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Abstract

In recent years we are seeing increasing interest in re-
search on mutational events acting on large portions of the
chromosomes. Among these events, a reversal acts on a
fragment of a chromosome reversing the order and orienta-
tion of the genes, and a transposition moves fragments from
one region to another within a chromosome. In this article
we analyze genomes evolving by reversals and transposi-
tions. We present approximation algorithms to compute the
reversal and transposition distance for linear permutations,
and a lower bound on the reversal and transposition diam-
eter of signed linear permutations.

1. Introduction

The huge amount of data resulting from genome se-
quencing in molecular biology is giving rise to an increas-
ing interest in the development of algorithms for compar-
ing genomes of related species. Particularly these data
prompted research on mutational events acting on large por-
tions of the chromosomes. Such events can be used to com-
pare genomes for which the traditional alignment methods
of comparing DNA sequences are not conclusive. The field
originated by the study of non-local mutations on chromo-
somes is known asgenome rearrangements.

There are several mutational events affecting large frag-
ments of genomes of organisms, including duplication, in-
sertion, deletion, reversal, transposition (acting on a single
chromosome), translocation, fusion and fission (involving
more than one chromosome). Each such event or combina-
tion of events gives rise to a theoretical problem of finding,
given two genomes, the shortest series of events that trans-
forms one genome into the other. We seek the shortest series
because it has the largest likelihood of occurrence under a

general principle of parsimony. Notice that in general more
than one shortest series exists. The length of the shortest
series is called thedistancebetween the two genomes.

In this article we are working with genomes composed
by a single chromosome. Chromosomes are usually rep-
resented aspermutationsof integers in the range 1..n, for
a givenn, each integer representing a gene or a genetic
marker. Sometimes the integers are signed to indicate the
orientation of the gene. However, when gene orientations
are unknown, the integers are unsigned.

In the last few years we have witnessed formidable ad-
vances in our understanding of genome rearrangements. A
partial list of known results follows. With respect to the
reversal event, Kececioglu and Sankoff [14] presented the
first algorithms for computing the reversal distance between
two unsigned linear chromosomes. Bafna and Pevzner [1]
improved the Kececioglu and Sankoff algorithm, for signed
and unsigned linear permutations. Hannenhalli and Pevzner
[11] presented the first polynomial time algorithm to find
the reversal distance of signed linear chromosomes, later
improved on its running time by Berman and Hannenhalli
[3] and Kaplan, Shamir and Tarjan [12]. Caprara, Lan-
cia, and Ng [5] implemented a branch-and-bound algorithm
for computing the exact reversal distance between two un-
signed permutations which performs very well in practice.
Caprara [4] later showed that this problem is NP-hard.

Regarding the problem of reversal distance between two
signed circular permutations, Kececioglu and Sankoff [13]
gave an approximation algorithm, and Meidanis, Walter and
Dias [15] gave a polynomial time algorithm for it. With re-
spect to the transposition event, Bafna and Pevzner [2] an-
alyzed the transposition distance problem between two un-
signed linear chromosomes, presenting several approxima-
tion algorithms. Christie [7] gave a polynomial time algo-
rithm for computing distance under a novel operation, block
interchange.



Analyzing genomes evolving due to different mutational
events represents today a great challenge. Hannenhalli
and co-authors [9] analyzed genomes evolving by differ-
ent events, particularly reversals and transpositions. Han-
nenhalli and Pevzner [10] presented a polynomial time
algorithm for comparing genomes evolving by reversals,
translocations, fusions and fissions. Gu, Peng and Sudbor-
ough [8] gave approximation algorithms to compute the dis-
tance between two signed permutations, allowing three op-
erations, reversal, transposition and reversal+transposition
simultaneously.

In this paper we want to contribute in the analysis of re-
versals and transpositions acting on a single chromosome.
The results of this work are as follows. We extend the anal-
ysis of transpositions to signed permutations, and obtain
approximation algorithms for computing the reversal and
transposition distance for both signed and unsigned permu-
tations. Finally, we present lower bound for the reversal
and transposition diameter of signed permutations, and con-
clude.

2. Definitions

In this section we formalize the problem of computing
the reversal and transposition distance of linear chromo-
somes.

