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Rearrangement-based phylogeny using the
Single-Cut-or-Join operation

Priscila Biller, Pedro Feijão, João Meidanis

Abstract—Recently, the Single-Cut-or-Join (SCJ) operation was proposed as a basis for a new rearrangement distance between
multichromosomal genomes, leading to very fast algorithms, both in theory and in practice. However, it was not clear how well this
new distance fares when it comes to using it to solve relevant problems, such as the reconstruction of evolutionary history. In this
paper, we advance current knowledge, by testing SCJ’s ability regarding evolutionary reconstruction in two aspects: (1) how well does
SCJ reconstruct evolutionary topologies?, and (2) how well does SCJ reconstruct ancestral genomes? In the process of answering
these questions, we implemented SCJ-based methods, and made them available to the community. We ran experiments using as
many as 200 genomes, with as many as 3000 genes. For the first question, we found out that SCJ can recover typically between
60% and more than 95% of the topology, as measured through the Robinson-Foulds distance (a.k.a. split distance) between trees. In
other words, 60% to more than 95% of the original splits are also present in the reconstructed tree. For the second question, given
a topology, SCJ’s ability to reconstruct ancestral genomes depends on how far from the leaves the ancestral is. For nodes close to
the leaves, about 85% of the gene adjacencies can be recovered. This percentage decreases as we move up the tree, but, even at
the root, about 50% of the adjacencies are recovered, for as many as 64 leaves. Our findings corroborate the fact that SCJ leads to
very conservative genome reconstructions, yielding very few false positive gene adjacencies in the ancestrals, at the expense of a
relatively larger amount of false negatives. In addition, experiments with real data from the Campanulaceae and Protostomes groups
show that SCJ reconstructs topologies of quality comparable to the accepted trees of the species involved. As far as time is concerned,
the methods we implemented can find a topology for 64 genomes with 2000 genes each in about 10.7 minutes, and reconstruct the
ancestral genomes in a 64-leaf tree in about 3 seconds, both on a typical desktop computer. It should be noted that our code is written
in Java and we made no significant effort to optimize it.

Index Terms—Genome Rearrangement, Phylogeny
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1 INTRODUCTION

G ENOME rearrangements are evolutionary events
where large, continuous pieces of the genome shuf-

fle around, and have been studied since shortly after the
very advent of genetics [1], [2], [3]. With the increased
availability of whole genome sequences, gene order data
have been used to estimate the evolutionary distance
between present-day genomes, and to reconstruct the
gene order of ancestral genomes. The simplest form of
inference of evolutionary scenarios based on gene order
is the pairwise genome rearrangement problem: given
two genomes, find a shortest sequence of rearrangement
events that transforms one genome into the other. In
some applications, one is interested only in the number
of events of such a sequence — the distance between the
two genomes.

For most rearrangement events proposed, this prob-
lem has already been solved, usually with linear or
subquadratic algorithms. However, when more than two
genomes are considered, inferring evolution scenarios
becomes much more difficult. For instance, the genome
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median problem (GMP) — given three genomes, find a
fourth genome that minimizes the sum of its pairwise
distance to the three given genomes — is NP-complete
in most rearrangement models [4].

If we allow more than three genomes, we have a
problem called the multiple genome rearrangement problem
(MGRP) — searching phylogenetic trees describing the
most “plausible” rearrangement scenario for multiple
genomes [5], [6]. Formally, given n genomes, we want to
find a tree T with n extant genomes as leaf nodes and
assign ancestral genomes to internal nodes of T such
that the tree is optimal (in a parsimonious sense), i.e.,
the sum of rearrangement distances over all its edges is
minimal. This problem is also called the Big Parsimony
Problem (BPP), in contrast to the easier Small Parsimony
Problem (SPP), when a tree is given, and we just need to
find genomes for the internal nodes.

The first approach to solving the MGRP was proposed
by Sankoff and Blanchette [7], and implemented in their
software BPAnalysis. This method performs an extensive
search over all possible tree topologies finding the tree
with the minimum number of breakpoints (adjacencies
present in one genome, but absent in the other). Since
the number of topologies is exponential on the number
of genomes, this method was restricted to very small
instances. Later, Moret et al. developed a faster, alterna-
tive method called GRAPPA [8], based on BPAnalysis,
that improved the speed in several orders of magnitude.
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Also, breakpoint distance was replaced by reversal dis-
tance [9], with the availability of a linear algorithm for
the latter [10].

Another approach to the MGRP using reversals was
presented by Bourque and Pevzner in their MGR pro-
gram [11]. The main difference with GRAPPA is that in
MGR the GMP is not solved exactly; a faster heuristic is
applied instead.

In an earlier work [12], we proposed a rearrangement
operation called Single-Cut-or-Join (SCJ). Under this sim-
ple breakpoint-like event, both the GMP and SPP have
polynomial time solutions. This is a major advantage of
using SCJ models for the MGRP, since most proposed
methods (MGR and GRAPPA, for instance) are based
on solving the GMP and the SPP several times, and,
as we have mentioned, these problems are NP-hard for
most rearrangement distances (including breakpoint and
reversal distances). With SCJ, the MGRP can be solved
much faster.

In this paper, we study the small and big parsimony
problems under the SCJ distance, running several ex-
periments to assess the ability of SCJ to reconstruct
evolutionary histories, both with real as well as simu-
lated data. As it turns out, SCJ does very well, being
able to achieve results comparable to the best available
methods.

2 REPRESENTING GENOMES

We will use a standard genome representation [12]. A
gene is an oriented sequence of DNA that starts with a
tail and ends with a head, called the extremities of the
gene. The tail of a gene a is denoted by at, and its head
by ah. Given a set of genes G, the associated extremity
set is E(G) = {at : a ∈ G} ∪ {ah : a ∈ G}. An adjacency
is an unordered pair of extremities that represents the
linkage between two consecutive genes in a certain
orientation on a chromosome, for instance chbt in Fig. 1.
An extremity that is not adjacent to any other extremity
is called a telomere, for instance, at in Fig. 1. A genome
is defined by a pair (G,Π), where G is a gene set and
Π is a set of disjoint adjacencies from E(G). Telomeres
are uniquely determined by the set of adjacencies and
the gene set G. Two adjacencies are said to be conflicting
when they have at least one extremity in common. Thus,
given a gene set, a genome can be characterized as a set
of mutually nonconflicting adjacencies. Sometimes, we
will represent a genome just by Π, its adjacency set, with
G being then implicitly defined as the smallest gene set
needed for the adjacencies in Π, or by the context.

