) su
h that �2�1� = ��.Proof: Indeed, it suÆ
es to take r = y, s = z, t = z� y+1 and u = z� y+ x,or, alternatively, r = x, s = y, t = y� x+1 and u = z. Figure 1 shows how twopre�x transpositions
an simulate a transposition. ut

A B C D A BC D

C A B D

B A C D

ρ
2

ρ
1

ρ
1

ρ
2

ρ

Fig. 1. Two examples of how it is possible to obtain pre�x transpositions �1 and �2su
h that �� = �2�1�, for a given transposition � = �(x; y; z), with x 6= 1Lemma 3. Any k-approximation algorithm for the transposition distan
e prob-lem
an be transformed into a 2k-approximation algorithm for the pre�x trans-position distan
e problem.Proof: Immediate from Lemma 2. utTherefore it is easy to obtain an approximation algorithm with fa
tor 3 for thepre�x transposition distan
e problem using the approximation algorithms withfa
tor 32 for the transposition distan
e problem given by Bafna and Pevzner [4℄and by Christie [7℄.3.2 Approximation Algorithm with Fa
tor 2We need to de�ne a few important
on
epts before pro
eeding.De�nition 6. A breakpoint for the pre�x transposition problem is a position iof a permutation � su
h that �[i℄ � �[i � 1℄ 6= 1, and 2 � i � n. By de�nition,position 1 (beginning of the permutation) is always
onsidered a breakpoint. Po-sition n+ 1 (end of the permutation) is
onsidered a breakpoint when �[n℄ 6= n.We denote by b(�) the number of breakpoints of permutation �.By the former de�nition b(�) � 1 for any permutation � and the only per-mutations with exa
tly one breakpoint are the identity permutations (� = �n,for all n).De�nition 7. A strip is a subsequen
e �[i::j℄ of � (i � j) su
h that i and j +1are breakpoints and there are no breakpoints between these positions.De�nition 8. Given a permutation � and a pre�x transposition �, we de�ne�b(�; �) as the variation on the number of breakpoints due to operation �, thatis, �b(�; �) = b(��)� b(�).The �rst important observation about breakpoints is the following.Lemma 4. Given a permutation � and a pre�x transposition �, we have that�b(�; �) 2 f�2;�1; 0; 1; 2g.

Lemma 5. For every permutation �, we have that d(�) � l b(�)�12 m.Proof: Immediate from Lemma 4. utLemma 6. Given a permutation � 6= �n, where n = j�j, it is always possible toobtain a pre�x transposition � su
h that �b(�; �) � �1.Proof: Let k be the last element of the �rst strip of �. If k < n, then thereis a strip beginning with the element k + 1, su
h that ��1[k℄ < ��1[k + 1℄ and� = �(1; ��1[k℄+1; ��1[k+1℄) suÆ
es. If k = n, take � = �(1; ��1[k℄+1; n+1).utLemma 7. Let � be a permutation and �(1; x; y) a pre�x transposition su
h that�� = �n, where n = j�j. Then �[x℄ = 1 and �b(�; �) = �2.Lemma 8. For every permutation �, we have d(�) � b(�)� 2.Proof: Immediate by Lemmas 6 and 7. utTheorem 1. For every permutation �, we have l b(�)�12 m � d(�) � b(�)� 2.Theorem 2. Any algorithm that produ
es the pre�x transpositions a

ordingto Lemmas 6 and 7 is an approximation algorithm with fa
tor 2 for the pre�xtransposition distan
e problem.Another important point regarding genome rearrangments is the possibilityof sorting a permutation without ever in
reasing the number of breakpoints.Christie [7℄ has proved that this is true for transposition events. The followinglemma establishes the analogous result for pre�x transpositions. The proof is abit lengthy and is omitted here, but appears in the full version of this paper.Lemma 9. Let � be an arbitrary permutation and d(�) = k its pre�x transpo-sition distan
e. Then there exists an optimal sequen
e of pre�x transpositions�1; : : : ; �k, su
h that �k : : : �1� = �n, where n = j�j, and �b(�i�1 : : : �1�; �i) � 0for every 1 � i � k.4 The Diameter of Pre�x TranspositionsWe
all rearrangement diameter the largest rearrangement distan
e between twopermutations of a
ertain size n. We Denote byD(n) the diameter of pre�x trans-positions and by D� (n) the diameter of transpositions. Bafna and Pevzner [4℄proved the following result.Theorem 3. The diameter of transpositions for permutations of size n is su
hthat n2 � D� (n) � 3n4 .We
an present a similar result for the pre�x transposition distan
e problem.