We assume that the order of genes in a chromosome is
represented by a permutation� = (�1; �2 : : : �n), where
each�i is an integer in1::n. If the gene orientations are
known, each�i is a signed integer.

A reversalis an operation that transforms a permutation
into another, reversing the order of the genes on a certain
portion of the permutation. A reversalr(i; j) is defined by
two integersi; j, such that1 � i � j � n, reversing the
order of the genes betweeni andj, including the extremes.
Thus, we haver(i; j) � (�1 : : : �i�1�i�i+1 : : : �j�j+1 : : : �n) =(�1 : : : �i�1�j : : : �i+1�i�j+1 : : : �n)
where�k symbol means��k if the integer is signed, or�k
if the integer is not signed.

A transpositionis an operation transforming a permuta-
tion into another, “cutting” a certain portion of the permuta-
tion and “pasting” it elsewhere in the same permutation. A
transpositiont(i; j; k) is defined by three integersi; j, andk
such that1 � i < j � n+1; 1 � k � n+1, andk 62 [i; j℄,
in the following way. It “cuts” the portion between posi-
tions i andj � 1, including the extremes, and “pastes” it
just before positionk. Thus, we can writet(i; j; k) � (�1 : : : �i�1�i : : : �j�1�j : : : �k�1�k : : : �n)(�1 : : : �i�1�j : : : �k�1�i : : : �j�1�k : : : �n)

if i < j < k, andt(i; j; k) � (�1 : : : �k�1�k : : : �i�1�i : : : �j�1�j : : : �n)(�1 : : : �k�1�i : : : �j�1�k : : : �i�1�j : : : �n)
if k < i < j. Notice thatt(i; j; k) = t(j; k; i) wheni <j < k.

Given two permutations� and�, we want to compute
a shortest series of reversals and transpositions that trans-
forms � into �, that is, we want to find�1, �2, : : :, �u,
where�i is either a reversal or a transposition, such that�u � �u�1 � : : : � �2 � �1 � � = � andu is minimum. We callu thereversal and transposition distanceand denote it byd(�; �). Without loss of generality we can fix�. Unless
otherwise noted, all our developments will be done with�
being the identity permutation, which is� = (1 : : : n) in the
unsigned case and� = (+1 : : :+ n) in the signed case.

In the following anoperation can be a reversal or a
transposition.

We usually extend permutation� by adding�0 = 0 and�n+1 = n+1 in the unsigned case, or�0 = +0 and�n+1 =+(n+1) in the signed case. The extended permutation will
still be denoted by�.

A breakpoint of a permutation� is a pairx = (�i; �i+1)
such that neitherx nor x = (�i+1; �i) are of the form(�j ; �j+1) for somej such that0 � j � n. Therefore, to
reach� from �, we must have at least one operation ”sep-
arating”�i and�i+1. Breakpoints are indicated by a bul-
let (�) between�i and�i+1 (see Figure 1). We denote byb(�; �) the number of breakpoints of� with respect to�.

Breakpoints divide a permutation intostrips. If the tar-
get permutation� is the identity, strips are always sequences
of consecutive integers. In the unsigned case, a strip can be
either increasing or decreasing as a sequence of integers,
and we will call them accordingly asincreasing strips or
decreasing strips. In the signed case, all strips are increas-
ing, but we separate them intopositive or negativestrips,
according to the sign of their elements (all elements in a
strip must have the same sign).0 � 5 � 1 2 � 4 � 7 6 � 3 � 9 8 � 10

Figure 1. Strips and breakpoints of a permu-
tation � = ( 0 5 1 2 4 7 6 3 9 8 10 ) with
respect to � = ( 0 1 2 3 4 5 6 7 8 9 10 ). Strips
are the sequences between two consecutive
breakpoints.

A powerful tool for studying the reversal and transposi-
tion distance is thereality and desire diagramof two per-
mutations. In the literature [1, 11, 3] this is called thebreak-
point graphof two permutations, but we prefer to call it a



diagram because its graph structure alone does not capture
all the important information: the order of nodes is relevant
too.