The graph representation of a genome (G,Π) is a graph
G(G,Π) whose vertices are the extremities of E(G) and
there is a grey edge connecting the extremities x and
y when xy is an adjacency of Π, or a directed black
edge from x to y when x and y are tail and head,
respectively, of the same gene. A connected component
in G(G,Π) is a chromosome of (G,Π), and it is linear if it is
a path, and circular if it is a cycle. A circular genome is a
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Fig. 1. Graph representing a genome with two linear
chromosomes. Black, directed edges represent genes,
while grey edges link consecutive extremities.

genome whose chromosomes are all circular, and a linear
genome is a genome whose chromosomes are all linear.
For instance, given the set G = {a, b, c, d, e, f}, and the
adjacencies Π = {ahbh, btch, dhfh, ftet}, the graph G(G,Π)

is given in Fig. 1.

3 THE SCJ OPERATION
The SCJ operation is based on the two most basic re-
arrangement operations: a cut, an operation that breaks
an adjacency in two telomeres (namely, its extremities),
and a join, which is the reverse operation, pairing two
telomeres into an adjacency. Any cut or join applied
to a genome will be called a Single-Cut-or-Join (SCJ)
operation. Since a genome is represented as a set of
adjacencies, a cut can also be viewed as the removal of
an adjacency from the set, while the join is the addition
of a nonconflicting adjacency. The SCJ distance, denoted
by dSCJ , is defined as the smallest number of single-
cut-or-join operations that transform one genome into
the other.

The SCJ distance can be easily computed, as we see
from the lemma below.

Lemma 3.1 (Feijão and Meidanis [12]): Consider two
genomes represented by the sets Π and Σ, and let
Γ = Π− Σ and Λ = Σ−Π. Then, Γ and Λ can be found
in linear time, and they define a minimum set of SCJ
operations that transform Π into Σ, where adjacencies
in Γ define cuts and adjacencies in Λ define joins.
Consequently, dSCJ(Π,Σ) = |Π− Σ|+ |Σ−Π|.

The SCJ also admits a distance equation based on the
Adjacency Graph, introduced by Bergeron et al. [13]. The
adjacency graph AG(Π,Σ) is a bipartite graph whose
vertices are the adjacencies and telomeres of the genomes
Π and Σ and whose edges connect two vertices that have
a common extremity. Therefore, vertices representing
adjacencies will have degree two, telomeres will have
degree one, and this graph will be a union of paths and
cycles.

Lemma 3.2 (Feijão and Meidanis [12]): Let Π and Σ be
two genomes with the same set of genes G. We have

dSCJ(Π,Σ) = 2
[
N − (C2 + P/2)

]
, (1)

where N is the number of genes, C2 is the number of
cycles of length two, and P the number of paths in
AG(Π,Σ).

Other important genome rearrangement problems,
such as the generalized genome median (median of n
genomes) and genome halving also have polynomial
algorithms under the SCJ distance.
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4 MULTIPLE GENOME REARRANGEMENT
PROBLEM

In this section, we formally describe two MGRP prob-
lems: the Small Parsimony Problem (SPP) and the Big
Parsimony Problem (BPP).

4.1 The Small Parsimony Problem
Given a tree T , where each leaf corresponds to a genome
defined over the same set of genes G, the small parsimony
problem (SPP) consists of finding an ancestral genome Γv
for each internal node v of T such that the total branch
length of T (the sum of the weight of each edge, defined
as the distance between the genomes of its incident
vertices) is minimized. Formally, we want to find

M = min
G

∑
uv∈E(T )

d(Γu,Γv) (2)

where E(T ) is the set of edges of T and G is the mapping
from v to Γv .

A common way to solve this problem is the approach
proposed by Blanchette et al. [14], where one iterates
over each internal node of T , solving a genome median
problem (GMP) until convergence to a local minimum
is achieved. One difficulty with this technique is that
the GMP is NP-hard for most rearrangement distances,
notable exceptions being the SCJ distance [12], and the
BP distance in some specific cases [4].

A significant advantage of the SCJ distance is that
the SPP can be solved in polynomial time [12]. Stoye
and Wittler had already used a similar strategy in their
reconstruction of ancient gene clusters [15]. Basically, it
applies Fitch’s small parsimony algorithm on each adja-
cency, viewing it as a binary character, determining, in
each pass, whether the given adjacency is present in each
of the internal nodes of the tree, and ultimately building
all ancestral genomes. This is the only known distance
for which the SPP has a polynomial time solution, since
for BP, even though the median problem is polynomially
solvable, for the general case of four or more genomes
the SPP is NP-hard [16].

4.2 The Big Parsimony Problem
The big parsimony problem under SCJ can be stated as
follows. Given n genomes π1, . . . , πn defined on the same
set of genes G, find a tree T whose leaves are in one-to-
one correspondence with the genomes π1, . . . , πn, and
find an ancestral genome Γv for each internal node v of
T so that the total branch length of T (the sum of the
weight of each edge, defined as the distance between the
genomes of its vertices) is minimized.

Under the SCJ distance, the BPP is related to the
Steiner tree problem in {0, 1}N , which is NP-hard [17],
with the difference that the binary characters in our
case are adjacencies, and therefore are not necessarily
independent, since conflicting adjacencies cannot belong
simultaneously to the same genome. However, with a

simple coding scheme, it was proven that given an
instance of the Steiner problem in {0, 1}N , it is possible to
code it as an SCJ problem where the adjacencies behave
as independent characters, thus effectively reducing this
NP-hard problem to big parsimony under SCJ [12]. As
a result, SCJ big parsimony turns out to be NP-hard as
well.

5 EXPERIMENTAL SETUP

In this paper, we are interested in assessing experimen-
tally the quality of phylogenetic trees obtained using SCJ
as the sole operation in a rearrangement model. To check
how good a phylogenetic tree is, we examine several of
its features, including topology, branch length (i.e., the
number of evolutionary events on a branch), and an-
cestral genomes (genomes in internal nodes of the tree).
Given a collection of leaf genomes as input, we analyze
these features with metrics detailed in Section 5.3.

To compute the metrics, we applied the SCJ model
in two different multiple genome rearrangement (MGR)
problems. The first is the Big Parsimony Problem (BPP),
where the input consists of n extant genomes and we
try to find the “best” (minimum length) tree, with the n
input genomes as leaves. In this case, we are interested
in comparing the topologies of the tree obtained with
SCJ. The other problem is the Small Parsimony Problem
(SPP), where the extant genomes and the topology are
given, and we need to find ancestors that minimize the
length of the tree. In this case, we analyze several metrics
related to the inferred ancestors.

Given that BPP is NP-Hard for SCJ, we use two meth-
ods to solve it: an exact, branch-and-bound approach
and a heuristic method that adds one genome at a
time (stepwise addition). For SPP, we implemented an
adaptation of Fitch’s algorithm, suggested by Feijão and
Meidanis [12], that runs in polynomial time. This ap-
proach is very fast and gives an optimum solution. These
methods are described in more detail in Section 5.2.