Theorem 4. The diameter of pre�x transpositions for permutations of size n issu
h that n2 � D(n) � n� 1.Proof: To begin with note that D(n) � D� (n), sin
e d(�) � d� (�) for anypermutation � (Lemma 1). We
an then use the result of Aigner andWest [1℄ thatsays that the diameter for the rearrangement distan
e problem that
onsidersonly insertion of the �rst element, that is, transpositions of the form �(1; 2; x),is n� 1. utThe following result was proved independently by Christie [7℄ and Meidanis,Walter and Dias [16℄.Theorem 5. For n � 3, we have d� (Rn) = �n2 �+ 1.When dealing with pre�x transpositions, we
ould state, based solely onTheorem 1, that �n2 � � d(Rn) � n� 1. However, a stronger statement holds.Theorem 6. For n � 4, we have d(Rn) � n� �n4 �.Proof: The algorithm of Figure 2 sorts Rn using exa
tly n� �n4 � pre�x trans-positions. A step-by-step exe
ution of this algorithm on permutation R13
an beseen in Figure 3. utAlgorithm to Sort Rn()1 Input: � = Rn, with n � 42 m 4bn4
3 fPhase 1: Shu�ingg4 for i 1 to (m4)� 15 do � �(1; 5; m� 2(i � 1))�6 � �(1; 3; m2 + 2)�7 fPhase 2: Greedy Phaseg8 x ��1[n℄ + 19 y m+ 110 for i 1 to 2(m4)11 do z �[x℄12 � �(1; x; y)�13 y ��1[z � 1℄ + 114 w �[y℄� 115 x ��1[w℄ + 116 fPhase 3: Positioning the Last Elementsg17 for i (m+ 1) to n18 do � �(1; i; i + 1)�19 Output: n� bn4
 Fig. 2. Algorithm to sort RnLemma 10. For n � 1, we have d(Rn+1) � d(Rn).

13 12 11 10 9 8 7 6 5 4 3 2 1.
5 4 3 2 1.9 8 7 6 13 12 11 10

9 8 2 1.5 4 3 11 1013 12 7 6

5 4 2 1.3 11 107 613 12 9 8

7 6 1.5 412 9 8 11 10 2 3 13

1.7 65 4 10 2 3 138 11 12 9

1.5 67 8 10 2 3 134 11 12 9

1.3 42 6 139 510 7 8 11 12.
1. . . .29 137 53 4 11 128 10 6.

1311 1262 53 4 97 8 10. 1

62 53 4 97 8 10. 1.1311 12 .Fig. 3. Steps to sort R13Proof: It is easy to see that any series of pre�x transpositions that sorts Rn+1will also sort Rn, provided we adapt the movements that in
lude the elementn+ 1. utChristie [7℄ and Meidanis, Walter and Dias [16℄ have proposed the following
onje
ture, still open today.Conje
ture 1. The transposition diameter D� (n), for n � 3, is given by D� (n) =d� (Rn) = �n2 �+ 1.Likewise, we believe that the following statement is true.Conje
ture 2. The diameter of pre�x transpositions D(n), for n � 4, is given byD(n) = d(Rn) = n� �n4 �.4.1 TestsThe tests that will be presented in this se
tion were performed in a Digital AlphaServer GS140
omputer, with 10 Alpha 21264 EV6 pro
essors of 524MHz and 64-bit word length, with 8 GB of physi
al memory and running the OSF1 version4.0 operating system. All programs were written in C++ and
ompiled withg++ using
ompilation dire
tive \-O3". Our programs use just one pro
essorand during the tests the ma
hine was always exe
uting other pro
esses as well.The measured times are the times e�e
tively spent by the programs (user +system time) and not the total time of exe
ution (real time).We implemented two \bran
h and bound" algorithms to
ompute the exa
tdistan
e of pre�x transpositions. The �rst version
onsiders all possible pre�xtranspositions, while the se
ond version
onsiders only pre�x transpositions that

do not
reate new breakpoints, a

ording to Lemma 9. Using these programs itwas possible to obtain dire
tly the pre�x transposition distan
e for all reversepermutations Rn with n � 15. Table 1 and Figure 4 show result summaries.To further support the
orre
tness of Theorem 6, we implemented the al-gorithm that sorts reverse permutations Rn in polynomial time (Figure 2). Wetested our implementation using all reverse permutations Rn for n � 50000.The algorithm
orre
tly sorted all tested instan
es. Note that these instan
esare several times bigger than the biggest instan
es used in pra
ti
e in genomerearrangement problems. Exe
ution times for this algorithm are plotted in Fig-ure 5.Lastly we implemented two programs to verify the
onje
tures proposed inSe
tion 4. The two programs are based in the same strategy. We built a graph asfollows: we
reated a vertex for ea
h of the n! permutations with n elements andan edge for ea
h pair of permutations that di�er by a rearrangement event. Inthis graph we sear
h for the permutations that posses the largest distan
e fromthe identity permutation. This strategy
an be implemented in linear time onthe graph size. With this method we
ould
ertify in slightly over 20 hours thatboth
onje
tures are true for permutations with n � 11 elements. Unfortunately30 GB of physi
al memory are need to build the graph for n = 12, what madethe test of our
onje
tures for n � 12 impossible.