The rest of this section refers to signed permutations
only. We construct this diagram writing the original per-
mutation� in the following way. Replace each integeri
by a pair of points�i and+i, in this order. For instance,+4 is replaced by�4 and+4; �8 is replaced by+8 and�8. Add two extra points, one called+0 at the beginning
of the sequence, and one called�(n + 1) at the end of the
sequence. Now drawreality edges between+0 and��1,
between+�i and��i+1, and between+�n and�(n+ 1).
Finally, drawdesireedges between+0 and��1, between+�i and��i+1, and between+�n and�(n+1). Again, in
the literature, reality edges are calledblack edgesand desire
edges are calledgray edges. We prefer the denominations
reality and desire because they are more informative: real-
ity edges refer to the current permutation and desire edges
refer to the target permutation.

The diagram has exactlyn+1 reality edges and the same
number of desire edges. The idea is that reality edges in-
dicate the situation as it is now, while desire edges indi-
cate the situation sought. When reality equals desire in all
edges, we have� = � andd = 0. Therefore, our goal is
to apply reversals and transpositions so that reality becomes
desire. Figure 2 shows the diagram corresponding to a pair
of permutations. We denote byG(�; �) the diagram of the
permutations� and�.

+5 -1 -2 -4 +7 +6 -3 -9 -8 -10-5 +1 +2 +4 -7 -6 +3 +9 +80

Figure 2. Reality and desire diagram for two
permutations, � = (�5 + 1 + 2 + 4 � 7 � 6 +3 + 9 + 8) and � = (+1 + 2 + 3 + 4 + 5 +6 + 7 + 8 + 9 + 10). The value of 
(�; �) is 3
in this case.

Observe that the diagram is composed of a number of cy-
cles, with each cycle alternating between reality and desire
edges. Thelength of a cycle is the number of reality edges
in it (which is the same as the number of desire edges in it).
We will denote byk-cycle a cycle with lengthk. The de-
composition ofG(�; �) into cycles is unique and we denote
by 
(�; �) the number of the cycles inG(�; �).

3. Approximation algorithms

We present now approximation algorithms for comput-
ing the reversal and transposition distance of two permuta-
tions. We will give a3-approximation algorithm for the un-
signed case and a2-approximation algorithm for the signed
case.

Let us begin with the unsigned case. Note that the only
permutation having0 breakpoints with respect to� is ex-
actly �, and then the sequence of reversals and transposi-
tions transforming� into � must take the number of break-
points fromb(�; �) to 0. We also observe that reversals can
remove at most two breakpoints, and transpositions can re-
move at most three breakpoints. This observation implies
immediately a lower bound, given in the next theorem.

Theorem 1 Given two unsigned permutations� and� we
have b(�; �)3 � d(�; �):
Theorem 2 Given two permutations� and�, with � 6= �,
there is an operation� removing at least one breakpoint.

Proof: The intuitive idea is to increase the first strip on
each operation, removing its rightmost breakpoint without
introducing new breakpoints.

The first strip on the left is always an increasing strip.
Taking the maximum element on this first strip, find its suc-
cessor, which will be necessarily to the right. If the succes-
sor is in the beginning of a strip, or is the only element on
the strip, we apply a transposition. If it is in the end, we
apply a reversal. 2

Repeated application of Theorem 2 gives a 3-
approximation algorithm for computing the reversal and
transposition distance of unsigned permutations. Its time
complexity isO(n2), wheren is the size of the permuta-
tions. It takes timeO(n) to find the operation and apply
it.

3.1. Signed Permutations

Now we turn to the signed case. Note that the diagramG(�; �) is the only one havingn + 1 cycles. So, the se-
quence of reversals and transpositions transforming� into� must take the number of cycles from
(�; �) to n + 1.
For two permutations� and�, and an operation�, denote�
(�) = 
(� � �; �) � 
(�; �) as the gain in the number of
cycles due to an operation�.

Lemma 1 �
(�) 2 f�2;�1; 0; 1; 2g
Proof: We note first that� can be a reversal or a transposi-
tion.



Each reversal acts on two reality edges belonging to at
most two cycles, creating or destroying at most one cycle.
Hannenhalli and Pevzner [11] have shown that, for a rever-
sal,�
(�) 2 f�1; 0; 1g.

