Total Chromatic Number and Chromatic Index of Dually Chordal Graphs

Celina M. H. de Figueiredo^{*} João Meidanis[†] Célia Picinin de Mello[†]

Abstract

A graph is dually chordal if its clique hypergraph forms a hypertree. Alternatively, a graph is dually chordal if it admits a maximum neighbourhood order. This dual class to chordal graphs is not a class of perfect graphs. This class generalizes known subclasses of chordal graphs such as doubly chordal graphs, strongly chordal graphs and interval graphs. We prove that the total-colour conjecture holds for dually chordal graphs. We describe a new heuristic that yields an exact total-colouring algorithm for even maximum degree dually chordal graphs.

Key words. graph algorithms, chordal graphs, total-colour, edge-colour, clique graphs AMS subject classification. 05C85, 05C15, 68R10, 90C27

1 Introduction

We consider the problem of total-colouring and edge-colouring dually chordal graphs. The total-colouring of a graph is a colouring of vertices and edges in such a way that no adjacent vertices, no adjacent edges, no incident vertices and edges obtain the same colour. Edge-colouring is a partial case of total-colouring when only the edges are coloured. The minimum number of colours needed is called the total-chromatic number and chromatic index repectively. Vizing's total-colour conjecture says that every graph admits a total-colouring with maximum degree plus two colours and Vizing's celebrated theorem says that the chromatic index is at most the maximum degree plus one [15]. A constructive proof of Vizing's theorem appeared in [12].

Graphs whose chromatic index equals the maximum degree are said to be Class 1; graphs whose chromatic index exceeds the maximum degree by one are said to be Class 2. It is

^{*}Universidade Federal do Rio de Janeiro, Instituto de Matemática, Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ, Brasil. celina@cos.ufrj.br. Partially supported by CNPq, grant 30 1160/91.0.

[†]Universidade Estadual de Campinas, Instituto de Computação, Caixa Postal 6176, 13081-970 Campinas, SP, Brasil. {meidanis,celia}@dcc.unicamp.br. Partially supported by FAPESP and CNPq.

well known that the set of graphs in Class 1 is NP-complete [11]. In [7, 8] we considered classes of graphs that are defined by special vertex *perfect elimination orders*. Our method identified subclasses of chordal graphs for which a simple constructive proof of Vizing's theorem is presented: doubly chordal graphs, strongly chordal graphs, interval graphs and indifference graphs.

The total-colour conjecture has been established for several classes of graphs and a recent survey book has been devoted to the subject [16]. The total-colour conjecture was proved recently for a subclass of chordal graphs: the class of split graphs [5]. Graphs whose total-chromatic number equals the maximum degree plus one are said to be *Type* 1; graphs whose total chromatic number equals the maximum degree plus two are said to be *Type* 2.

In this paper, we consider colourings of dually chordal graphs. We extend in two ways the results of [7] where we considered edge-colouring doubly chordal graphs: we now consider both total-colourings and edge-colourings and we now consider a larger class of graphs. Dually chordal graphs have attracted much attention lately as the class of clique graphs of chordal graphs and as a natural generalization of strongly chordal graphs [4, 2, 3, 14]. We prove that the total-colour conjecture holds for dually chordal graphs. We describe a new heuristic that yields an exact total-colouring algorithm for even maximum degree dually chordal graphs. In Section 2 we define the classes of graphs considered in this paper. In Section 3 we define pull back and we use this graph homomorphism to obtain a sufficient local condition for a class of graphs to satisfy Vizing's total-colour conjecture. In Section 4 we apply our pull back method to the class of dually chordal graphs. Our conclusions in Section 5 consider two possible natural extensions of our results to chordal graphs and to neighbourhood-Helly graphs.

2 Definitions and Notations

General terms

In this paper, G denotes a simple, undirected, finite, connected graph. V(G) and E(G) are the vertex and edge sets of G. A *clique* is a set of vertices pairwise adjacent in G. A *maximal clique* of G is a clique not properly contained in any other clique. A *subgraph* of G is a graph H with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For $X \subseteq V(G)$, we denote by G[X] the *subgraph induced by* X, that is, V(G[X]) = X and E(G[X]) consists of those edges of E(G) having both ends in X.

