
AN ALTERNATIVE ALGEBRAICFORMALISM FOR GENOMEREARRANGEMENTSJo~ao MeidanisZanoni DiasHere we relate the recent theory of genome rearrangements to the theory of per-mutation groups in a new way and hope to set the ground for further advances inthe area. This work was motivated by the fact that many arguments in genomerearrangements are of the form \look at the �gure", and lack more formal alge-braic derivation. We intend to give the area a strong algebraic formalism, much asanalytic geometry provided an alternative geometric arguments based on pictures.1 IntroductionIn this paper we are concerned with the genome rearrangement problem viewed asa combinatorial problem. In the general formulation of this problem we are giventwo genomes (or parts of genomes), viewed as ordered lists of genes (or othersmarkers), and a set of allowed mutation events (reversals, transpositions, etc). Tosolve the problem we must �nd the minimumnumber of events that lead from onegenome to another. In general the solution is symmetric, that is, the same seriesof events, taken backward, will transform the second genome into the �rst. Wewill also restrict ourselves to the case of conservative events, that is, events that donot change the available gene pool. Thus events such as duplications or deletionswill not be considered in this study.Recent developments in this �eld include the polynomial solution to the signedreversal case (Hannenhalli and Pevzner, 1995), the NP-hardness of unsigned rever-sal distance (Caprara, 1996), and partial results for transposition distance (Bafnaand Pevzner, 1995; Meidanis et al., 1997b), to name just a few. Many doctoraldissertations were devoted to this theme (see, for instance, the theses of Vergara(Vergara, 1997), Christie (Christie, 1998), and Walter (Walter, 1999)). Transposi-tion distance seems to be a harder problem, that has eluded researchers for manyyears now. Its computational complexity is still unknown. We feel that new, morepowerful formal tools are needed to successfully attack this problem.1



The mathematical formalization of genome rearrangements usually begins byrepresenting genomes as permutations. Thus, a genome � consisting of genes �1,�2, �3, ..., �n in this order is written as:� = (�1 �2 �3 : : : �n) (1)meaning that � is the function (permutations are functions):[1 ) �1; 2) �2; 3) �3; : : : ; n) �n]that is, � maps 1 into �1, 2 into �2, and so on.In this paper we will propose a di�erent view of a genome as a permutation,namely, that Equation [1] denotes the function:[�1 ) �2; �2 ) �3; : : : ; �n�1 ) �n; �n ) �1] (2)that is, � maps �1 into �2, �2 into �3, and so on. Note that the last gene �nis mapped into the �rst gene �1. This is necessary, because permutations arefunctions that map each element into some other, and they cannot repeat images.However, this implies a circular character to our genome. But circular genomesdo exist, and, as we will see in subsequent sections, the study of rearrangementsof linear genomes is really not much di�erent from circular ones.Our goal in this note is to convince the reader that interpretation (2) is muchmore sensible, for a number of reasons. First, it allows us to directly apply manylong known results from permutation group theory. Important tools such as break-points, the breakpoint graph, cycles, good cycles, bad cycles, gray edges, blackedges, which served as basic building blocks for most of the advances in the �eldcan be algebraically de�ned instead of graphically de�ned as they have been untilnow. Therefore, arguments that relied on pictures can now be expressed com-pletely in algebraic terms. We consider this a powerful step towards a massiveattack on such problems, much like analytic geometry is a powerful way of lookinginto geometric problems.In Section 2 we brie
y review the basics on permutation groups. Section 3contains the �rst steps in rede�ning genome rearrangements under the new for-malism that we propose. In the Section 4 we use theory just developed to showsome results that have been proved based on pictures. Finally, we conclude inSection 5.2 Permutation GroupsPermutations groups have been studied at least since the eighteenth century, whenGalois wrote his much acclaimed theory for solving algebraic equations. Here webrie
y recall a few classical results that are useful in genome rearrangements. Formore information see references (Jacobson, 1985; MacLane and Birkho�, 1971).Given a base set E, a permutation on E is a one-to-one function from Eonto itself. Permutations are composed of one or more cycles. A cycle involving2



