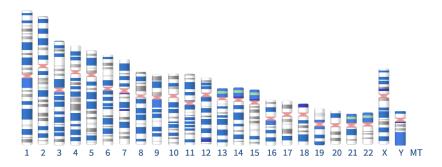
Genome Matrices and The Median Problem

Joao Meidanis¹

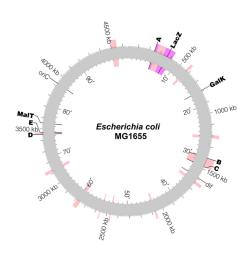
University of Campinas, Brazil

October 2018

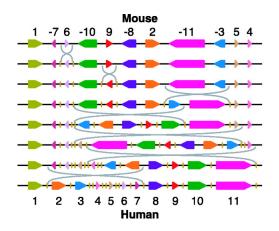

 $^{^{1}}$ Joint work with P.Biller, J.Zanetti, L.Chindelevitch, $_{\square}$ $_{\wedge}$ $_{\wedge$

Summary

- Genome Rearrangements
- 2 Genomes Matrices and Rank Distance
- 3 Ancestral Reconstruction: The Median Problem
- Extensions and Other Properties
- 6 Challenges


Genome Rearrangements

The Human Genome


Source: National Center for Biotechnology Information (NCBI), USA

A Bacterial Genome: E. coli

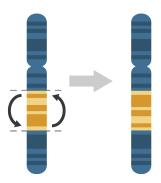
Source: P J Enyeart et al., Molecular Systems Biology (2013) 9, 685

X chromosome: Mouse vs. Human

Source: P Pevzner, G Tesler; PNAS June 24, 2003 100 (13) 7672-7677

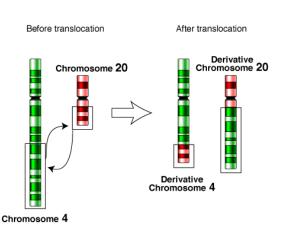
Genome Evolution

Events

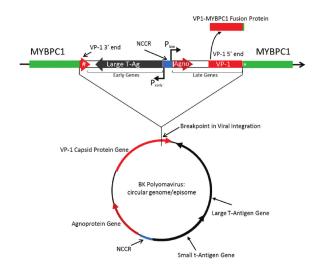

- Point mutations
- Inversions
- Translocations
- Transpositions
- Duplications
- Gain/loss
- Horizontal transfer
- Many others

Our focus

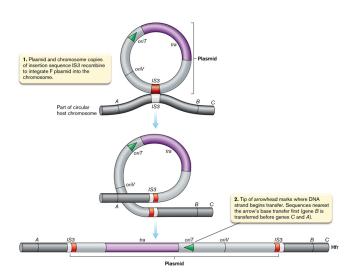
Genome rearrangements that don't change gene content


Inversion

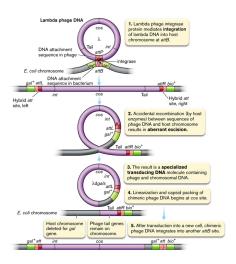
Inversion


Source: yourgenome, Public Engagement Team, Wellcome Genome Campus, accessed 2017-11-08

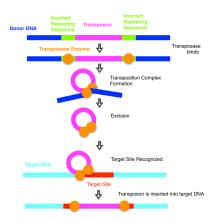
Translocation


Source: Wikipedia, Chromosomal translocation, accessed 2017-11-08

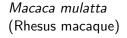
Integration of circular virus into human genome

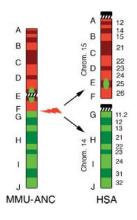

Source: Kenan DJ, Mieczkowski PA, Burger-Calderon R, Singh HK, Nickeleit V., J Pathol. 2015 Nov 237(3):379-389

Integration of plasmid into bacterial genome


Foster J, Aliabadi Z, Slonczewski J., Microbiology: The Human Experience, W. W. Norton & Company, Inc., Indep. Publ., 2017

Integration/excision of phage lambda

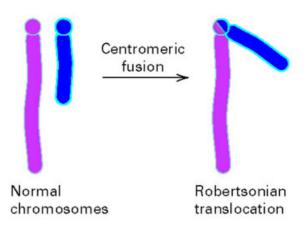

Foster J, Aliabadi Z, Slonczewski J., Microbiology: The Human Experience, W. W. Norton & Company, Inc., Indep. Publ., 2017


Transposition

Source: Created by Alana Gyemi; accessed in Wikipedia, Chromosomal translocation, 2017-11-12

Chromosome Fission

Homo sapiens


Source: what-when-how, Genomics, Comparisons with primate genomes; accessed on 2017-11-14

Chromosome Fusion

Homo sapiens, Pan paniscus, Gorilla gorilla, Pongo pygmaeus pygmaeus

Chromosome Fusion

Source: Dr. Dana M. Krempels, University of Miami, Course: Genetics (BIL250), Fall 2017 Lecture Notes, Lecture 8: Mutations at the Chromosome Level: accessed on 2017-11-14

Linearization

Journal List > EMBO Rep > v.8(2); 2007 Feb > PMC1796773

EMBO Rep. 2007 Feb; 8(2): 181-187.

