Genome Matrices and The Median Problem Genomes, Distances, Trees, and Ancestors

Joao Meidanis ¹ Leonid Chindelevitch ²

¹University of Campinas, Brazil

²Simon Fraser University, Canada

June 2019

Summary

- Genome Matrices
- Rank Distance
- Biological Significance
- Trees
- **Ancestors**
- Next Steps

Genome Matrices

The Human Genome

Source: National Center for Biotechnology Information (NCBI), USA

A Circular Genome: E. coli

Source: Science, 05 Sep 1997: Vol. 277, Issue 5331, pp. 1453-1462

General Scheme

Genomes

Distances

Trees, Ancestors

$$distance = 3$$

Genome elements

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Meidanis, Chindelevitch (Unicamp, SFU) Genome Matrices and The Median Problem June 2019 7 / 47

Representing genomes as matrices

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Properties

- symmetric matrix $(A = A^t)$
- orthogonal matrix $(A^t = A^{-1})$
- involution $(A^2 = I)$

8 / 47

Rank Distance

Distance

Distance between two genome matrices is the rank of their difference

$$d(A,B) = r(A-B)$$

Properties

- Rank is the maximum number of linearly independent rows
- d(A, B) = 0 if and only if A = B
- d(A, B) = d(B, A)
- $d(A, C) \leq d(A, B) + d(B, C)$

Example

$$\begin{array}{c} a_t \\ a_h \\ b_t \\ c_t \\ c_h \end{array} \left[\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right.$$

Biological Significance

Genome Evolution

Events

- Point mutations
- Inversions
- Translocations
- Transpositions
- Duplications
- Gain/loss
- Horizontal transfer
- Many others

Our focus in this talk

Genome rearrangements

equal genetic content

unequal genetic content

Inversion

Inversion

Source: yourgenome, Public Engagement Team, Wellcome Genome Campus, accessed 2017-11-08

Translocation

Source: Wikipedia, Chromosomal translocation, accessed 2017-11-08

Integration of circular virus into human genome

Source: Kenan DJ, Mieczkowski PA, Burger-Calderon R, Singh HK, Nickeleit V., J Pathol. 2015 Nov 237(3):379-389

Integration of plasmid into bacterial genome

Foster J, Aliabadi Z, Slonczewski J., Microbiology: The Human Experience, W. W. Norton & Company, Inc., Indep. Publ., 2017

Integration/excision of phage lambda

Foster J, Aliabadi Z, Slonczewski J., Microbiology: The Human Experience, W. W. Norton & Company, Inc., Indep. Publ., 2017

Transposition

Source: Created by Alana Gyemi; accessed in Wikipedia, Chromosomal translocation, 2017-11-12

Chromosome Fission

Sorce: what-when-how, Genomics, Comparisons with primate genomes; accessed on 2017-11-14

Chromosome Fusion

Sorce: what-when-how, Genomics, Comparisons with primate genomes; accessed on 2017-11-14

Chromosome Fusion

Source: Dr. Dana M. Krempels, University of Miami, Course: Genetics (BIL250), Fall 2017 Lecture Notes, Lecture 8: Mutations at the Chromosome Level: accessed on 2017-11-14

Linearization

Journal List > EMBO Rep > v.8(2); 2007 Feb > PMC1796773

EMBO Rep. 2007 Feb: 8(2): 181-187.

Published online 2007 Jan 12, doi: 10.1038/si.embor.7400880

Scientific Report

Escherichia coli with a linear genome

Tailin Cui, 1 Naoki Moro-oka, 1 Katsufumi Ohsumi, 1 Kenichi Kodama, 1 Taku Ohshima, 2 Naotake Ogasawara, ² Hirotada Mori, ² Barry Wanner, ³ Hironori Niki, ⁴ and Takashi Horiuchi ¹, a

Author information ► Article notes ► Copyright and License information ►

This article has been cited by other articles in PMC.