Fig. 4. Results for the \bran
h and bound" algorithm. Total approximate time of 47days nonstop pro
essing, with about 34 days for the version not optimized and 13 daysfor the optimized version

Table 1. distan
e of pre�x transposition for reverse permutations with 16 or lesselements. The times in
olumn \without optimization" refer to the \bran
h and bound"algorithm that
onsiders all pre�x transpositions possible, while the
olumn \withoptimization" presents the results of the implementation that
onsiders only pre�xtranspositions that do not
reate new breakpoints, a

ording to Lemma 9. We
ouldnot
ompute d(R16) dire
tly using any of the two implementations; instead we presentan estimate of the time ne
essary for ea
h algorithm to
ompute
orre
tly the distan
e.Note also that it is possible to infer the distan
e d(R16) from Theorem 6 and Lemma 10n d(Rn) Time without Time withoptimization (se
onds) optimization (se
onds)02 01 0 003 02 0 004 03 0 005 04 0 006 05 0 007 06 0 008 06 4 209 07 9 310 08 59 2211 09 1011 37312 09 8872 260713 10 16294 430514 11 118463 4516815 12 2771374 108163116 12* 750 days * 300 days *

Fig. 5. Results for the polynomial algorithm. Total approximate time of 27 days non-stop pro
essing

5 Permutations that Satisfy the Breakpoint Lower-BoundKe
e
ioglu and Sanko� [15℄
onje
tured that to determine whether a permu-tation
an be sorted using the minimum number of reversals indi
ated by thebreakpoint lower bound for reversals was an NP -Hard problem, just like thegeneral problem of sorting by reversals. Irving and Christie [13℄ and Tran [20℄independently proved that this
onje
ture is false, exhibiting a polynomial algo-rithm for the problem.In the
ase of pre�x transpositions we know from Lemma 5 that for everypermutation � we have d(�) � d(b(�)� 1)=2e. However, given a permutation �,is it possible to determine whether d(�) = (b(�) � 1)=2? The following resultsprove that the answer is yes.Lemma 11. Let � be an arbitrary permutation. Then there exists at most onepre�x transposition � su
h that �b(�; �) = �2.Proof: Suppose that � and �(1; x; y) are su
h that �b(�; �) = �2. In this
asewe have � = [�[1℄ : : : �[x � 1℄�[x℄ : : : �[y � 1℄�[y℄ : : :℄ and �� = [�[x℄ : : : �[y � 1℄�[1℄ : : : �[x� 1℄�[y℄ : : :℄, where �[x� 1℄ 6= �[x℄� 1, �[y� 1℄ 6= �[y℄� 1, �[y� 1℄ =�[1℄� 1 and �[x� 1℄ = �[y℄� 1. Finally, note that �[1℄ determines uniquely theindex y, and y determines uniquely the index x. utTheorem 7. Let � be an arbitrary permutation. Then it is possible to determinein polynomial time whether d(�) = b(�)�12 .Proof: Immediate by the algorithm of Figure 6, that has
omplexity O(n2). utGiven an integer k, is it always possible to �nd a permutation � su
h thatthere is a series of k pre�x transpositions �1, : : : , �k with �b(�i�1�i�2 : : : �1�; �i)= �2, for 1 � i � k? On
e again the answer is aÆrmative.Verifying whether � Satisfies the Breakpoints Lower-Bound()1 Input: �2 n j�j3 OK TRUE4 While � 6= �n and OK5 do y ��1[�[1℄ � 1℄ + 16 x ��1[�[y℄� 1℄ + 17 fVeri�es whether there exists a movement that removes two breakpointsg8 if x < y9 then � �(1; x; y)�10 else OK FALSE11 Output: OKFig. 6. The algorithm that veri�es whether � has distan
e d(�) = b(�)�12