elements a, b, c, for instance, is written:(a b c)meaning that a is mapped into b, which is mapped into c, which in turn is mappedback into a. Cycles can be of any length. Cycles of length 1 are not explicitlywritten. Thus, if we write: � = (a b c)we implicity mean that all others elements are left in place by �, that is, �(x) = xfor x 6= a; b; c. Note: (a b c) = (b c a) = (c a b):The product or composition of two permutations �, � is denoted by ��. Ingeneral �� 6= ��, but when � and � are disjoint cycles they commute: �� = ��.Every permutation can be written in an unique way as a product of disjoint cycles(apart from the order of the factors). We refer to this as the cycle decompositionof a permutation.The identity permutation, that maps every element into itself, will be denotedby 1. Every permutation � has an inverse ��1 such that ���1 = ��1� = 1.For cycles, the inverse is obtained reverting the order of the elements: (a b c) isthe inverse of (c b a). For a general permutation, invert every cycle in its cycledecomposition.To compute the product of � and �, ��, we must keep in mind that � will beapplied �rst, and then �, as in ��(x) = �(�(x)). Therefore, to compute a productof nondisjoint cycles we need to proceed as follows. Take the example:(a b c)(a b d)(c d b):To compute this, we start with any element, say a, and compute its image.The element a is �xed by the rightmost cycle, then is mapped into b by the secondcycle, and b is mapped into c by the leftmost cycle. So, the �nal destination of ais c. We then write: (a b c)(a b d)(c d b) = (a c : : :and then proceed �nding out the image of c: c goes to d, d goes to a, a goes to b,respectively, by the rightmost, middle, and leftmost cycle, so c is �nally mappedinto b. And so on. We reach the result:(a b c)(a b d)(c d b) = (a c b)(d) = (a c b)since singleton cycles do not need to be explicitly indicated.One important operation is the conjugation. The conjugation of � by � is thepermutation ����1. This results in a permutation with the same cycle structureof � but the elements are changed by �. For instance, if � = (�1 �2 : : : �k) then:����1 = (�(�1) �(�2) : : : �(�k))If � is a product of disjoint cycles, each one will be a�ected by � in the sameway to form ����1. Conjugations are so important that we will have a specialnotation for them: � � � means the same as ����1.3



2.1 Two- and Three-CyclesA two-cycle, or 2-cycle, is a cycle of size 2. A three-cycle, or 3-cycle, is a cycle oforder 3. It is important to know how products by 2- or 3-cycles a�ect an arbitrarypermutation. It is simple, too.Let � = (a b) be a 2-cycle. Its e�ect on an arbitrary permutation � can bedescribed as follows. If a and b are in the same cycle in �, this cycle is broken intwo in ��. If a and b are in two distinct cycles in �, these two cycles become onein ��. Here and in the rest of the paper we say \cycle in �" meaning \cycle inthe unique cycle decomposition of �".The same results are valid for ��. Notice that �� and �� are conjugates:�(��)��1 = ��, and therefore have the same cycle structure.Now take an arbitrary 3-cycle � = (a b c) and an arbitrary permutation �.Three cases appear:1. If a, b, and c are in three di�erent cycles in �, these three cycles become asingle cycle in ��.2. If two of a, b, c, are in the same cycle, and the third element is in a di�erentcycle in �, then these two cycles recombine into another two cycles in ��.Thus, the total number of cycles is maintained.3. If a, b, and c are all in the same cycle in �, the result depends on theorientation they have in this cycle of �. Selecting a as the starting point,this cycle can have the form (a : : : b : : : c : : : ) or (a : : : c : : : a : : : ). Inthe �rst case, the cycle becomes (a : : : c : : : b : : : ) in ��. In the secondcase, the cycle breaks into (a : : : )(b : : : )(c : : : ) in ��.The same results (except for the exact format of the resulting cycles in case 3)are valid for ��.3 Genome RearrangementsTo formalize genome rearrangement problems we will use as base set for the per-mutations the set En = f�1;+1;�2;+2; : : : ;�n;+ng, where n is the number ofgenes. Thus, we will be modeling both strands of the underlying DNA molecule.Each element +i or �i represents a marker on the ith gene, with its oppositemeaning a marker in the same location in the opposite strand. We will �rst modelcircular genomes, which conform more naturally to the formalism, and will latercomment on the necessary adaptations for linear genomes.To begin with, let 
 be the permutation that maps each elements into itscounterpart on the other strand. The permutation 
 can be written as:
 = (�1 + 1)(�2 + 2) : : : (�n + n)that is, a product of n disjoint 2-cycles. Notice that 
(a) 6= a for all a 2 En,and 
2(a) = 
(
(a)) = a for all a 2 En. In other words, 
2 = 1 or, equivalently,
�1 = 
. 4