PMCID: PMC1796773

Circularization

Molecular and General Genetics MGG

February 1997, Volume 253, <u>Issue 6</u>, pp 753-760 | <u>Cite as</u>

Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans

Authors	Authors and a	Authors and affiliations	
JN. Volff, P. Viell, J.	Altenbuchner		
ORIGINAL PAPER		1 5 Shares	

Rank Weight of Frequent Rearrangements

Rearrangement	Rank Distance	
Inversion	2	
Translocation	2	
Integration	2	
Excision	2	
Transposition	4	
Fission	1	
Fusion	1	
Linearization	1	
Circularization	1	

Biological Significance of Rank Distance

rank distance

- composition of small rank operations
- pprox composition of frequent operations
- pprox amount of rearrangement evolution

Trees

Brassica mitochondrial genomes

Source: Palmer JD. Hebron LA., J Mol Evol. 1988 28:87-97

Brassica mitochondrial genomes

Source: Palmer JD, Hebron LA., J Mol Evol. 1988 28:87-97

X chromosome: human vs. mouse

Source: Pevzner P, Tesler G., Genome Research. 2003 Jan 1, 13(1):37-45

Vibrio genomes

16S phylogeny

DCJ phylogeny

Source: Oliveira KZ., MSc Thesis, University of Campinas, 2010

Campanulaceae, family of flowering plants

Campanulaceae chloroplast genomes

Source: Biller P, Feijao P, Meidanis J., IEEE/ACM Trans Comp Bio Bioinf. 2013 Jan, 10(1):122–134

Eutherian genomes

Source: Kim J et al., PNAS July 3, 2017 114 (27) E5379-E5388

Ancestors

Median Problem

Useful for ancestor reconstruction

Definition

Given three input genome matrices A, B, and C, find matrix Mminimizing d(M, A) + d(M, B) + d(M, C).

Median may not be genomic

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & -0.5 \end{bmatrix}$$

Need ways to go back from matrices to genomes

From matrices back to genomes

- Assign weight $|a_{ij}| + |a_{ji}|$ to edge ij
- Take a maximum weight matching as your solution
- A genome is a matching of gene extremities

Division into subspaces

Approximation Algorithm

- $\frac{4}{3}$ approximation factor for genome matrices
- if $V_5 = \{0\}$ then $M_A = M_B = M_C$ is a median

M_I Median — $O(n^{\omega})$

- Specific for genome matrices
- M_I follows majority in V_1 through V_4
- M_I follows I in V_5

Orthogonal matrices

- Specific for orthogonal matrices
- Exact, efficient algorithm

- "Walk towards the median"
- Find rank 1 matrix H such that B + H is closer to both A and C
- Always possible!

Orthogonal matrices

Algorithm

while
$$d(A, B) + d(B, C) > d(A, C)$$
 do
| Find non-zero $u \in \text{im}(A - B) \cap \text{im}(C - B)$
| $B \leftarrow B - 2uu^T B/u^T u$
end
return B

- Nondeterministic
- Reaches all orthogonal medians

Data Sets

Simulation

- Start with random genome
- Apply random rearrangement operations
- Repeat to get A, B, C

Parameters 4 8 1

- sizes: 12, 16, 20, 30, 50, 100, 200, 300, 500, 100 extremities
- type of operation: Add/remove adjacencies (near) or DCJ (far)
- number of operations: 5% to 30%
- 10 × each
- 1,080 instances

Results

Near

- For 595/600 instances, the algorithms find genomic medians
- In 5 remaining cases, heuristics find genomic medians

Far

- For 263 cases, the algorithms find genomic medians
- In 135 remaining cases, heuristics find genomic medians (diff 0-21, avg 3)
- In 102 remaining cases, heuristics find genomic medians (diff 1–173, avg 19)

Running Times

- M_I algorithm: 1 second, n = 500 (cubic algorithm)
- Orthogonal: 1 minute, n = 500 (quartic algorithm)

Next Steps

Future work

- Incorporate point mutations + rearrangements in analysis
- Study median problem with indels
- Interpretation of fractional/negative entries in matrices
- Interpetation of semi-chromosomes

Get this presentation:

```
http://www.ic.unicamp.br/~meidanis/research/rear/
```