In addition to verifying the accuracy in inferring the
features, we also analyze the performance of SCJ, mea-
suring the computational time used in each experiment.

After defining the metrics and methods, we defined
the input data to be used in each method. In these ex-
periments we used real and simulated data, depending
on the evaluated feature. We used real data to assess the
topology, comparing the results with topologies inferred
by other methods in literature. We chose two well-
studied datasets: Campanulaceae, which is a difficult
case because it is highly rearranged, and Protostomes,
composed of 66 genomes, which is challenging because
of its size. Real data could not be used to compare
ancestors, because these are unknown in the datasets we
selected.

All methods were also tested using simulated data.
In the simulations, we vary the values of different pa-
rameters, such as number of input genomes, genome
size, number of rearrangement events per tree edge,
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frequencies of rearrangement event types, and evaluate
their influence on the inferred tree. Section 5.1.1 has a
more detailed description of how the simulations were
conducted. Fig. 2 shows a diagram that summarizes the
experiments.

5.1 Data Preparation
5.1.1 Simulated Dataset
Computer simulations are useful for verifying how well
SCJ works under different evolutionary conditions, be-
cause they can exhaustively explore the impact of dif-
ferent parameters. In this paper, we simulate rearrange-
ment evolution for a set of species, represented by their
genomes. With these simulations, we evaluate how the
following parameters influence the results:
• Branch Length: denotes the expected number of

evolutionary events along an edge of the tree. Val-
ues are sampled from a uniform distribution on
the set {1, 2, 3, ...,MAX_LEN}, where (MAX_LEN)
is defined as a percentage of the number of genes;

• Tree size: denotes the number of leaves in the
phylogenetic tree.

• Genome size: consists of two parts: the number of
genes and the number of chromosomes.

• Rearrangement Distribution: defines the frequency
of each rearrangement event type, which remains
the same during our simulated evolution. We con-
sider only signed reversals, transpositions, and re-
ciprocal translocations.

Since it is unfeasible to test all parameter combina-
tions, we selected a default value for each parameter,
and studied variations around this point. The default
values are shown in Table 1. Notice that, in some cases,
the default value depends on the dataset.

In the experiments, we vary just one parameter and fix
the other parameters in their default values. For a given
combination, we generate 200 simulated trees, as follows.
First, the simulation creates the topology of a rooted bi-
nary tree with the specified number of leaves. Topology
generation follows the beta-splitting model proposed
by Aldous [18]. In this model, it is possible to modify
the probability distribution of topologies using the β
parameter, which ranges from -2 to ∞. The β parameter
adjusts the probability of generating trees with a certain
degree of balance, with larger β corresponding to greater
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BPPReal data

Time

Topology

Ancestors

Output MetricInput Method

Common
Adj.

BPP

Simulation

stepwise addition

branch−and−bound

Fig. 2. Diagram with the experiments.

balance. We use β = −1, which is the value obtained
empirically by Aldous as the one that best represents
the balance observed on real data.

After defining the topology, the hypothetical ancestor
at the root is created, with the specified number of genes
and chromosomes, without duplications. Finally, from
top to bottom, we work along each branch, evolving
the parent genome with reversals, translocations, and
transpositions, based on the given rearrangement distri-
butions and branch lengths, until all leaves are reached.

It is common to use signed reversals, transpositions
and reciprocal translocations in simulated evolution [19],
[20], because these operations correspond to events ac-
tually observed in practice, unlike more general opera-
tions, such as DCJ or SCJ. In experimental studies there is
a predominance of reversals over other events [21], [22],
so the rearrangements in our simulations are distributed
as 90% reversals and 10% translocations by default.

5.1.2 Campanulaceae Chloroplast DNA Dataset
To compare the SCJ method with existing ones, we
applied SCJ to a dataset of chloroplast genomes from the
flowering plant family Campanulaceae. This dataset was
created by Cosner et al. [23] as a test case for their MPBE
method. This is a well-studied dataset, consisting of 13
species (12 Campanulaceae and the outgroup Tobacco),
where the genomes have one circular chromosome with
105 markers. The tree inferred by MPBE is shown in
Fig. 5a.

In addition to comparing our SCJ methods with
MPBE, we will also use the topology proposed by
Bourque and Pevzner [11], who found a phylogeny with
65 reversals using MGR (see Fig. 5b). Later, the same

TABLE 1
Parameter Values

Parameter Value Range Default

Tree Branch Length {0.05, 0.10, 0.15, 0.2
0.20, 0.25}

Leaves {12, 32, 64, 128, 200} {64, 12}1

Genome Genes {500, 1000, 1500, 2000
2000, 2500, 3000}

Chromosomes {1, 5, 10, 15, 20} 5

Rearrangement {(0.2, 0.0, 0.8), (0.9,0.0,0.1)
Distribution (0.2, 0.1, 0.7),

(Reversal, Transposition (0.4, 0.0, 0.6),
Translocation) (0.4, 0.1, 0.5),

(0.6, 0.0, 0.4),
(0.6, 0.1, 0.3),
(0.8, 0.0, 0.2),
(0.8, 0.1, 0.1),
(0.9, 0.0, 0.1),
(1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.0, 0.0, 1.0)}

1 The default number of leaves depends on the method:
64 genomes for Fitch and stepwise addition methods,
and only 12 genomes for branch-and-bound, because of
its prohibitive computation time for larger data sets.
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topology was used by Adam and Sankoff [24] to solve
SPP under the DCJ model, obtaining a tree with 64 DCJs.
In 2010, Kováč et al. [25] also used this tree to solve SPP
under DCJ, but penalizing multiple chromosomes. They
obtained several topologies with 59 DCJs, where all the
ancestors have a single chromosome.

Another topology considered for the comparison was
presented by Xu and Moret [22]. Recently, they have
proposed a method called GASTS to solve the SPP,
and found 294 trees with DCJ score equal to 63. These
topologies are different from the topology obtained by
MGR. From these trees, we collapsed interior branches
of zero length, where no DCJ operation was done, and
a consensus tree was built by PHYLIP 3.69 [26] (CON-
SENSE module). This GASTS consensus tree is shown in
Fig. 5d.

The last tree to be compared was obtained by Cosner
et al. [27], using 18 species of Campanulaceae and the
outgroup Tobacco. We excluded from their trees six
species that are not contained in our dataset. Cosner
et. al conducted an extensive study of Campanulaceae
phylogeny, using supplementary input data: sequence
data from the rbcL gene and the ITS region, and three
character matrices based on gene order. The authors
present seven trees, but we chose the one which better
represents the results discussed in their paper, in our
opinion (Fig. 5c).