For each vertex v of a graph G, Adj(v) denotes the set of vertices which are adjacent to v. The degree of a vertex v is deg(v) = |Adj(v)|. The maximum degree of a graph Gis then $\Delta(G) = \max_{v \in V(G)} deg(v)$. A vertex u is universal if deg(u) = |V(G)| - 1. N(v)denotes the neighbourhood of v, that is, $N(v) = Adj(v) \cup \{v\}$. A subgraph which is induced by the neighbourhood of a vertex is simply called a neighbourhood. We denote by $N^2(v)$ the family of sets $\{N(u) : u \in N(v)\}$. The distance between two vertices u and v is the minimum length (i.e., number of edges) of a path between u and v. Given a graph G we denote by G^2 the graph having $V(G^2) = V(G)$ and satisfying $xy \in E(G^2)$ if and only if x and y are distinct and their distance in G is at most 2. A vertex v is simple if $N^2(v)$ is linearly ordered by set inclusion. A vertex $u \in N(v)$ is a maximum neighbour of v if and only if for all $w \in N(v)$, $N(w) \subseteq N(u)$ holds. A maximum neighbourhood elimination order of a graph G is a linear order on its vertex set v_1, v_2, \ldots, v_n such that for each $i, 1 \leq i \leq n$, there is a maximum neighbour u_i of v_i in $G[v_1, v_2, \ldots, v_i]$.

A vertex v is simplicial if N(v) is complete. A perfect elimination order of a graph G is a linear order on its vertex set v_1, v_2, \ldots, v_n such that for each $i, 1 \leq i \leq n, v_i$ is simplicial in $G[v_1, v_2, \ldots, v_i]$. A graph is chordal if it admits a perfect elimination order.

A simple perfect elimination order of a graph G is a linear order on its vertex set v_1, v_2, \ldots, v_n such that for each $i, 1 \leq i \leq n, v_i$ is simple in $G[v_1, v_2, \ldots, v_i]$. A vertex is doubly simplicial if it is simplicial and has a maximum neighbour. A doubly perfect elimination order of a graph G is a linear order on its vertex set v_1, v_2, \ldots, v_n such that for each $i, 1 \leq i \leq n, v_i$ is doubly simplicial in $G[v_1, v_2, \ldots, v_i]$. A graph is strongly chordal if it admits a simple perfect elimination order. A graph is doubly chordal if it admits a doubly perfect elimination order [13]. We note that, by definition, every strongly chordal graph is doubly chordal.

A graph is dually chordal if it admits a maximum neighbourhood elimination order. The reason for this name is the following characterization of graphs with maximum neighbourhood order: a graph G has a maximum neighbourhood order if and only if its clique hypergraph $C(\mathcal{G})$ forms a hypertree [4, 14, 10]. This means duality to chordal graphs. Recognition of dually chordal graphs can be done in $O(n^2m)$ time [14] and in O(m) time [2]. Maximum neighbourhood orders are algorithmically useful, especially for domination-like problems and distance problems on dually chordal graphs [3]. For a dually chordal graph a maximum neighbourhood order can be computed in linear time [2]. Note that unlike the chordal graphs, dually chordal graphs are not perfect: every graph containing a universal vertex is dually chordal. A graph is doubly chordal if and only if it is chordal and dually chordal. A graph is strongly chordal if and only if all induced subgraphs are dually chordal [1].

For us, K_n denotes the complete graph on $n \ge 1$ vertices.

Colouring

An assignment of colours to the vertices of G is a function $\lambda: V(G) \to S$. The elements of the set S are called *colours*. A *conflict* in an assignment of colours is the existence of two adjacent vertices with the same colour. A *vertex-colouring* of a graph is an assignment of colours such that there are no conflicts. The *chromatic number* of a graph G is the minimum number of colours used among all vertex-colourings of G and is denoted by $\chi(G)$.

An assignment of colours to the edges of G is a function $\kappa: E(G) \to S$. Again, the

elements of the set S are called *colours*. A *conflict* in an assignment of colours is the existence of two edges with the same colour incident to a common vertex. A vertex u is said to be *satisfied* when $\kappa(uv) = \kappa(uw)$ implies v = w, for all neighbours v, w of u. An *edge-colouring* of a graph is an assignment of colours such that every vertex is satisfied or, equivalently, such that there are no conflicts. The *chromatic index* of a graph G is the minimum number of colours used among all edge-colourings of G and is denoted by $\chi'(G)$.