Each transposition acts on three reality edges belonging
to at most three cycles. Bafna and Pevzner [2] have shown
that for the unsigned case�
(�) 2 f�2; 0; 2g. It corre-
sponds, in the signed case, to a diagram generated by a per-
mutation composed only by positive strips. However, in the
signed case, we have also�
(�) = �1 or+1. This can be
seen from Figure 3, which shows all possible actions of a
transposition on signed permutations. 2

The following theorem comes directly from Lemma 1.

Theorem 3 Given two signed permutations� and� then
we have (n+ 1)� 
(�; �)2 � d(�; �)

For x 2 f2; 1; 0;�1;�2g, define ax-move on � with
respect to� as an operation� such that�
(�) = x. As we
mentioned, Figure 3 shows all possible actions on signed
permutations. In each of the cases shown, a transposi-
tion transforms reality edges(b; a); (d; 
) and (f; e) into(d; a); (b; e) and(f; 
). Dashed lines denote a path that can
be formed by one or more desire/reality edges. Since the
inverse of a transposition is a transposition, the transforma-
tions are reversible. Notice that there is only one pattern
corresponding to a2-move, and only three patterns cor-
responding to an1-move.Notice that only one case corre-
sponds to a2-move. This fact leads to the following theo-
rem.

Theorem 4 A diagram admits a 2-move if and only if there
are three reality edges(a; b), (
; d), and(e; f) such that

1. they appear in this order in the diagram

2. they belong to the same cycle

3. a is connected tod, b to e, and 
 to f , by paths not
containing any of the edges(a; b), (
; d), and(e; f).

We show now a way to apply a reversal or a transposition
on a signed permutation in order to obtain an increase of
(�; �) by at least2 in two consecutive moves.

Theorem 5 Given two signed permutations� and�, there
is either a1-move, a2-move or a0-move followed by a2-
move.

Proof: If there are negative strips, Hannenhalli and
Pevzner [11] have shown that there is always a reversal in-
creasing the number of cycles, and is therefore an1-move.

If all strips are positive, we can view this permutation as
an unsigned one, and apply a result from Bafna and Pevzner

d b fa e c

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

a b c d e f a d e b c f

d e fcba

Figure 3. This figure shows all possible cases
of transposition acting on a signed permu-
tation, where only the affected cycles are
shown.



[2], guaranteeing the existence of either a2-move, or a0-
move followed by a2-move. 2

From Theorem 5 we can derive an upper bound for the
reversal and transposition distance.

Theorem 6 Given two signed permutations� and � we
have d(�; �) � (n+ 1)� 
(�; �)

Given a permutation� to be transformed into�, the intu-
itive idea of the algorithm is, while we have negative strips
on � with respect to� we apply reversals as described on
Theorem 5. If we cannot apply reversals of this kind, and
this sequence of reversals did not transform� into� then the
diagram is generated by a permutation having only positive
strips with respect to�. Then we use the results of Bafna
and Pevzner [2] to discover the sequence of transpositions
to be applied. We note that, when these transpositions are
being applied, all diagrams are generated from permutations
having only positive strips with respect to�.

This gives a2-approximation algorithm for computing
the reversal and transposition distance of signed permuta-
tions. Its time complexity isO(n2), wheren is the size of
the permutations. Both a suitable reversal and a suitable
transposition, as specified in the proof of Theorem 5, can be
found in timeO(n) [2, 11].

4. Reversal and transposition diameter

In this section we give initial steps for computing the
maximum number of operations for the reversal and trans-
position distance of signed permutations.

TakingSn as the set of all permutations with sizen, de-
fine D(n) = max�;�2Sn d(�; �)
to be thereversal and transposition diameterof this set.
Let � = (�1 � 2 : : : � (n � 1) � n) and� = (+1 +2 : : : + (n� 1) + n). Then
(�; �) = 1 for all n, and we
have a lower bound (by Theorem 3),jn2 k � d(�; �):
More precisely, we can prove the following result.

Theorem 7 Taking� = (�1 � 2 : : : � (n� 1) �n) and� = (+1 + 2 : : : n� 1 n), then we haved(�; �) =8<: �n2 �+ 1 if n = 1; 2�n2 �+ 2 if n � 3
Proof: We have two cases according to the parity ofn.