For the SCJ tree, we used the branch-and-bound
method to find all optimal trees (4 in total), then cal-
culated the consensus tree using PHYLIP. The resulting
tree is shown in Fig. 5e.

5.1.3 Protostome Mitochondrial DNA Dataset

Besides the Campanulaceae dataset, we also used a
larger dataset, containing 66 protostome mitochondrial
DNAs, with 36 genes each, published by Fritzch et
al. [28] as a test case for their alignment-based approach.
After aligning the genomes, the phylogeny was inferred
with maximum parsimony methods, such as stepwise
addition and branch swapping heuristics. The resulting
tree is shown in Fig. 6b. They used 112 genomes with
37 genes, but the dataset contains duplicated genomes,
duplicated genes, and indels. Therefore, we applied a
treatment similar to the one used by Bernt et al. [29], who
obtained a smaller subset of 62 genomes and 36 genes.
From the collection presented by Fritzch, we handled
genomes with unequal gene content using the following
steps:

1) Removed all duplicated genomes, leaving 78
genomes;

2) From these 78 genomes, we removed all genomes
with duplicated genes (6 in total);

3) Removed the ATP8 gene. Before the removal, there
were 18 genomes with unequal gene content, and
only 6 after the removal;

4) Removed the 6 genomes that remained with un-
equal gene content.

We then executed the stepwise addition heuristic 100
times, saving the tree with the fewest SCJ operations,
presented in Fig. 6c. We also used in our comparison
the NCBI taxonomy tree (National Center for Biotech-
nology Information), shown in Fig. 6a. These species
have been studied with several other methods. The
phylogeny of protostomes based on rearrangements was
first presented by Blanchette et al. [30], using a different
dataset.

5.2 Phylogenetic Reconstruction Methods
5.2.1 Small Parsimony
To solve the SPP, we implemented the polynomial algo-
rithm proposed by Feijão and Meidanis [12]. In broad-
est outline, this method is analogous to Fitch’s algo-
rithm [31], where each adjacency is a character and
the possible states are presence or absence of a specific
adjacency. A key advantage of SCJ, which sets it apart
from other techniques, is that the SPP is easy, solvable in
polynomial time, while in other models — like DCJ and
Hannenhalli-Pevzner (HP) — it is NP-hard even when
only three genomes are considered (the special case of
SPP called Median Problem) [4].

5.2.2 Big Parsimony
To solve the BPP, we used two methods: an exact,
branch-and-bound method and a greedy heuristic, called
stepwise addition.

The stepwise addition heuristic is similar to previ-
ously used heuristics for this problem [32, pp. 216]. An
outline of this algorithm is shown in Algorithm 1. It
starts by solving a Median Problem with three of the
input genomes and, at each step, an arbitrary unplaced
genome is added to the tree, by solving a median prob-
lem at each edge. The genome is added to the tree in
the edge that incurs the minimum branch length. After
all genomes have been placed, the last step is to solve a
SPP on the final tree, since the median solving during the
iterative step does not guarantee that the internal nodes
are optimal for the resulting tree. The SPP is solved
in polynomial time, guaranteeing a minimum weight
assignment of internal nodes on the tree, a major ad-
vantage of SCJ in comparison with other rearrangement
distances, where the SPP is NP-hard.

When the size of the problem allows the search for
an exact solution (typically 12 genomes or less), we
also used a branch-and-bound algorithm. Branch-and-
bound algorithms have been used for a long time in
phylogenetic reconstruction [33]. As in the heuristic, we
build a starting tree by solving a Median Problem with
three of the input genomes and extensively build the
whole space of possible phylogenetic trees.

In the search tree, the algorithm performs the op-
erations of branching and bounding as follows. The
branching operation constructs a child of a node based
on its partial solution P = (V P , EP ) and the list L of
the genomes not included in P . An arbitrary genome l
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Fig. 3. Adjacencies of original and inferred ancestors. For
each subset, there is a corresponding metric.

belonging to L, and an edge (i, j) of EP are chosen, and
the algorithm computes the median M of genomes i, j,
and l, defining a new tree by removing edge (i, j) and
including instead edges (i,M), (M, j), and (l,M). The
children of a node are obtained applying the previous
step for each edge (i, j) of EP , generating all possible
trees that can be obtained from the addition of l in the
partial solution P .

The bounding operation initially computes an upper
bound using neighbor-joining [34], and improves this
upper bound when a better tree is found. For the lower
bound of a node, the algorithm uses its partial solution
P = (V P , EP ) and the list L of the genomes not included
in P , constructing a new tree for each genome l belong-
ing to L and each edge (i, j) of EP , in the same way as
described in the branching operation. From these trees,
the algorithm finds the minimum cost that each genome
of L adds to the tree, using as lower bound the greatest
of them, which represents the lowest cost to include
the most distant genome. Notice that the calculation of
the tree cost is very fast, because SCJ provides for a
polynomial algorithm for this task.

Finding the optimum trees is useful, for example,
when we want to know whether SCJ infers a realistic
tree structure.

Algorithm 1 Stepwise Addition Heuristic
Require: Genomes Π1,Π2, . . . ,Πn

Ensure: Minimum weight phylogeny with leaves
Π1,Π2, . . . ,Πn

1: solve the median problem for Π1,Π2,Π3 and call T
the resulting tree;

2: for l := 4 to n do
3: for each edge {u, v} in T with labels Πu,Πv do
4: compute a median Πuv

M of Πu,Πv,Πl

5: C(u, v) := d(Πu,Πuv
M ) + d(Πv,Πuv

M ) +
d(Πl,Πuv

M )− d(Πu,Πv)
6: end for
7: C{u0, v0} := min{C(u, v)|{u, v} ∈ E(T )}
8: remove edge {u0, v0} from T
9: add vertices Πuv

M ,Πl to T
10: add edges {Πuv

M , u0}, {Πuv
M , v0}, {Πuv

M ,Πl} to T
11: end for
12: Solve the small parsimony problem on T
13: return the tree T

5.3 Comparison Strategies
Using the metrics detailed below, we analyze the main
aspects of these reconstructions: tree structure and ances-
tral genomes. Besides accuracy, we analyze the efficiency
of each algorithm.

To assess the structural quality of an inferred phylo-
genetic tree, we used the Robinson-Foulds distance [35],
also known as split distance. Given a tree, the removal
of an edge partitions the leaves into two disjoint subsets,
forming what is called a split. The split distance is
the difference in splits between the original and recon-
structed trees, divided by the total number of splits. Split
distance varies from 0 to 1, where 0 represents a “best
case” scenario, when all splits are equal. We use the
TOPD program [36] to compute the split distance.