An assignment of colours to the vertices and edges of G is a function $\tau: V(G) \cup E(G) \to S$. The elements of the set S are called *colours*. A *conflict* in an assignment of colours is the existence of two adjacent vertices or edges with the same colour. A *total-colouring* of a graph is an assignment of colours to vertices and edges of the graph such that there are no conflicts. The *total-chromatic number* of a graph G is the minimum number of colours used among all total-colourings of G and is denoted by $\chi''(G)$.

The greedy method for vertex-colouring considers the vertex set of a graph according to a linear order and assign to the current vertex the smallest available colour that does not create conflicts. A *perfect order* is a linear order on the vertex set of a graph such that the greedy method vertex-colours optimally all its induced subgraphs [6]. Every chordal graph admits a perfect order as every perfect elimination order is a perfect order.

In this paper, we use a maximum neighbourhood order of a dually chordal graph G to show that G^2 admits a perfect order. A $\Delta(G) + 1$ vertex-colouring of G^2 is used in turn to give a simple constructive proof of Vizing's total-colour conjecture and of Vizing's theorem for the class of dually chordal graphs.

3 Pull back of complete graphs

Given two graphs G and G', a pull back is a function $f: V(G) \to V(G')$, such that

- f is a homomorphism, i.e., if $xy \in E(G)$, then $f(x)f(y) \in E(G')$;
- f is injective when restricted to N(x), for all $x \in V(G)$.

Lemma 1 If $f:V(G) \to V(G')$ is a pull back and τ' is a total-colouring of G', then the colour assignment τ defined by

$$\tau(x) = \tau'(f(x))$$

$$\tau(xy) = \tau'(f(x)f(y))$$

is a total-colouring of G.

Proof: Each vertex and each edge of G has a colour defined by τ . This is because $f: V(G) \to V(G')$ is a homomorphism.

Moreover, the colour assignment τ has no conflits. In fact, suppose we have two distinct edges xy and xz. Assume for a moment that $\tau(xy) = \tau(xz)$. Hence, $\tau'(f(x)f(y)) =$

 $\tau'(f(x)f(z))$. Since f is injective on N(x) and $y \neq z \in N(x)$, we have $f(y) \neq f(z) \in N(f(x))$. Thus, τ' is not a total-colouring of G', a contradiction. Now suppose we have two distinct adjacent vertices x and y. Because $f: V(G) \to V(G')$ is a homomorphism, we have that f(x) and f(y) are two distinct adjacent vertices of G'. Assume for a moment that $\tau(x) = \tau(y)$. Hence, $\tau'(f(x)) = \tau'(f(y))$. Thus, τ' is not a total-colouring of G', a contradiction. Now suppose we have a vertex x and an edge xy. Because $f: V(G) \to V(G')$ is a homomorphism, we have that f(x)f(y) is an edge of G'. Assume for a moment that $\tau(x) = \tau(xy)$. Hence, $\tau'(f(x)) = \tau'(f(x)f(y))$. Thus, τ' is not a total-colouring of G', a contradiction.

Corollary 1 If $f: V(G) \to V(G')$ is a pull back and κ' is an edge-colouring of G', then the colour assignment κ defined by

$$\kappa(xy) = \kappa'(f(x)f(y))$$

is an edge-colouring of G.

Proof: Analogous to proof of Lemma 1.

A total-colouring τ for G is said to be a *pull back* from a total-colouring τ' for G', if τ is defined from τ' as in Lemma 1. Analogously we define an edge-colouring κ for G to be a *pull back* from an edge-colouring κ' for G'.

For the convenience of the reader, we recall next a result proved in [7]: if G^2 admits a vertex-colouring with l colours, then there is a pull back $f: V(G) \to V(K_l)$. We note that, by definition, any vertex-colouring of G^2 needs $l \ge \Delta(G) + 1$ colours. Hence, this result actually says that, if we have a vertex-colouring of G^2 with $\Delta(G) + 1$ colours, then there is a natural way of proving that we can total-colour G with $\Delta(G) + 2$ colours and that we can edge-colour G with $\Delta(G) + 1$ colours.