Published online 2007 Jan 12. doi: 10.1038/sj.embor.7400880

Scientific Report

Escherichia coli with a linear genome

<u>Tailin Cui, ¹ Naoki Moro-oka, ¹ Katsufumi Ohsumi, ¹ Kenichi Kodama, ¹ Taku Ohshima, ² Naotake Ogasawara, ² Hirotada Mori, ² Barry Wanner, ³ Hironori Niki, ⁴ and <u>Takashi Horiuchi</u>¹, ^a</u>

Author information ▶ Article notes ▶ Copyright and License information ▶

This article has been cited by other articles in PMC.

- EMBO Rep

PMCID: PMC1796773

Circularization

Molecular and General Genetics MGG

February 1997, Volume 253, <u>Issue 6</u>, pp 753-760 | <u>Cite as</u>

Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in *Streptomyces lividans*

Authors	Authors and affiliations	
JN. Volff, P. Viell, J.	Altenbuchner	
ORIGINAL PAPER	65 18 1	

Genome Rearrangement Problems

- **Distance:** Minimum # of rearrangements from A to B?
- Scenario: Which rearrangements?
- Phylogeny: How did the genomes evolve ?
- Reconstruction: What did the ancestors look like ?

Some Milestones

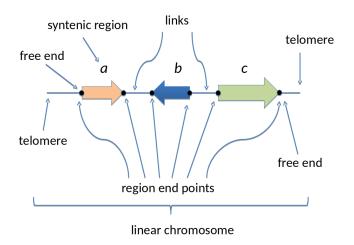
Year	Milestone	
1995	polynomial-time algorithm for inversion distance	
2000	(first polynomial-time algorithm)	
2000	algebraic distance: several events	
2005	(circular genomes only)	
2005	double-cut-and-join distance	
2012	(contemplates linear chromosomes)	
2012		
	(another extension to linear chromosomes)	
2016	rank distance	
	(twice the algebraic distance; uses matrices)	

Genomes in Rearrangement Studies

Positional View

- $P: [1..n] \mapsto \text{genes (unsigned)}$
- $P: [1..n] \mapsto \text{gene ends (signed)}$

Algebraic View


- P: genes \mapsto genes (unsigned)
- P: gene ends \mapsto gene ends (signed)

Comparing Two (or more) Genomes

- Breakpoint Graph
- Adjacency Graph

Genomes Matrices and Rank Distance

Genome elements

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Representing genomes as matrices

• Links: $\{a_h, b_h\}, \{b_t, c_t\}$; free ends: a_t, c_h

Properties

- symmetric matrix $(A = A^{\top})$
- orthogonal matrix $(A^{\top} = A^{-1})$
- involution $(A^2 = I)$

Permutation matrices

- binary (just 0's and 1's)
- orthogonal $(A^{\top} = A^{-1})$
- not necessarily symmetric

$$\left[
\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}
\right]$$

[2 3 5 1 4 6]

Rank Distance

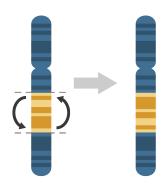
Distance between two genome matrices is the rank of their difference

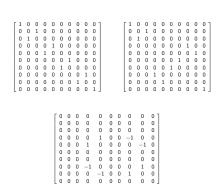
$$d(A,B) = r(A-B)$$

Properties

- Rank: maximum number of linearly independent rows
- d(A, B) = 0 if and only if A = B
- d(A, B) = d(B, A)
- $d(A, C) \leq d(A, B) + d(B, C)$

Biological Significance of Rank Distance

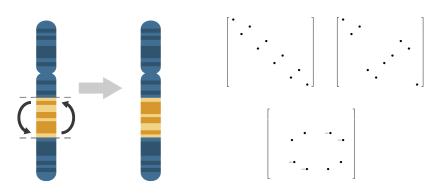

frequent rearrangements pprox small rank


rank distance \approx composition of small rank operations

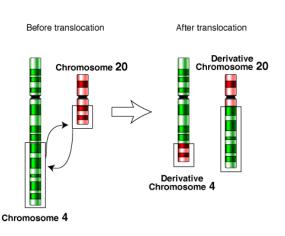
rank distance \approx amount of evolution