� reverse complement(+3 � 1 + 7 + 5) (�5 � 7 + 1 � 3)(+2 + 4 + 6) (�6 � 4 � 2)Table 1: Examples of admissible cycles � and their reverse complement.A cycle is admissible when it does not contain �i and +i for the same i. Thus,
 is far from being an admissible cycle. An admissible cycle of size n is called agenome strand, because it models a strand of a genome formed by these n genesin some order. If we have an admissible cycle �, we can compute its reversecomplement, as in the examples of the Table 1.There is an algebraic way of obtaining the complement, though. If � is anadmissible cycle, ��1 is its reverse; 
 � � = 
�
 is its complement. The reversecomplement is when we do both: (
 ��)�1 or 
 � (��1), which results in the sameexpression 
��1
.Given a genome strand �1, its reverse complement �2 = 
��1
 forms thecomplementary strand of the same genome. We represent this genome as theproduct of the two strands: � = �1�2. Since the strands form two disjoint cyclesit does not matter in which order we take the product: �1�2 = �2�1. Also, itdoes not matter which strand we call �1: had we started with �2 we would havecomputed its reverse complement �1 and the �nal genome would have been thesame. This is just as DNA should be: no matter which strand you pick, when youlet it pair with its reverse complement, you get the same DNA molecule.Formally, we de�ne a genome as a permutation that can be written as �1
��11 
,for some genome strand �1. Notice that 
�
 = ��1 for every genome �. Thegeneral genome rearrangement problem then becomes: given two genomes � and� and a class of operations, �nd the minimumnumber of events (operations) thattransform � into �. This minimum number is called the distance between � and�. We will talk about classes of operations later, but for any of the several prob-lems obtained by choosing a di�erent set of operations, the breakpoint graph playsan important role. Classically, the breakpoint graph is constructed as in Figure 1.Details of the construction have been described previously several times andwill not repeated here (Hannenhalli and Pevzner, 1995; Meidanis and Setubal,1997). Our objective is to obtain this graph, or an equivalent structure, by alge-braic manipulations. The breakpoint graph is used when we want to transform �into a constant permutation � = (+1 + 2 + 3 +4 + 5). It then depends on both� and �. In fact, it has been de�ned for linear genomes, and to adapt to that weneed consider \extended" versions of � and �: �1 = (+0 � 3 + 2 � 5 � 4 + 1)and identify �0 with �6.The breakpoint graph is composed of black edges, which depend only on �,and of gray edges, which depend only on �. Its turns out that 
� is a product of2-cycles that correspond exactly to the black edges. And 
� corresponds to the5