Theorem 1 [7] There is a pull back $f: V(G) \to V(K_l)$ if and only if $\chi(G^2) \leq l$.

Proof: For the "if" part, let $\lambda: V(G^2) \to S$ be a vertex-colouring of G^2 with |S| = l.

Consider a bijection $g: S \to V(K_l)$. We shall show that the composition $f = g \circ \lambda$ is a pull back $f: V(G) \to V(K_l)$ (remember that $V(G) = V(G^2)$).

It is clear that the first condition of a pull back function is satisfied by f. Now, notice that λ is also a vertex-colouring of G with l colours, and that all vertices which have distance in G at most two, have distinct colours. Hence, f is injective when restricted to N(v), for all $v \in V(G)$.

For the "only if" part, let $f: V(G) \to V(K_l)$ be a pull back. This can be viewed as a colour assignment with $S = V(K_l)$. We are using $|S| \leq l$ colours.

If $uv \in E(G)$, then $f(u)f(v) \in E(K_l)$, that is, $f(u) \neq f(v)$. If u and v are at distance 2 in G then there is $w \in V(G)$ with $u, v \in N(w)$. Since f is injective in N(w), f(u) is again distinct from f(v). Hence, there are no conflicts and f is a vertex-colouring of G^2 . It follows that $\chi(G^2) \leq l$.

The total-chromatic numbers of complete graphs are well-known [9]: K_l is Type 2, if l > 0 is even and Type 1, if l is odd. In particular, we get sufficient conditions for a graph G to be Type 1: G has even maximum degree and G^2 admits a vertex-colouring with $\Delta(G) + 1$ colours.

Corollary 2 Suppose $\chi(G^2) \leq l$. Then

- $\chi''(G) \leq l$, if l is odd;
- $\chi''(G) \leq l+1$, if l is even and l > 0.

Proof: It follows immediately from Lemma 1, Theorem 1, and the above remarks.

Another useful feature of Corollary 2 is that it gives a sufficient condition for a class of graphs to satisfy Vizing's total-colour conjecture: the square of each of its graphs have chromatic number $\Delta + 1$.

4 Dually chordal graphs

In this section we shall prove that Vizing's total-colour conjecture holds for the class of dually chordal graphs. We denote by $G_i = G[v_1, \ldots, v_i]$ the subgraph induced by $\{v_1, \ldots, v_i\}$ and by $N_i(v)$ the neighbourhood of v in G_i .

Lemma 2 If G is dually chordal, then $\chi(G^2) = \Delta(G) + 1$.

Proof: Let v_1, \ldots, v_n be a maximum neighbourhood elimination order of G.

For each $i, 1 \leq i \leq n$, let u_i be a maximum neighbour of v_i in G_i . By definition, for all $w \in N_i(v_i), N_i(w) \subseteq N_i(u_i)$. In other words, $N_i(w) \in N_i^2(v_i)$ implies that $N_i(w) \subseteq N_i(u_i)$. Hence, there are at most $\Delta(G) + 1$ vertices in the family of sets $N_i^2(v_i)$, for each i.

Thus, given a maximum neighbourhood order of G, the greedy method uses at most $\Delta(G) + 1$ colours to colour the vertices of G^2 .

It follows from Theorem 1 and Lemma 2 that we can pull back total-colourings and edge-colourings from complete graphs to colour dually chordal graphs.

Corollary 3 All dually chordal graphs can be total-coloured with $\Delta(G) + 2$ colours. All dually chordal graphs with even maximum degree are Type 1. All dually chordal graphs with odd maximum degree are Class 1.

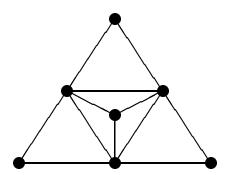


Figure 1: A chordal graph with $\chi(G^2) > \Delta(G) + 1$.

We remark that the results of Corollary 3 hold for subclasses of dually chordal graphs such as doubly chordal graphs, strongly chordal graphs and interval graphs.

5 Conclusions

We consider the extension of our results to two classes graphs: neighbourhood-Helly graphs and chordal graphs.

