Rank Distance Sheds Light on Genome Evolution

Joao Meidanis ¹ Leonid Chindelevitch ²

¹University of Campinas, Brazil

²Simon Fraser University, Canada

June 2019

Summary

- 1 Genomes, Distances, Trees, Ancestors
- 2 Ancestors: The Median Problem
- Practical Experiments
- 4 Algorithms
- 5 Genomes with Unequal Content
- 6 Future Work

Genomes, Distances, Trees, Ancestors

The Human Genome

Source: National Center for Biotechnology Information (NCBI), USA

A Circular Genome: E. coli

Source: Science, 05 Sep 1997: Vol. 277, Issue 5331, pp. 1453-1462

General Scheme

Genomes

 $rearrangement\ distance=3$

Distances

Trees

Ancestors

Genome elements

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Meidanis, Chindelevitch (Unicamp, SFU) Rank Distance Sheds Light on Genome Evolu June 2019 7 / 32

Representing genomes as matrices

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Properties

- symmetric matrix $(A = A^t)$
- orthogonal matrix $(A^t = A^{-1})$
- involution $(A^2 = I)$

Distance

Distance between two genome matrices is the rank of their difference

$$d(A,B) = r(A-B)$$

Properties

- Rank is the maximum number of linearly independent rows
- d(A, B) = 0 if and only if A = B
- d(A, B) = d(B, A)
- $d(A, C) \leq d(A, B) + d(B, C)$

Meidanis, Chindelevitch (Unicamp, SFU) Rank Distance Sheds Light on Genome Evolu-

Example

$$\begin{array}{c} a_t \\ a_h \\ b_t \\ c_t \end{array} \left[\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right.$$

Genome Rearrangements

Ancestors: The Median Problem

Median Problem

Useful for ancestor reconstruction

Definition

Given three input genome matrices A, B, and C, find matrix M minimizing d(M,A) + d(M,B) + d(M,C).

Median may not be genomic

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & -0.5 \end{bmatrix}$$

Need ways to go back from matrices to genomes

From matrices back to genomes

- Assign weight $|a_{ij}| + |a_{ji}|$ to edge ij
- Take a maximum weight matching as your solution
- A genome is a matching of gene extremities

Genomic Median is NP-hard

If we insist on genomic medians:

Definition

Given three input genome matrices A, B, and C, find a **genomic** matrix M minimizing d(M, A) + d(M, B) + d(M, C).

Then the problem becomes HP-hard

Sarkis et al., 2019, submitted

Orthogonal Median is Polynomially Solvable

Definition

Given three input genome matrices A, B, and C, find an **orthogonal** matrix M minimizing d(M,A) + d(M,B) + d(M,C).

Orthogonal algorithm: finds many solutions fast (nondeterministic)

Chindelevitch, Zanetti, Meidanis. BMC Bioinformatics 2018

 M_I algorithm: finds one solution faster (deterministic)

Chindelevitch, Meidanis. RECOMB-CG 2018

Practical Experiments

Data Sets

Simulation

- Start with random genome
- Apply random rearrangement operations
- Repeat to get A, B, C

Parameters

- sizes: 12, 16, 20, 30, 50, 100, 200, 300, 500, 100 extremities
- type of operation: Add/remove adjacencies (near) or DCJ (far)
- number of operations: 5% to 30%
- $10 \times each$
- 1,080 instances

Results

Near

- For 595/600 instances, the algorithms find genomic medians
- In 5 remaining cases, heuristics find genomic medians

Far

- For 263 cases, the algorihtms find genomic medians
- In 135 remaining cases, heuristics find genomic medians (diff 0–21, avg 3)
- In 102 remaining cases, heuristics find genomic medians (diff 1–173, avg 19)

Running Times

- M_I algorithm: 1 second, n = 500 (cubic algorithm)
- Orthogonal: 1 minute, n = 500 (quartic algorithm)

Campanulaceae, family of flowering plants

Real genomes

Campanulaceae chloroplast genomes

- 286 instances
- n = 210 extremities
- ullet Score of output very close to theoretical minimum (1% off in average)
- Running time close to 1 sec per instance

Algorithms

Orthogonal algorithm

- Specific for orthogonal matrices
- Exact, efficient algorithm

- "Walk towards the median"
- Find rank 1 matrix H such that B + H is closer to both A and C
- Always possible!

Orthogonal algorithm

Algorithm

```
while d(A, B) + d(B, C) > d(A, C) do

| Find non-zero u \in \text{im}(A - B) \cap \text{im}(C - B)

| B \leftarrow B - 2uu^T B/u^T u

end

return B
```

- Nondeterministic
- Reaches all orthogonal medians

Division into subspaces

M_I Median — $O(n^{\omega})$

- Specific for genome matrices
- M_I follows majority in V_1 through V_4
- M_I follows I in V_5

Genomes with Unequal Content

Genomes with Indels (Insertions/Deletions)

- Assume a universal ground set with all gene ends
- A missing gene end is represented by a 0 row and 0 column
- A: Genes: $\{a, b, d\}$; links: $\{a_h, b_t\}, \{b_h, d_h\}$
- *B*: Genes: $\{b, c, d\}$; links: $\{b_h, c_t\}, \{c_h, d_t\}$

Genomes with Indels

- Fast distance computation
- Biological interpretation seems to require semi-chromosomes: a tail without a head or vice-versa
- Initial tests with fungal genomes (\sim 6000 genes) are encouraging

rank distance

Next step: median

Future Work

Future Work

Main challenges

- Incorporate point mutations + rearrangements in analysis
- Study median problem with indels
- Interpretation of fractional/negative entries in matrices
- Interpetation of semi-chromosomes

Get this presentation:

```
http://www.ic.unicamp.br/~meidanis/research/rear/
```