+0 +3 -3 -2 +2 +5 -5 +4 -4 -1 +1 -6Figure 1: Breakpoint Graph for genomes � = (�3 + 2 � 5 � 4 + 1) and� = (+1 + 2 + 3 + 4 + 5).gray edges in the same way. In the preceding example, we have:
� = (�0 + 0)(�1 + 1)(�2 + 2)(�3 + 3)(�4 + 4)(�5 + 5)(+0 � 3 + 2 � 5 � 4 + 1)(�1 + 4 + 5 � 2 + 3 � 0)= (+0 + 3)(�3 � 2)(+2 + 5)(�5 + 4)(�4 � 1)(+1 � 0);exactly the black edges. And 
� will give the gray edges:
� = (+0 � 1)(+1 � 2)(+2 � 3)(+3 � 4)(+4 � 5)(+5 � 0):In the classical theory of genome rearrangements the cycle structure of thebreakpoints graph plays an important role. Although we could not obtain thecycles themselves of the breakpoint graph, we derived an algebraic expression forthe square of each cycles. This expression is just the product (
�)(
�) = 
�
�.In the example, we have:
�
� = (+0 � 4)(+3 � 1)(�3 + 5 + 1)(�2 � 0 + 2)(�5)(+4)For each cycle of breakpoint graph we have two cycles in 
�
�. If the cy-cle in the breakpoint graph is (a1 a2 : : : a2k) , we have (a1 a3 : : : a2k�1) and(a2k a2k�2 : : : a2) in 
�
�. Therefore, this is not exactly the square of break-point cycle, because one of them is reversed. Strictly speaking, we cannot modelas permutations the cycles of the breakpoint graph, since they have no orienta-tion. This in part explains why one cycle in the square is reversed. Had we taken
�
� the other cycle would have been reversed. Notice that 
�
� = ��1�, and
�
� = ��1�.In any case, this constructions allow us to rephrase technical properties ofbreakpoint graphs in algebraic terms. For instance, how many breakpoints � haswith respect to �? This is just the number of elements not �xed by 
�
�, dividedby 2: b(�; �) = jSupp(
�
�)j26
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y examine the case of linear genomes.First, we must recognize that there are actually two kinds of linear genome:free and with �xed extremes. Let us de�ne each kind, starting with the one with�xed extremes.When we compare two regions of two di�erent genomes, and these regions are
anked by conserved parts, we need to use the �xed-extreme case (Figure 2). Inthis case, we add an extra dummy gene BA, which represents the �xed extremitiesof the regions, and proceed as in the circular case.When we compare two entire linear genomes, we need to take into account thatthere is a free reversal that can be applied, so the distance in this case becomes:dfree = min(dfixed(�; �); dfixed(
 � �; �))More details on the relationship between linear and circular genome rearrange-ment problems can be found in the references (Walter, 1999; Meidanis et al.,1997a). 7
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Figure 4: A reversal � applied to genome �.3.2 OperationsWe will de�ne in this section the events (operations) of reversal, transposition (orblock move), and block interchange, some of them in the their signed and unsignedversion. We will do a very detailed job for reversals, and then just state the resultsfor the others, to save space.Given a genome �, to perform a reversal (signed) on it we need to choose twodistinct markers u and v, in the same strand of �, and then replace the path from uto v (excluding u but including v) by its reverse complement. Of course, a similaroperation will be performed on the other strand, to make sure the �nal result isstill a valid genome. Figure 4 shows what is meant.We want to write the resulting genome � as ��, where � is a permutation thatwill represent the reversal. With some work, we see that � di�ers from � only in8



the following mappings:�u = 
v; �v = 
u; �
�u = �v; �
�v = �u:Therefore, � = ��1� maps:�u = ��1
v; �v = ��1
u; �
�u = v; �
�v = uwith all other elements �xed by �. Noting that ��1
 = 
� for every genome �,we arrive at: �u = 
�v; �v = 
�u; �
�u = v; �
�v = uor, written as a product of disjoint cycles:� = (u 
�v)(v 
�u):This is then the general formula of a reversal applicable to �, where u and v aretwo elements in same strand of �. We say that � and � di�er by a reversal whenthere is such a reversal � with � = ��. Notice that the de�nition of a reversaldepends on �. There is no way to de�ne a class of permutations that will be \thereversals", valid for all genomes. Each genome has a particular set of reversalsthat can be applied to it, and this sets varies from one genome to another.For this reason, we cannot view the genome rearrangement problem directly asa \group generators" problem, where a class of generators of the symmetric group isgiven and we seek the minimumnumber of generators to write a given permutation.Nevertheless, it can be wieved as a group generators problem. Details are givenin the full version.The reversal distance problem is: given two genomes � and �, �nd the minimumk such that there are genomes �0,�1,: : : ,�k with � = �0, � = �k and �i di�ers from�i+1 by a reversal, for i = 0; : : : ; (k � 1).An unsigned reversal is de�ned similarly, but has the form:� = (u v)(
�v 
�u)where, as before, u and v are distinct elements of the same strand in �.A transposition (unsigned) is de�ned as:� = (u v w)(
�w 
�v 
�u)where u, v and w are three distinct elements in the same strand in �, appearingin this order (u; v; w) in the strand.A signed transposition is de�ned as:� = (u v 
�w)(w 
�v 
�u)where u, v and w are distinct elements in the same strand in �, appearing in thisorder (u; v; w) in this strand. A signed transposition models the event in which a9