A graph is *neighbourhood-Helly* when the set $\{N(v) : v \in V\}$ satisfies the Helly property. A characterization of dually chordal graphs says that G is dually chordal if and only if for all $k \ge 0, G^{2k}$ is chordal and $\{N^k[v] : v \in V\}$ has the Helly property [1].

Consider the class of graphs G that satisfy the following two properties:

- 1. the cardinality of a maximum clique of G^2 equals the chromatic number of G^2 ;
- **2.** for every maximum clique C of G^2 there exists a vertex v of G such that $N_G(v) = C$.

These two properties are enough to imply that $\chi(G^2) = \Delta + 1$. Note that property 1 is satisfied by graphs G having G^2 perfect. Property 2 is satisfied by neighbourhood-Helly graphs G.

Consider now the class of chordal graphs. For consider the chordal graph G depicted in Figure 1. This graph has diameter equals to 2, i.e., every pair of vertices is at distance at most 2, or more precisely $G^2 = K_7$. In this case, we need 7 colours for any vertex-colouring of G^2 . On the other hand, G has no universal vertex, $\Delta(G) = 5$. Therefore, Lemma 2 does not generalize to chordal graphs.

On the other hand, we were unable to find any evidence that Corollary 3 does not hold for chordal graphs (note that graph in Figure 1 has chromatic index equals 5). We conjecture that all chordal graphs with odd maximum degree are in fact Class 1. A more general question would be to determine the largest graph class for which all its odd maximum degree graphs are Class 1 and for which all its even maximum degree graphs are Type 1.

Acknowledgements

We are glad to acknowledge the careful reading of two referees.

References

- A. Brandstädt. Special graph classes a survey. Technical Report 199, Universität Duisburg Gesamthochschule, 1993.
- [2] A. Brandstädt, V. D. Chepoi, and F. F. Dragan. The algorithmic use of hypertree structure and maximum neighbourhood orderings. *Lecture Notes in Computer Science*, 903:65–80, 1995. Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG'94. To appear in *Discrete Applied Math*.
- [3] A. Brandstädt, V. D. Chepoi, and F. F. Dragan. Clique r-domination and clique r-packing problems on dually chordal graphs. SIAM J. Discrete Math., 10:109–127, 1997.
- [4] A. Brandstädt, F. F. Dragan, V. D. Chepoi, and V. I. Voloshin. Dually chordal graphs. Lecture Notes in Computer Science, 790:237-251, 1994. Graph-Theoretic Concepts in Computer Science, 19th International Workshop, WG'93. To appear in SIAM J. Discrete Math.
- [5] B. Chen, H. Fu, and M. T. Ko. Total chromatic number and chromatic index of split graphs. J. Combin. Math. Combin. Comput., 17:137-146, 1995.
- [6] V. Chvátal. Perfectly ordered graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, pages 63–68. North Holland, Amsterdam, 1984.
- [7] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. A greedy method for edge-colouring odd maximum degree doubly chordal graphs. *Congressus Numerantium*, 111:170–176, 1995.
- [8] C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. On edge-colouring indifference graphs. Theoretical Computer Science, 181:91–106, 1997.
- [9] S. Fiorini and R.J. Wilson. Edge-Colourings of Graphs. Pitman, London, 1977.
- [10] M. Gutierrez and L. Oubiña. Metric characterizations of proper interval graphs and tree-clique graphs. Journal of Graph Theory, 21:199–205, 1996.
- [11] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10:718–720, 1981.
- [12] J. Misra and D. Gries. A constructive proof of Vizing's theorem. Inf. Proc. Lett., 41:131-133, 1992.
- [13] M. Moscarini. Doubly chordal graphs, Steiner trees, and connected domination. Networks, 23:59-69, 1993.
- [14] J. L. Szwarcfiter and C. F. Bornstein. Clique graphs of chordal and path graphs. SIAM J. Discrete Math., 7:331–336, 1994.

- [15] V. G. Vizing. On an estimate of the chromatic class of a *p*-graph. *Diket. Analiz.*, 3:25–30, 1964. In Russian.
- [16] H. P. Yap. Total Colourings of Graphs. Lecture Notes in Mathematics 1623, Springer-Verlag, 1996.