We compare the ancestors considering their gene ad-
jacencies. Given an original and an inferred genome, we
categorize their adjacencies in three classes (see Fig. 3):
• False negatives: adjacencies present in the original

ancestor, but not in the inferred ancestor;
• Adjacencies in common: present in both genomes,

they are used to calculate the percentage of recon-
struction of the original genome;

• False positives: incorrect adjacencies, present only in
the inferred genome.

The percentage of reconstruction is defined as the
number of adjacencies in common divided by the total
number of adjacencies of the original genome. This
metric is related to CARs (Contiguous Ancestral Re-
gions) [21], but not identical. The CARs are different
because they also consider the relationship between the
adjacencies, trying to model orthology blocks. Based on
the predicted ancestral adjacencies, the genes are con-
nected into CARs if their predecessor and successor re-
lationships are consistent with the original tree. Another
way of analyzing the percentage of reconstruction is to
obtain the percentage of the original genome covered by
the CARs.

Let A and B the set of adjacencies of the original and
inferred genome, respectively. The false positives metric
is defined as |B−A|

|B| , and similarly the false negatives
metric is determined by |A−B|

|A| . The false negatives set
is the complement of the common adjacencies in the
original genome, and for this reason the false negatives
graphs are not shown in our analysis.

It is unfeasible to show the metrics for all nodes.
To help understand comparison results on ancestral
genomes, we decided to correlate them with the node
position in the tree. This seems particularly appropriate
for percentage of reconstruction, because all known in-
formation is in the leaves, and therefore more reconstruc-
tion effort is needed as we move up the tree. We con-
sidered several alternatives for a positional metric. The
following measures were candidates for correlating the
percentage of reconstruction: height (longest downward
path from the node to a leaf), depth of (longest down-
ward path from the root to the node), average distance
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to a leaf, and minimum distance to a leaf. We ended up
choosing height, because the standard deviations for the
other measures were significantly higher.

Processing times were collected for all tests, and ana-
lyzed in the efficiency section (Section 6.3).

6 RESULTS

6.1 Topology Accuracy

In this section, we present the results on topology ac-
curacy under different evolutionary scenarios. We start
by discussing the influence of simulation parameters on
the results. We also assess the accuracy of methods: how
does the heuristic approach the optimum result? And
how does the optimum result approach the original tree?
For data where we do not know the optimum (all those
with more than 12 species), we compare the heuristic to
the original tree directly. At the end of this section, we
consider the results on real data, comparing the inferred
topology with the topologies proposed in other studies.

We show below BPP results only. The SPP is not
considered because the topology is given in this case.
We use the methods described in Section 5.2 (branch-
and-bound and stepwise addition heuristic) to solve the
problem.

6.1.1 Simulated Dataset
For this section, we used as input the simulated datasets
described in Section 5.1.1.

The graphs in Fig. 4 show how the deviation of the
inferred topology (y axis) changes when we vary one
parameter in the problem input (x axis). Each point
on the graph has a histogram with the RF distance
distribution, where a bar of histogram represents the
frequency that a certain range of RF distance values was
observed (see graph caption).

We can see in Figs. 4a and 4b that the average RF dis-
tance is not significantly affected by the number of genes,
because the distance seems to remain nearly constant
in both methods (exact and heuristic). In terms of the
distribution, the SCJ reconstruction leads to the original
tree structure in more than 50% of the simulations (RF
distance equals zero). In the histograms in Fig. 4a, it is
clear that inferences with the exact method have a lower
probability of error, and that this probability decreases
as the number of genes increases. A similar behavior is
seen when the number of chromosomes increases (data
not shown).

With the heuristic, the average RF distance is around
0.35, considerably higher than in the exact method (0.05).
Keep in mind, though, that the exact method was tested
on just 12 leaves.

How does the quality of the inferred topology vary
when we use different rearrangement distributions? The
graphs in Figs. 4c and 4d show an interesting result:
when the frequency of each event increases or decreases
relative to others, the accuracy of the inference is not

affected. Probably this is because the same rearrange-
ment distribution is used in all edges of the tree, being a
common term. More specifically, let nA,B be the number
of rearrangement events between two genomes A and
B, and let F = [fα, fβ , fγ ] be the relative frequencies of
reversals, transpositions, and translocations. The number
of events of each type between A and B is expected to
be nA,B ∗ [fα, fβ , fγ ].

If the number of SCJ operations required for each
event is S = [sα, sβ , sγ ], then the expected SCJ distance
between A and B is:

dA,B = nA,B(fαsα + fβsβ + fγsγ).

That is, dA,B is roughly proportional to nA,B . These
quick calculations seem to imply that the number of
events (branch length) matters much more than the type
of event (rearrangement distribution).

The impact of branch length is shown in Figs. 4e and
4f. In Fig. 4e, the RF distance is similar to that of previous
experiments (Figs. 4a and 4c). In Fig. 4f, which presents
the results of the heuristic for 64 leaves, we see a decrease
in accuracy with larger branch lengths.

In a similar study, Bernt et al. [29] compared three
heuristic methods that search the most parsimonious
reversal scenarios: amGRP, GRAPPA and MGR. In their
experiment, they fixed the tree size in 50 leaves and the
genome size in 50 genes, varying the branch length with
the values {0.08, 0.12, 0.16}. Among the three methods
mentioned, amGRP achieved better results both in terms
of accuracy and efficiency, with RF distances varying
between 0 and 0.05, while GRAPPA and MGR obtained
RF distances between 0 and 0.15. Using a similar tree
size (64 leaves) and considerably larger genomes (2000
genes), the SCJ heuristic obtained a relatively higher
deviation, with RF distances from 0.2 up to 0.3 for the
same variation of branch length (see Fig.4f). Neverthe-
less, the SCJ heuristic is much faster, solving BPP with
large genomes (2000 genes) in just a few minutes, while
the previous methods show a steep growth in the time
required to compute the response, requiring a couple
of hours even with genomes containing only 50 genes.
Therefore, compared to other heuristics, the stepwise
addition heuristic under SCJ is less accurate, but faster.

To summarize, it seems that tree size (measured by
the number of leaves) and branch length are the only
parameters that impact SCJ inference: both parameters
increase the RF distance. We fitted a linear model with
x (the parameter) and log y, where y is the average
RF distance, and found good correlations in all cases
(data in Figs. 4e, 4f, and 4g). Our results agree with the
study of Nakhleh et al. [37], where they used different
distance-based methods to infer topologies and, despite
their methods being less accurate, they also noticed a
logarithmic growth of the RF distance when the number
of leaves increases.