block detaches itself from a genome and reappears elsewhere, in the same strandbut the block is reversed.A block interchange is de�ned as:� = (u w)(
�w 
�u)(v x)(
�x 
�v)where u, v, w and x are four distinct elements in the same strand of �, appearingin the order (u; v; w; x) in this strand.Each one (or a group of) of these types of events can be used to de�ne a genomerearrangement problem: given two genomes � and �, �nd the minimum k suchthat there are genomes �0,�1,: : : ,�k with � = �0, � = �k and �i di�ers from �i+1by the speci�c operation (or a group of), for i = 0; : : : ; (k � 1).4 Using the TheoryWe will use the theory developed to show two results whose proof was based onpictorial representations. The �rst result appears in Christie's proof that a blockinterchange cannot create three cycles (Christie, 1997). The other result is thatthere is only one way for a transposition to break a cycle, proved by Walter &colleagues by reference to a picture (Walter et al., 1998).Theorem 1 Let � and � be two genomes, and � a block interchange on �. Thenthe number of cycles in (��)�1� is not higher than 4 plus the number of cycles in��1�.Proof: We have (��)�1� = ��1��1�, which di�ers from ��1� by a multiplicationby ��1. The cycle structure of ��1 is the same as �'s: four 2-cycles. By theclassical results about products by 2-cycles it is immediate that multiplying byfour 2-cycles we cannot create more than 4 extra cycles. 2Theorem 2 Let � and � be two genomes, and � = (u v w)(
�w 
�v 
�u) a(unsigned) transposition on �, where u,v,w appear in this order in the same cycleof �. Then (�� )�1� has four more cycles than ��1� if and only if u,v,w are inthe same cycle in ��1� and appear in the order (u; v; w) in this cycle.Proof: Transpositions do not mix genome strands (at least unsigned transposi-tions, which is the kind we are using here), and therefore we know that the elementsof a strand of � will form a strand in �� (possibly in di�erent order). Let �1 bethe strand that contains u, v and w, and �1, the corresponding strand in �. Wethen have � = �1
��11 
, � = �1
��11 
, and ��1� = ��11 �1(
�1
)(
��11 
). Then(�� )�1� = ��1��1� will be the product of disjoint permutations (w v u)��11 �1,and (
�u 
�v 
�w)(
�1
)(
��11 
).In the �rst component (w v u)��11 �1 we have a product of a 3-cycle by ��11 �1.We know from classical permutation group theory (see section 2.1) that this pro-duces two extra cycles if and only if u, v, w appear in the same cycle of ��11 �1 inthe order (u; v; w), as stated. 210



5 ConclusionsWe propose a new way of looking of genomes as permutations, one that is morecomfortable for those that have experience in permutation groups. Much remainsdo be done, but we feel this is the right way to attack di�cult problems such asthe transposition distance.AcknowledgmentsResearch supported by grants from FAPESP.ReferencesBafna, V. and Pevzner, P. (1995). Sorting by transpositions. In Proc. 6th Annual ACM-SIAMSymposium on Discrete Algorithms, pages 614{623.Caprara, A. (1996). Sorting by reversals is di�cult. Technical report, DEIS,University of Bologna.Christie, D. A. (1997). Sorting permutations by block-interchange. Information ProcessingLetters, 60(4):165{169.Christie, D. A. (1998). Genome rearrangement problems. PhD thesis, Glasgow University.Hannenhalli, S. and Pevzner, P. (1995). Transforming cabbage into turnip (polynomial algo-rithm for sorting signed permutations by reversals). In Proceedings of the 20th Annual ACMSymposium on Theory of Computing, pages 178{189.Jacobson, N. (1985). Basic Algebra. W. H. Freeman and Company, New York.MacLane, S. and Birkho�, G. (1971). Algebra. The Macmillan Company, London, sixth printingedition.Meidanis, J. and Setubal, J. C. (1997). Introduction to Computational Molecular Biology. PWSPublishing Co.Meidanis, J., Walter, M. E., and Dias, Z. (1997a). Distancia de reversao de cromossomos cir-culares. In Proc. XXIV Seminario Integrado de Software e Hardware - SEMISH'97, pages70{79.Meidanis, J., Walter, M. E., and Dias, Z. (1997b). Transposition distance between a permutationand its reverse. In Proc. 4th South American Workshop on String Processing - WSP'97, pages70{79.Vergara, J. P. (1997). Sorting by Bounded Permutations. PhD thesis, Virginia PolytechnicInstitute and State University.Walter, M. E. (1999). Algoritmos para Problemas em Rearranjo de Genomas. PhD thesis,University of Campinas. In Portuguese.Walter, M. E., Dias, Z., and Meidanis, J. (1998). Reversal and transposition distance of linearchromosomes. In String Processing and Information Retrieval: A South American Symposium- SPIRE'98. Submitted to Journal of Computational Biology.11



Institute of Computing, University of Campinas, Campinas-SP, Brazil.E-mail: meidanis@dcc.unicamp.brInstitute of Computing, University of Campinas, Campinas-SP, Brazil.E-mail: zanoni@dcc.unicamp.br

12