De�nition 9. Let Bk be the family of permutations de�ned as follows: Bk =[k + 1 k k + 2 k � 1 k + 3 k � 2 : : : 2k � 1 2 2k 1℄. Permutation Bk possesses2k + 1 breakpoints.Lemma 12. For every integer k it is possible to obtain a series of k pre�xtranspositions �1, �2, . . . , �k that sort Bk su
h that �b(�i�1�i�2 : : : �1�; �i) =�2, for 1 � i � k.Proof: Immediate from the algorithm of Figure 7, that
an be implemented inlinear time. utAlgorithm to Sort Bk()1 Input: � = Bk, with k � 12 for i 1 to k3 do � �(1; 2i; 2i + 1)�4 Output: k Fig. 7. The algorithm that sorts Bk6 Con
lusionsWe introdu
ed in this work a new problem of Genome Rearrangement thatwe
alled distan
e of pre�x transpositions. We showed a number of results forthis problem, in
luding two approximation algorithms (the best of them withfa
tor 2), a proof that any permutation
an be sorted without \
utting strips,"a
onje
ture on the pre�x transposition diameter stating that D(n) = n� �n4 �,and an algorithm for determining whether a permutation
an be sorted using aseries of pre�x transpositions removing two breakpoints per step. The problemof sorting an arbitrary permutation with pre�x transpositions remains open.A
knowledmentsWe gratefully a
knowledge the �nan
ial support of Brazilian agen
ies CNPq(National Coun
il of S
ienti�
 and Te
hnologi
al Development) and FAPESP(The State of S~ao Paulo Resear
h Foundation).Referen
es1. M. Aigner and D. B. West. Sorting by insertion of leading element. Journal ofCombinatorial Theory, 45:306{309, 1987.2. D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for
omput-ing inversion distan
e between signed permutations with an experimental study.Journal of Computational Biology, 8(5):483{491, 2001.

3. V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.SIAM Journal on Computing, 25(2):272{289, 1996.4. V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on Dis
reteMathemati
s, 11(2):224{240, May 1998.5. A. Caprara. Sorting by reversals is diÆ
ult. In Pro
eedings of the First Inter-national Conferen
e on Computational Mole
ular Biology - (RECOMB'97), pages75{83, New York, USA, January 1997. ACM Press.6. D. A. Christie. A 3/2-approximation algorithm for sorting by reversals. In Pro
eed-ings of the Ninth Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages244{252, San Fran
is
o, USA, January 1998.7. D. A. Christie. Genome Rearrangement Problems. PhD thesis, Glasgow University,1998.8. H. Dweighter. Ameri
an Mathemati
al Monthly, volume 82, page 1010. The Math-emati
al Asso
iation of Ameri
a, 1975.9. W. H. Gates and C. H. Papadimitriou. Bounds for sorting by pre�x reversals.Dis
rete Mathemati
s, 27:47{57, 1979.10. S. Hannenhalli and P. A. Pevzner. Transforming
abbage into turnip: Polyno-mial algorithm for sorting signed permutations by reversals. Journal of the ACM,46(1):1{27, January 1999.11. M. H. Heydari and I. H. Sudborough. Sorting by pre�x reversals is np-
omplete.To be submitted.12. M. H. Heydari and I. H. Sudborough. On the diameter of the pan
ake network.Journal of Algorithms, 25:67{94, 1997.13. R. W. Irving and D. A. Christie. Sorting by reversals: on a
onje
ture of ke
e
iogluand sanko�. Te
hni
al Report TR-95-12, Department of Computing S
ien
e, Uni-versity of Glasgow, May 1995.14. H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for sortingsigned permutations by reversals. SIAM Journal on Computing, 29(3):880{892,January 2000.15. J. D. Ke
e
ioglu and D. Sanko�. Exa
t and approximation algorithms for sortingby reversals, with appli
ation to genome rearrangement. Algorithmi
a, 13:180{210,January 1995.16. J. Meidanis, M. E. Walter, and Z. Dias. Transposition distan
e between a permuta-tion and its reverse. In R. Baeza-Yates, editor, Pro
eedings of the 4th South Amer-i
an Workshop on String Pro
essing (WSP'97), pages 70{79, Valparaiso, Chile,1997. Carleton University Press.17. J. Meidanis, M. E. M. T. Walter, and Z. Dias. Reversal distan
e of signed
ir
ular
hromosomes. Te
hni
al Report IC-00-23, Institute of Computing - University ofCampinas, De
ember 2000.18. J. D. Palmer and L. A. Herbon. Plant mito
hondrial dna evolves rapidly in stru
-ture, but slowly in sequen
e. Journal of Mole
ular Evolution, 27:87{97, 1988.19. J. C. Setubal and J. Meidanis. Introdu
tion to Computional Mole
ular Biology.PWS Publishing Company, 1997.20. N. Q. Tran. An easy
ase of sorting by reversals. In A. Apostoli
o and J. Hein,editors, Pro
eedings of the 8th Annual Symposium of the Combinatorial PatternMat
hing (CPM'97), volume 1264 of Le
ture Notes in Computer S
ien
e, pages83{89, Aarhus, Denmark, June 1997. Springer.

