Counting Sorting Scenarios, Intermediate Genomes and Dealing With Missing Genes With the Rank Distance

J. P. P. Zanetti, L. Chindelevitch, J. Meidanis

University of Campinas, Brazil; Simon Fraser University, Canada

December 2019
Summary

1. Introduction

2. Counting Scenarios and Intermediates

3. Genomes With Indels

4. Final Remarks
Introduction
Comparing genomes

- Multichromosomal genomes
- Each chromosome: linear or circular
- Genomes have the same genes (just positioned differently)
- Correspondence between genes is given
- Compute “distance” between two genomes
- Rank distance: related to Double Cut and Join (DCJ)
- Both easy to compute, biologically sound
Comparing genomes

- Multichromosomal genomes
- Each chromosome: linear or circular
- Genomes have the same genes (just positioned differently)
- Correspondence between genes is given
- Compute “distance” between two genomes
- Rank distance: related to Double Cut and Join (DCJ)
- Both easy to compute, biologically sound
Rank distance: DCJ with average number of adjacencies

Diagram

- **Snapshot 1:**
 - Three linear sequences: a, b, and c.
 - Adjacencies represented by arrows.

- **Snapshot 2:**
 - A circular arrangement involving a, b, and c.
 - The circular structure indicates a rearrangement event.

ZCM2019 (Unicamp, SFU) Scenarios, Intermediates, Indels for Rank December 2019
Rank distance: DCJ with average # of adjacencies

• Build breakpoint graph with caps

\[\begin{align*}
\text{a} & \quad \text{b} \\
\text{c} & \\
\text{a} & \quad \text{b} \\
\text{c} & \\
\end{align*} \]

\[\begin{align*}
\text{a} & \quad \text{b} \\
\text{c} & \\
\end{align*} \]
Rank distance: DCJ with average \# of adjacencies

- Build breakpoint graph with caps

- Formula: \# adjacencies - \# of components

- Genomes **may differ** in \# of adjacencies; which one to use?
Rank distance: DCJ with average # of adjacencies

- Build breakpoint graph with caps

- Formula: # adjacencies - # of components
- Genomes **may differ** in # of adjacencies; which one to use?
- DCJ approach: close paths into cycles add "null" chromosomes to equalize # of adjacencies

\[d_{DCJ} = 5 - 3 = 2 \]
Rank distance: DCJ with average # of adjacencies

- Build breakpoint graph with caps

- Formula: # adjacencies - # of components

- Genomes may differ in # of adjacencies; which one to use?

- DCJ approach: close paths into cycles

 add “null” chromosomes to equalize # of adjacencies

- Rank distance approach: use average # of adjacencies

 double formula to avoid fractions

\[d_{\text{DCJ}} = 5 - 3 = 2 \]
\[d_{\text{rank}} = 2 \left(\frac{4+5}{2} - 3 \right) = 3 \]
Allowed rearrangements:
cuts, joins, double swaps

Weights:
cut = join = 1, double swap = 2

Rank distance:
weight of optimal (smallest weight) series of genome rearrangements
taking A to B
Rank distance by rearrangements

- Allowed rearrangements:
 - cuts, joins, double swaps
- Weights:
 - cut = join = 1, double swap = 2
- Rank distance:
 - weight of optimal (smallest weight) series of genome rearrangements taking A to B

\[a \rightarrow b \rightarrow c \quad \text{cut} = \quad a \rightarrow b \rightarrow \text{join} \]

Diagram:

- cut: \[a \rightarrow b \rightarrow c \]
- join: \[a \rightarrow b \rightarrow c \]
- double swap: \[a \rightarrow b \rightarrow c \]

ZCM2019 (Unicamp, SFU) Scenarios, Intermediates, Indels for Rank December 2019 12 / 32
Rank distance by breakpoint graph components

- Forget about caps: not needed
- Breakpoint graph without caps has paths and cycles only
- Path contributes its \# of edges to rank distance
- Cycle contributes its \# of edges minus 2 to rank distance

\[d_{\text{rank}} = 1 + 2 + 0 = 3 \]
Interesting property

- Optimal rank series never mix breakpoint graph components
- Some DCJ optimal series do mix breakpoint graph components
We can represent genomes as square, symmetric, 0-1 matrices.