Inversion RANK = 2

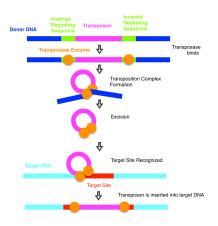
Inversion



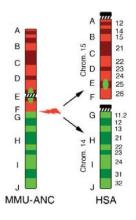
Source: yourgenome, Public Engagement Team, Wellcome Genome Campus, accessed 2017-11-08


Inversion RANK = 2

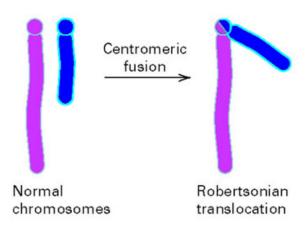
Inversion


Source: yourgenome, Public Engagement Team, Wellcome Genome Campus, accessed 2017-11-08

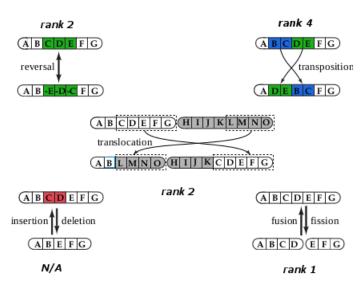
Translocation RANK = 2


Source: Wikipedia, Chromosomal translocation, accessed 2017-11-08

Transposition RANK = 4

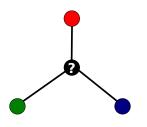

Source: Created by Alana Gyemi; accessed in Wikipedia, Chromosomal translocation, 2017-11-12

Chromosome Fission RANK = 1


Sorce: what-when-how, Genomics, Comparisons with primate genomes; accessed on 2017-11-14

Chromosome Fusion RANK = 1

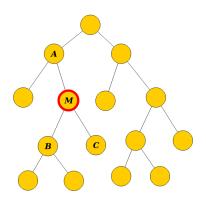
Source: Dr. Dana M. Krempels, University of Miami, Course: Genetics (BIL250), Fall 2017 Lecture Notes, Lecture 8: Mutations at the Chromosome Level: accessed on 2017-11-14


Genome Rearrangements

Ancestral Reconstruction: The Median Problem

Genome Median Problem

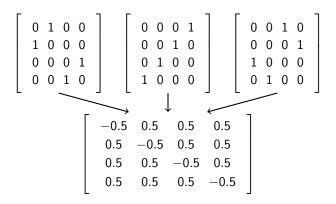
Given three input genomic matrices A, B, and C:



Find matrix *M* minimizing:

$$score(M; A, B, C) = d(M, A) + d(M, B) + d(M, C).$$

Application


Refine ancestral genomes

Repeat for all internal nodes until convergence

Matrix median may not be genomic

Example of input matrices and their unique median

Once you go to matrices ...

What kinds of medians?

Median Problems

Input	Genomic	Output Permutation	General
Genomic Permutation General	NP-hard NP-hard	NP-hard	$O(n^\omega) \ O(n^{\omega+1})$

 $O(n^{\omega})$: matrix multiplication/inverse

Need a way to go back from general matrices to genomes

Algorithms for the Median Problem

Preliminary Observations:

Lower bound

$$score(M; A, B, C) \ge \frac{d(A, B) + d(B, C) + d(C, A)}{2}$$

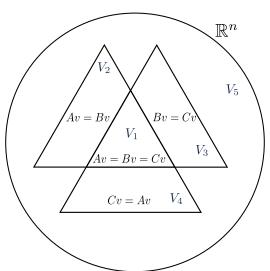
• Genome *B* **intermediate** between *A* and *C*:

$$d(A,C)=d(A,B)+d(B,C).$$

• Median M has score equal to the lower bound \Longrightarrow M is intermediate between any two of A, B, C.

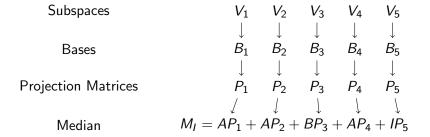
Algorithms for the Median Problem

Interesting Property


Theorem

For any three $n \times n$ genome matrices A, B, and C there is a median M satisfying: for all vectors $v \in \mathbb{R}^n$ such that Av = Bv = Cv, we have Mv = Av.

- Can we say the same if just Av = Bv? Open (with partial results).
- However, we can act on this idea.