Our results show that SCJ inference by the exact
method is more accurate, even with a high number of
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Fig. 4. Parameter influence on inferred topology, for BPP methods optimal and heuristic: (a–b), influence of genome
size (number of genes); (c–d), influence of rearrangement distribution; (e–f), influence of branch length (percent of
change); (g), influence of number of leaves. In each graph, when a parameter is being analyzed, all others retain
their default values: 2000 genes (5 chromosomes of 400 genes each); (0.9, 0.0, 0.1) rearrangement distribution
among reversals, transpositions, and translocations, respectively; and 0.2 for branch length. With respect to number
of leaves, the default is 64 for the heuristic, but only 12 for the optimal method, because of time constraints, and there
is no influence analysis for this method regarding number of leaves. All graphs have a double y axis: RF distribution
histogram (left) and average RF distance (right). Average RF distances in (e), (f), and (g) were fitted with a log curve.
In both cases (optimal and heuristic), the RF distance is computed with respect to the correct tree.
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Fig. 5. Campanulaceae topology, as reconstructed by several methods: (a) MPBE [23]; (b) MGR [11]; (c) Cosner
et al. [27]; (d) GASTS [22]; (e) SCJ. All methods, except Cosner et al., used as input the chloroplast genomes of
12 species of Campanulaceae and the outgroup Tobacco. Cosner et al. used a larger dataset based on gene order
and sequence data, composed of 18 species of Campanulaceae and the outgroup Tobacco. Both SCJ and MPBE
reconstructions are based on breakpoints, unlike the MGR method, which is based on reversals. The GASTS method
solves SPP minimizing the number of DCJs. The analysis of Cosner et al. was based on parsimony, using breakpoints,
events defined by breakpoints, and sequence data from the ITS region and the rbcL gene. In general, the topology
obtained by SCJ agrees with the others, revealing some tendencies, as described in the main text.

evolutionary events (up to 20 percent of the number
of genes in each edge). The heuristic method provides
somewhat less accurate results, but it is able to solve
much larger instances.

6.1.2 Real Dataset: Campanulaceae

Regarding real data sets, we ran the SCJ methods on
Campanulaceae chloroplast genomes, and visually com-
pared them with the trees presented by Cosner et al. [27],
and also with the trees inferred by MGR, MPBE, and
GASTS. Fig. 5 shows the five topologies used in this
comparison, drawn with the online tool iTOL (Interac-
tive Tree Of Life) [38]. We found all optimal trees (four
in total) under the SCJ model. The four trees are very
similar, except for two evolutionary relationships that
were not fully resolved:

1) Relationship between Platycodon and the ancestor
of Codonopsis and Cyananthus: in two trees, Platy-
codon is farther from Codonopsis and Cyananthus,
as shown in Fig. 5e, while in the other two, the
relationship is equal to the tree used by GASTS
(Fig. 5d).

2) Relationship between Symphyandra, Trachelium,
and the ancestor of Campanula and Adenophora:
in two trees, Symphyandra is closer to Campanula
and Adenophora than Trachelium (Fig. 5e), while
in the other two, the opposite situation appears, as
in the topology inferred by MGR (Fig. 5b).

In general, all trees are very similar. Looking at the
trees mentioned above, it is possible to identify common
relationships, listed below and well represented by the
tree in Fig. 5c:
• Small groups:

– Group 1: Campanula and Adenophora are sib-
lings in all results;

– Group 2: Merciera and Wahlenbergia are sib-
lings in all results;

– Group 3: Legousia, Asyneuma, and Triodanis
form a subtree in all results;

• Medium groups:
– Group 4: Platycodon, Codonopsis, and Cyanan-

thus are always clustered together, which agrees
with the evidence of them being basal within
the family, presented in [27];
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– Group 5: formed by the groups 1, 2 and 3,
and also by the Trachelium and Symphyandra
genera;

• Large group:
– Group 6: formed by the groups 4 and 5, repre-

sents the Campanulaceae family.
This shows that SCJ is capable of delivering high

quality reconstructed trees from real datasets.

6.1.3 Real Dataset: Protostomes

In the case of the Protostome dataset, we ran the heuris-
tic method 100 times, saving the trees with minimum
total number of SCJ operations (3 in total). Then, a
consensus tree was computed by PHYLIP, and the result
is shown in Fig. 6c. We compare it to the NCBI topology
(Fig 6a) and to the results of Fritzsch et al. [28] (Fig 6b).

Our approach correctly classified the species within
the phyla Arthropoda, Nematoda, Echinodermata, An-
nelida, and Platyhelminthes. Mollusca presented more
of a problem, which is justified by the observation
that some Mollusca have higher frequencies of gene
rearrangements in mitochondrial genomes, compared
to other metazoans [28], rendering topology inference
based solely on gene order difficult. Our approach was,
however, able to classify more species into phyla, be-
cause the tree presented by Fritzsch et al. does not fully
resolve Nematoda (see Fig. 6b).

Using either gene order or sequence data, neither
Fritzch et al. nor SCJ classify the species in the sub-
phylum of Arthropoda (Myriapoda, Chelicerata, Crus-
tacea, and Hexapoda), disagreeing with the classifica-
tions based on morphological characteristics (data not
shown). The taxonomy of the Arthropoda is not fully
resolved, due to the diversity and size of this phylum.

Although the SCJ method correctly solves species
in phyla, the evolutionary relationships between these
phyla are quite different from that obtained by Fritzch et
al. Comparing these trees with the NCBI taxonomy tree,
we recognize three well-defined groups (see Fig. 6a):
• Group 1: Echinodermata;
• Group 2: Platyhelminthes and Nematoda;
• Group 3: Arthropoda, Annelida, and Mollusca.
The tree obtained by SCJ agrees in Groups 1 and

3, but not in Group 2. The species of the phylum
Mollusca appear in various parts of the tree. In the
tree of Fritzch et al., the phyla Annelida and Nematoda
are monophyletic, and Platyhelminths are closer to the
subphylum Gastropoda (Mollusca). Again, this shows
that SCJ is capable of producing trees compatible with
well-accepted ones.

6.2 Ancestral Genome Accuracy

Previously we analyzed how well the inferred topology
agrees with the expected results. In this section we focus
on the ancestral genomes inferred from simulated data.

To ensure that all inferred ancestors have a counterpart
in the original tree, the topologies of inferred and origi-
nal trees must be the same. Therefore we study the Small
Parsimony Problem only, where the topology is given. In
the Big Parsimony Problem there is no guarantee that the
inferred topology will be the same as in the original tree.

To assess the quality of the reconstruction, we begin
with a simple measure, which is the relative amount
of adjacencies between consecutive genes that were re-
covered by the SCJ method. We call this amount the
percentage of reconstruction below.

The line graphs in Fig. 7a show the correlation be-
tween the percentage of reconstruction of the original
genome (y axis) and the height of the node in inferred
tree (x axis). Each line corresponds to one specific rear-
rangement distribution.