With this representation, rank distance is just $r(A - B)$.
Counting Scenarios and Intermediates
Scenarios and intermediates

- Scenario from A to B: optimal series of operations taking A to B
- Intermediate genome: genome appearing in some scenario
- In graph language:
 - Scenario = minimum weight path
 - Intermediate = vertex in scenario
- Both give an idea of the **diversity** of ways to get from A to B
- In general, $\#$ intermediates $<< \#$ scenarios

3 paths (sorting scenarios) 6 intermediate genomes
Scenarios(\(A, B\)) = \[\begin{cases} (k + 1)^{k-1} & \text{for a } 2k\text{-cycle} \\ \text{complicated} & \text{for a path} \end{cases}\]

- Formula for cycles already known (same as DCJ)
- For paths, no simple formula, but fast code
- Depends on type and size of components only

```bash
count_rank_scenarios2.py -c 2 4 6 -p 2 3 5
```

result: 283983840
Formulas / Code for Intermediates

\[\text{Intermediates}(A, B) = \begin{cases} \frac{1}{k+1} \binom{2k}{k} & \text{for a 2k-cycle} \\ k + 1 \left\lceil \frac{(k + 1)}{2} \right\rceil & \text{for a } k\text{-edge path} \end{cases} \]

- Depends on type and size of components only

```python
count_intermediates2.py -c 2 4 6 -p 2 3 5
```

result: 3600
Experiments

Counts for human genome vs. other eutherians

<table>
<thead>
<tr>
<th>Species</th>
<th>Distance</th>
<th>Scenarios</th>
<th>Intermediates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimpanzee</td>
<td>27</td>
<td>6.54×10^{11}</td>
<td>2.46×10^{4}</td>
</tr>
<tr>
<td>Orangutan</td>
<td>53</td>
<td>6.03×10^{38}</td>
<td>1.29×10^{10}</td>
</tr>
<tr>
<td>Rhesus</td>
<td>150</td>
<td>1.21×10^{138}</td>
<td>1.45×10^{28}</td>
</tr>
<tr>
<td>Elephant</td>
<td>336</td>
<td>$[10^{583}, 10^{609}]$</td>
<td>8.56×10^{86}</td>
</tr>
<tr>
<td>Goat</td>
<td>393</td>
<td>$[10^{548}, 10^{588}]$</td>
<td>5.30×10^{85}</td>
</tr>
<tr>
<td>Mouse</td>
<td>509</td>
<td>$[10^{830}, 10^{980}]$</td>
<td>2.44×10^{131}</td>
</tr>
<tr>
<td>Rat</td>
<td>788</td>
<td>$[10^{1251}, 10^{1476}]$</td>
<td>2.30×10^{189}</td>
</tr>
</tbody>
</table>
Genomes With Indels
Representing genomes with indels as matrices

A missing extremity is represented by a 0 row and 0 column

\[
A - B = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\
\end{bmatrix}
\]

We get \(d(A, B) = r(A - B) = 8 \). How can we compute it faster?
The Augmented Breakpoint Graph

Components: standard, A-null, B-null, AA-null, BB-null, AB-null path

A path is proper if both ends are free or it is an AB-null singleton

Result 1 The rank distance equals

\[n - 2c(A, B) - p_0(A, B) - p_{AB}(A, B) \]

where \(n \) counts extremities, \(c \), cycles, \(p_0 \), proper paths, and \(p_{AB} \), non-singleton \(AB \)-paths
A problem with the rank distance

These genomes are at distance 8 and cannot be optimally sorted using only insertions, deletions, and marker substitutions.

Some intermediate genome must have a **semi-chromosome**: a tail extremity with no corresponding head or vice versa.
Result 2: The rank distance (with indels) equals the smallest cost of a sequence of operations going from A to B using:

- Cuts or joins (cost 1);
- Double swaps (cost 2);
- Substitutions of one extremity (cost 2);
- Insertions/deletions of whole chromosomes or semi-chromosomes (cost = number of extremities used).
An alternative version: the rank-indel distance

Definition: The rank-indel distance equals the smallest cost of a sequence of operations going from A to B using:

- Cuts or joins (cost 1);
- Double swaps (cost 2);
- Substitutions of one extremity (cost 2);
- Insertions/deletions of whole chromosomes or semi-chromosomes (cost = number of extremities used).

Result 3 The rank-indel distance equals

\[n - 2c(A, B) - p_0(A, B) + p_{AB}(A, B) \]

The only difference with the rank distance is the sign of the last term.
An Application: Phylogenetic Tree of Fungal Pathogens

ML on nearly 3,000 CDS

rank distance + neighbor-joining
Final Remarks
Conclusion and open problems

- We have a basic $O(n)$ algorithm for rank distance with indels
- We have a similar $O(n)$ algorithm for rank-indel distance
- They differ by a single term, which is often small in practice
- We observe qualitative agreement with an existing phylogeny

- Do the “semi-chromosomes” make biological sense?
- Can these distances help ancestral genome reconstruction?
- Can we generalize these ideas to handle gene duplications?
Acknowledgments

João Paulo Pereira Zanetti

Leonid Chindelevitch

FAPESP
NSERC / CRSNG
CIHR / IRSC
GenomeCanada
PRONON
Related References

Thanks!!

Get this presentation:

http://www.ic.unicamp.br/~meidanis/research/rear/