Algorithms for the Median Problem

Division into subspaces

M_I Median — $O(n^{\omega})$

- Specific for genome matrices
- M_I follows majority in V_1 through V_4
- M_I follows I in V_5

Efficient Computation

Technical Improvements

- B_i don't need to be orthonormal, i = 1..4
- B_i's computed from permutation vectors and DFS
- Bi's all binary
- Improved formula

$$M_I = I + ([AB_1 \ AB_2 \ BB_3 \ AB_4] - B_{14})(B_{14}^T B_{14})^{-1}B_{14}^T$$

where
$$B_{14} = [B_1 \ B_2 \ B_3 \ B_4]$$

B₅ not needed

Orthogonal medians

Theorem

For any three orthogonal matrices A, B, and C, all general medians satisfy the lower bound.

Algorithm

function MEDIAN(
$$A$$
, B , C)

while $d(A, B) + d(B, C) > d(A, C)$ do

Find non-zero $u \in \text{im}(A - B) \cap \text{im}(C - B)$
 $B \leftarrow B - 2uu^T B/u^T u$

return B

- Nondeterministic
- "Walks" from B towards median

Implementation

Hardware

- Laptop
- 8 GB memory
- 4 AMD A8-7410 cores

Software

- Windows 10 + WSL
- GNU Octave 3.8.1 (Matlab)
- Also code in R, Python

Data Sets

Simulation

- Start with random genome
- Apply random rearrangement operations
- Repeat to get A, B, C

Parameters

- sizes: 12, 16, 20, 30, 50, 100, 200, 300, 500 gene ends
- type of operation: Add/remove adjacencies (near) or DCJ (far)
- number of operations: 5% to 30%, in 5% increments
- 10 × each
- 1,080 instances: 540 near, 540 far

Results — M_l algorithm

Near

- For all 540 cases, the algorithm finds a median
- Median is genomic in 535 cases

Far

- For all 540 cases, the algorithm finds a median
- Median is genomic in 254 cases

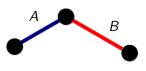
Times (in minutes) to run all instances of a given size

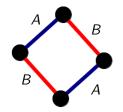
size	mi-Near	mi-Far
500	9:52	8:24
300	3:26	2:34
200	1:40	1:08
100	0:30	0:24

From general matrices to genomes

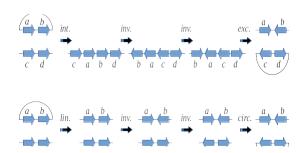
- Assign weight $|a_{ij}| + |a_{ji}|$ to edge ij
- Take a maximum weight matching as your solution
- A genome is a matching of gene ends

Extensions and Other Properties


How to deal with indels


Matrices with empty rows/columns

- New operations: inserion/deletion of genes or gene ends
- Biological significance with mathematical soundness


Graph components

- breakpoint graph: no caps
- gene ends: vectors
- components: minimal invariant subspaces: AV = V, BV = V
- linear components: 1 AB-orbit
- circular components: 2 AB-orbits

No recombination

- Both scenarios are DCJ-optimal
- Only the second scenario is rank-optimal
- Rank-optimal scenarios don't allow chromosome mixing

Counting intermediate genomes

• For a linear graph component with *k* gene ends:

$$I_p(k) = \binom{k+1}{\lfloor (k+1)/2 \rfloor}$$

• For a circular graph component with 2k gene ends:

$$I_c(2k) = \frac{1}{k+1} \binom{2k}{k}$$

Challenges

Future Work

Application to real ancestral reconstruction problems (fungi)

Ongoing study of insertions, deletions, and duplications

More ways of transforming a general matrix into a close, genomic matrix

Do all medians of A, B, C form a manifold?

If yes, can we "walk" on this manifold to a binary matrix ?

References

- Zanetti, J.P.P., Biller, P., Meidanis, J.
 Median approximations for genomes modeled as matrices.
 Bull Math Biol (2016) 78: 786.
- Chindelevitch, L., Zanetti, J.P.P., Meidanis, J.
 On the Rank-Distance Median of 3 Permutations.
 BMC Bioinformatics (2018) 19 (Suppl 6): 142.
- Chindelevitch, L., Meidanis, J.
 A cubic algorithm for the generalized rank median of three genomes.
 RECOMB CG (2018).
- Meidanis, J., Biller, P., Zanetti, J.P.P.
 A Matrix-Based Theory for Genome Rearrangements.
 U. of Campinas Tech Report IC-18-10 (2018).

Thanks!!

P Biller

JPP Zanetti I Chindelevitch

Get this presentation:

http://www.ic.unicamp.br/~meidanis/research/rear/