We can observe a lower percentage of reconstruction
in the nodes that have larger height in the tree (closer to
root, farther from the leaves). We can see in the graphs
that, regardless of the variation in the rearrangement
distribution, the decrease in the percentage of reconstruc-
tion is similar in all lines of the graph, once again show-
ing that the rearrangement distribution tends to impact
negligibly the accuracy of SCJ methods. The genome size
(number of genes and chromosomes) exhibits a similar
behavior (not shown).

In all graphs in this section, the dispersion of the
lines is bigger when the height increases. The dispersion
increases because the number of nodes examined is
lower: if the tree is balanced, the number of nodes from
a height i is approximately the sum of all nodes with
bigger heights; if the tree is unbalanced, the root will
achieve a higher height. For example, in Fig. 7a we notice
that the tree height reaches up to 25, whereas a balanced
tree with 64 leaves has 6 as maximum height.

As in the analysis of topology, the parameter that af-
fects the inference more strongly is the number of events
on each edge. In Fig. 7b, the lines corresponding to
larger branch lengths drop more sharply. Notice that, in
experiments with rearrangement rates of up to 15%, all
genomes had at least half of the genome reconstructed,
regardless of height, which is a very good result.

The lines in Fig. 7c represent different numbers of
leaves. Since trees with more leaves have a larger num-
ber of nodes, they can reach bigger heights, producing
more elongated lines on the graph. The number of leaves
affects how the reconstruction percentage decreases, just
as in the case of Fig. 7a.

6.2.1 False positives
Considering all inferred adjacencies, the percentage of
reconstruction defines how many adjacencies are correct,
that is, are present in both genomes. Now let us look
at the inferred adjacencies that are not present in the
original genome, which we call false positives.

Fig. 8a shows the correlation between the number
of false positives and the number of genes. These his-
tograms classify the number of ancestral genomes ac-
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Fig. 6. Protostomes topology, as reconstructed by several methods: (a) NCBI; (b) Fritzsch et al. [28]; (c) SCJ. Note
that the SCJ method correctly grouped all phyla, except the phylum Mollusca, which is highly rearranged and was also
a problem in the inference of Fritzsch et al. The tree obtained by SCJ is closer to the tree obtained from the NCBI
taxonomy, with a closer relationship between Annelida and Arthropoda.

cording to the number of incorrect adjacencies. We notice
that 90% or more of the ancestral genomes have all their
adjacencies reconstructed, even when we increase the
number of genes. This same behavior is observed by
varying the number of leaves (Fig. 8e), indicating no
significant influence of these parameters on the number
of false positives.

We also identify a second type of behavior, shown in
Fig. 8b and Fig. 8d: when either the number of chromo-
somes or the rate of rearrangement increases, the num-
ber of false positives also increases. Ancestral genomes
without false positives dominate in all histograms. In
the case of branch length, we notice that this behavior is
due to an increased chance of the original tree not being
a most parsimonious tree, i.e., when more evolutionary
events occur, a given region of the genome may be
similar in species of different ancestry (as homoplasies).
Therefore, it is possible to explain the evolution with a
smaller number of events, if the common ancestors of
these branches are also similar.

Finally, there is a third type of behavior observed
in Fig. 8c: using different rearrangement distributions,
we find a variation in the number of false positives,
which are distributed in several ways. When there is
only one type of event during evolution, the number of
false positives is significantly higher than in evolutionary
scenarios with more diverse rearrangements. In the case
of just transpositions, it happens probably because the
transposition event needs more SCJ operations, when
compared to reversals and translocations. This event is
therefore heavier, effectively increasing the branch length
by 50%.

6.3 Efficiency
As far as running time is concerned, we distributed the
experiments in different environments, according to the
computational effort required to solve them.

Given a topology, the time SCJ takes to reconstruct the
ancestors in a tree is about 3.3 seconds. The experiments

were performed on a 2.67GHz Intel Core i5 processor,
with 6GB RAM. We implemented a sequential version
of this algorithm.

For both methods that solve BPP, we used parallel
multithreading: the heuristic (stepwise addition) is re-
peated 100 times, distributed in three concurrent threads;
the branch-and-bound algorithm is also run concurrently
in three threads, sharing the bounds between them.
Running the heuristic on the same computer described
above, SCJ can reconstruct a topology of 66 protostomes
in 3.9 seconds, while the topology of 64 genomes (simu-
lated datasets) was obtained in 10.7 minutes, using com-
puters with 4GB RAM and 2.40GHz Intel Core 2 Quad
processors. The large time difference between them is
due to the size of the input genomes: the simulated
dataset has genomes with 2000 genes as default size,
while the Protostome genomes have only 36 genes.
We observe that both the number of genomes and the
number of genes influence the efficiency of the heuristic.

The experiments solving BPP with the exact method
spent significantly more time, due to the complexity
of the problem. Because the Campanulaceae dataset is
small (13 genomes), it was possible to run the exact
method in about 6.9 hours, using a computer with 4GB
RAM and an 2.40GHz Intel Core 2 Quad processor.

To improve the response time while maintaining the
quality of results, we can use heuristics. The heuristic
method has good accuracy when the set of genomes
is small, often reaching the optimum value. Another
alternative is to use distance-matrix methods, such as
neighbor-joining, that usually infer the topology faster.
However, SCJ methods, as well as other maximum par-
simony approaches, provide more information about the
evolutionary history, because they also infer ancestors.

For topology reconstruction with 12 genomes (simu-
lated data), we used two different environments: one
had 128 GB RAM and four IBM Power7 processors
with 3.55GHz clock; and the other with 8GB RAM and
2.93GHz Intel Xeon.
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Fig. 7. Influence of parameters on ancestral genome
reconstruction, considering only the percentage of cor-
rectly reconstructed adjacencies with respect to the total
number of adjacencies in the original genome: (a) rear-
rangement distribution; (b) branch length; and (c) number
of leaves. In all cases, the percentage of reconstructed
genome decreases as node height increases. The num-
ber of nodes analyzed also decreases, yielding a greater
data dispersion.

The experiments took time ranging from a few hours
to up to 5 days, with an average time of 1.2 days. A
more careful choice of upper and lower bounds may
improve the performance. Note again the difference in
time, caused by the size of the genomes, which heavily
impact the complexity of calculating the median and
other basic, frequently used operations.

7 DISCUSSION AND FUTURE DIRECTIONS
In this paper, we report on experiments to assess the
ability of SCJ to reconstruct evolutionary histories, in two
aspects: (1) how well does SCJ reconstruct evolutionary
topologies, and (2) how well does SCJ reconstruct ances-
tral genomes.