� Whenn is odd, a lower bound isdn2 e � d(�; �). Butdn2 e = n+12 = bn2 
 + 1 � d(�; �). To achieve the
lower bound, all operations applied must be 2-moves,
except one which must be a 1-move. No 2-moves ex-
ist in the original diagram, and for every 1-move in
the first step, the resulting diagram does not admit 2-
moves. Hence, the lower bound cannot be achieved
and we haved(�; �) � bn2 
+ 2.� Whenn is even, Tables 1 summarize the argument.
The table labeled “FIRST MOVE” analyzes all pos-
sibilities for the first move. Two of these possibili-
ties require an analysis of the second move as well,
which is done in the table labeled “SECOND MOVE.”
Two arguments are used heavily in this table. One of
them is that when negative elements remain, we cannot
achieve thebn2 
+1 lower bound because we are forced
to use at least one reversal, which is never a 2-move.
The other is that one can verify in some cases that a
2-move does not exist looking for the characterization
given by Theorem 4.

Whenn � 3we can obtain an upper bound ford(�; �) in
the following way. First, we apply a reversal on�, obtainingr(1; n) �� = (+n +(n�1) : : : +2 +1). Then we use the
result of Christie [6], also obtained independently by Mei-
danis, Walter and Dias [16], that determines the transposi-
tion distancedt(r � �; �) = bn2 
+ 1, for n > 2. Therefore,
we have the upper bound,d(�; �) � bn2 
 + 2, for n � 3.
This completes the proof. 2

An observation here is that an algorithm to obtain a
shortest sequence of operations to transform� = (�1 �2 : : : �(n�1) �n) into the identity is: first apply a reversal
on� to obtainr(1; n)�� = (+n +(n�1) : : : +2 +1), and
then use the algorithm of Meidanis, Walter and Dias [16] to
get the transpositions for computingd(r � �; �).

So, we have a lower bound on the diameterjn2 k+ 2 � D(n):
We can verify thatD(n) = bn2 
+ 2 for n = 3; 4.

5. Conclusions

In this article we have presented approximation algo-
rithms for computing the reversal and transposition dis-
tance. For the signed and unsigned cases we have shown
algorithms based on the notion of breakpoints and cycles,
respectively. For the signed case our algorithm uses a spe-
cific type of reversal while possible, and after that it uses
part of the Bafna and Pevzner theory [2] to get the transpo-
sitions to be applied.

The lower bounds used to estimate the approximation
factor were simple, yet they lead to a deeper result, namely,



FIRST MOVE2-move impossible, no reversal is a2-move
reversal 1-move must ber(i; j) with j � i

even; analyze second move0-move if r(1; n), use known re-
sult on transposition dis-
tance (a); otherwise nega-
tive elements remain2-move the unique2-move pattern
in Figure 3 does not exist in
the diagram

transposition 1-move must bet(i; j; k) with j � i
andk� i both odd; analyze
second move0-move negative elements remain

SECOND MOVE2-move the unique2-move pattern
in Figure 3 does not exist in
the diagramr(i; j) withj � i even

1-move if transposition, negative
elements remain; if re-
versal, negative elements
remain except when first
move wasr(1; n) or r(i +1; n) for odd i, but then
the unique2-move pattern
in Figure 3 does not exist in
the diagram2-move the unique2-move pattern
in Figure 3 does not exist in
the diagramt(i; j; k)

with bothj � i andk � j odd

1-move if transposition, negative
elements remain; if rever-
sal, negative elements re-
main except when it isr(1; n). But thenr(1; n) �t(i; j; k) = t(n + 2 �k; n + 2 � j; n + 2 � i) �r(1; n), which was already
analyzed

Table 1. Analysis of the first two steps in com-
puting the distance. (a) See result by Christie
and Meidanis, Walter, Dias in the text. In the
SECOND MOVE table we do not consider 0-
moves since if the second move is a 0-move,
the lower bound cannot be achieved, because
the first move was an 1-move.

the calculation of the exact distance between permutation(�1 � 2 : : : � (n� 1) � n) and the identity. This proof
is more involved and uses the characterization of 2- and 1-
moves given in Figure 3. Of course the result provides a
lower bound for the diameter, which we conjecture to be an
upper bound as well.

Plans for future work include dealing with other opera-
tions, notably the combined reversal+transposition, which
is a natural operation to consider form the biological stand-
point, and studying weighted problems, where each type of
operation has a different weight, and the goal is to minimize
the total weight.
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