CENTER GENOME

WITH RESPECT TO THE

RANK DISTANCE

Priscila Biller João P. P. Zanetti

João Meidanis

How to infer ancestral genomes?

Internal nodes:

ancestors (usually extinct)

Leaves:

recent species (known genomes)

How to infer ancestral genomes?

- Known genomes
- Genomes to be inferred (initially arbitrary)

Usual way to infer ancestors:

Repeatedly compute the median genome M until convergence is reached

Genome M minimizes the sum of the evolutionary distances:

$$d(A_1, M) + d(A_2, M) + d(A_3, M)$$

Are median genomes a good way to infer ancestors?

2 input genomes: solutions are not relevant

Any genome in an optimal sorting scenario minimizes

d(A, B) + d(B, C), including the input genomes

3 or more input genomes: hard

NP-hard for most rearrangement distances (reversal, DCJ, etc.)

Center genome: an alternative to the median

Median genome

Center genome

Input: genomes A₁, A₂, ...

genomes A₁, A₂, ...

Goal: find a genome M that minimizes $d(A_1, M) + d(A_2, M) + d(A_3, M) + d(A_3, M) + ...$

find a genome M that minimizes $max(d(A_1, M), d(A_2, M), d(A_3, M), ...)$

2 input genomes:

A B B B B B B C C they are all medians!

A B B B B B B C more constrained set of solutions

3 or more input genomes:

NP-hard

Open (NP-hard?)

О

Ancestral inference: center genomes are an appealing alternative to the median

Center genomes with respect to the rank distance

Gabidulin Ernst

Rank distance:

very successfully used in coding theory since at least 1985

rank(X): dimension of the image (or column space) of X

How to represent genomes as matrices?

How to represent genomes as matrices?

How to compute the rank distance of two genomes?

$$= \text{rank} \begin{pmatrix} a & b & c & d \\ a & 0 & 0 & 0 & 0 \\ b & 0 & -1 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 0 & 1 & 0 & -1 \end{pmatrix} = 1$$

Applications of the rank distance to genome evolution

Rank distance can also be defined as the minimum number of cuts, joins, and double swaps, with weights 1, 1, and 2

$$(a, b) \longrightarrow (a) \text{ and } (b)$$

Center conjecture:

Is there always a genome exactly in the middle?

Center conjecture (counterexample):

Is there always a genome exactly in the middle?

$$d(A, B) = rank \begin{cases} a & b & c & d \\ a & 0 & -1 & 1 & 0 \\ b & -1 & 0 & 0 & 1 \\ c & 1 & 0 & 0 & -1 \\ d & 0 & 1 & -1 & 0 \end{cases} = 2$$

Center conjecture (counterexample):

Is there always a genome exactly in the middle?

There is no genome with distance 1 from both A and B:

In this example: $\max(d(A,C), d(B,C)) = \underline{d(A,B)}$

Our goal:

Determine in which cases the center genome is exactly in the middle and, when not in the middle, how far it will be from it.

Our goal: Where is the center genome?

Given a pair of genomes, there are two cases to consider:

Co-tailed genomes exactly the same telomeres

Not co-tailed genomes
different telomeres

Our goal: Where is the center genome?

Co-tailed case (same telomeres)

Only double swaps occur in optimal sorting scenarios of co-tailed genomes!

Leonid Chindelevitch et al. (2018)

Double swap (weight = 2)

Our goal: Where is the center genome?

Co-tailed case (same telomeres)

As a double swap has weight 2, the distance is even!

Our goal: Where is the center genome?

Co-tailed case (same telomeres)

d(A,B) is a multiple of 4: center genome reaches LB!

Otherwise: LB + 1

Center genome (C d(A,B)LB LB + 1 LB **LB** + 1 8 LB

Our goal: Where is the center genome?

Not co-tailed case (different telomeres)

At every step $0 \le i \le d(A,B)$ there is a genome G such that d(A,G)=i and d(G,B)=d(A,B)-i...

...so there is a center genome that reaches the LB!

Our goal: Where is the center genome?

Not co-tailed case (different telomeres)

If A and B are not co-tailed, then there is a genome at every step between 0 and d(A,B)

Proof by induction (idea):

Not co-tailed
It needs a cut!

Summary: Where is the center genome?

Center genome (C)

(1) Co-tailed case (same telomeres)

(2) Not co-tailed case (different telomeres) LB

Lower bound (LB):

$$\max(d(A,C), d(B,C)) = \boxed{\frac{d(A,B)}{2}}$$

Center genome with respect to the rank distance