It turns out that an SCJ-based heuristic is capable
of recovering from 60% to 90% of the topology, as
measured through the RF distance between original and
reconstructed trees, in simulated data. This value was
obtained with tests involving several random topologies,
taken from a distribution closely approaching what we
encounter in real life, and varying several parameters,
including the amount of reversals, translocations, and
transpositions on each branch, the number of input
genomes (up to 200 genomes) and the number of genes
(up to 3000 genes). We are not aware of other ex-
periments done with datasets as large as these, other
than using scaling methods such as the Disk Covering
Method [39], which in turn could also be applied to
SCJ, increasing its scalability even further. These large
datasets were possible with SCJ because it yields ex-
tremely fast algorithms.

SCJ exact algorithms for the topology (Big Parsimony
Problem) were also developed and tested. In this case,
more than 95% of the topology can be recovered. How-
ever, this algorithm can only be used in smaller in-
stances, up to 12 genomes, because of time considera-
tions.

On real data, SCJ’s ability to reconstruct tree topologies
was also noteworthy. For the Campanulaceae dataset,
SCJ was able to reconstruct the accepted topology, after
averaging over several runs. In the Protostome dataset,
SCJ was able to reconstruct several important clades,
such as Arthropoda, Nematoda, Echinodermata, Annel-
ida, and Platyhelminthes. Mollusca was a problem, but
this clade is known to have especially difficult issues.
The reconstruction achieved by SCJ was compatible with
accepted trees reported in the literature.

With respect to ancestral genome reconstruction for a
given topology, SCJ’s success depends on how far from
the leaves the ancestor is. For nodes close to the leaves,
about 90% of the gene adjacencies can be recovered. This
percentage decreases as we move up the tree, but, even
at the root, about 50% of the adjacencies can be recov-
ered. Our findings corroborate the fact that SCJ leads to
very conservative genome reconstructions, yielding very
few false positive gene adjacencies in the ancestors, at the
expense of a relatively larger amount of false negatives.

We used this characteristic of SCJ to reconstruct very
conserved gene clusters of arthropods and other clades,
which may be of independent interest.

Code and data used in this paper can be found at:
www.ic.unicamp.br/∼meidanis/PUB/Proj/GRW
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Fig. 8. Influence of parameters on ancestral genome reconstruction, considering only the false positive adjacencies.
The false positive metric is defined as the number of reconstructed adjacencies not present in original genome divided
by the total number of reconstructed adjacencies. The analyzed parameters are shown on the x axis: (a) number of
genes; (b) number of chromosomes; (c) rearrangement distribution; (d) branch length; and (e) number of leaves.
The left y axis plots the false positive distribution histogram and the right y axis plots the average of false positive
adjacencies. In almost all cases, SCJ correctly infers the adjacencies, maintaining a small amount of false positives.
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phylogeny problem,” ArXiv e-prints, Tech. Rep., 2010.

[26] J. Felsenstein, PHYLIP (Phylogeny Inference Package) version 3.69,
Distributed by the author, 2005.

[27] M. E. Cosner, L. A. Raubeson, and R. K. Jansen, “Chloroplast
DNA rearrangements in Campanulaceae: phylogenetic utility of
highly rearranged genomes.” BMC Evol Biol, vol. 4, p. 27, 2004.

[28] G. Fritzsch, M. Schlegel, and P. F. Stadler, “Alignments of mito-
chondrial genome arrangements: applications to metazoan phy-
logeny.” J Theor Biol, vol. 240, no. 4, pp. 511–520, Jun 2006.

[29] M. Bernt, D. Merkle, and M. Middendorf, “Using median sets
for inferring phylogenetic trees.” Bioinformatics, vol. 23, no. 2, pp.
e129–e135, 2007.

[30] M. Blanchette, T. Kunisawa, and D. Sankoff, “Gene order break-
point evidence in animal mitochondrial phylogeny.” J Mol Evol,
vol. 49, no. 2, pp. 193–203, Aug 1999.

[31] W. M. Fitch, “Toward defining the course of evolution: Minimum
change for a specific tree topology,” Syst Zool, vol. 20, pp. 406–416,
1971.

[32] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette, Combi-
natorics of Genome Rearrangements, ser. Computational Molecular
Biology. MIT Press, 2009, 312 pp.

[33] J. Felsenstein, Inferring Phylogenies. Sunderland, MA: Sinauer
Associates, 2004.

[34] N. Saitou and M. Nei, “The neighbor-joining method: a new
method for reconstructing phylogenetic trees.” Mol Biol Evol,
vol. 4, no. 4, pp. 406–425, Jul 1987.

[35] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic
trees.” Math. Biosci., vol. 53, no. 1–2, pp. 131–147, 1981.

[36] P. Puigbò, S. Garcia-Vallvé, and J. O. McInerney, “TOPD/FMTS:
a new software to compare phylogenetic trees.” Bioinformatics,
vol. 23, pp. 1556–1558, 2007.

[37] L. Nakhleh, B. Moret, U. Roshan, K. John, J. Sun, and T. Warnow,
“The accuracy of fast phylogenetic methods for large datasets,”
in Proc. of PSB’02, 2002, pp. 211–222.

[38] I. Letunic and P. Bork, “Interactive Tree Of Life (iTOL): an online
tool for phylogenetic tree display and annotation.” Bioinformatics,
vol. 23, pp. 127–128, 2007.

[39] J. Tang and B. M. E. Moret, “Scaling up accurate phylogenetic
reconstruction from gene-order data.” Bioinformatics, vol. 19 Suppl
1, pp. i305–i312, 2003.

Priscila Biller received a Bachelor’s degree in
Computer Science from the University of Camp-
inas, Brazil, in 2009. She joined the Harpia
project (Computational Intelligence Applied to
Customs Risk Management) in 2008. She was a
software test analyst at Sofist, and later worked
on bioinformatics projects in a genomics labo-
ratory. Currently, she is a PhD student at the
Institute of Computing, University of Campinas,
focusing on genome rearrangement problems.

Pedro Feijão completed his Applied Mathemat-
ics degree in 1997, at the University of Camp-
inas, Brazil. He had his first contact with bioinfor-
matics in 2004, when he started working in the
Center of Molecular Biology and Genetic Engi-
neering (CBMEG) on genome assembly projects
and biological databases. He completed his PhD
degree at the Institute of Computing, University
of Campinas, in 2012, studying genome rear-
rangement models.

João Meidanis completed his PhD in Com-
puter Sciences from the University of Wisconsin-
Madison in 1992. He is a faculty member with
the University of Campinas since 1986. He re-
ceived the Science and Technology Medal from
the State of São Paulo for his achievements in
several Brazilian genome projects. His interests
include computational biology, algorithms, and
graph theory. Member of the Brazilian Computer
Society.


