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Abstract

We describe a greedy vertex colouring method which can be used to colour optimally
the edge set of certain chordal graphs. This new heuristic yields an exact edge-colouring
algorithm for odd maximum degree doubly chordal graphs. This class includes interval
graphs and strongly chordal graphs. This method shows that any such graph G can be
edge-coloured with maximum degree A(G) colours, i.e., all these graphs are Class 1. In
addition, this method gives a simple A(G) + 1 edge-colouring for any doubly chordal
graph.

1 Introduction

An edge-colouring of a graph is an assignment of colours to its edges such that no adjacent
edges have the same colour. The chromatic index of a graph is the minimum number of
colours required to produce an edge-colouring for that graph.

An easy lower bound for the chromatic index is the maximum vertex degree. A cele-
brated theorem by Vizing states that these two quantities differ by at most one [4]. Graphs
whose chromatic index equals the maximum degree are said to be Class 1; graphs whose
chromatic index exceeds the maximum degree by one are said to be Class 2. Very little is
known about the complexity of computing the chromatic index in general.

By definition of edge-colouring, each colour determines a matching and can cover at
most |n/2| edges, where n is the number of nodes. Therefore, if the total number of edges
is greater than the product of the maximum degree by |n/2], then the graph is necessarily
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Class 2. Graphs to which this argument can be applied are called overfull. More generally,
if a graph has an overfull subgraph with the same maximum degree, then the same counting
argument shows that the supergraph is Class 2. We call such graphs subgraph-overfull.

We considered in [1] classes of graphs for which being Class 2 is equivalent to being
subgraph-overfull. For such graphs the chromatic index problem is in P: a decomposi-
tion algorithm due to Padberg and Rao [3] checks in polynomial time whether a graph is
subgraph-overfull. We note that historical results of Konig on bipartite graphs and of Tait
on 3-regular planar graphs show that these two classes of graphs are trivial examples: any
set of Class 1 graphs satisfies vacuously the above equivalence [2].

We considered a new version of overfullness that is not as powerful as subgraph-overfull-
ness but is trivially checkable: a graph is said to be neighbourhood-overfull when it has a
maximum degree vertex whose neighbourhood induces an overfull subgraph. We proved that
every indifference graph with odd maximum degree is Class 1. Since graphs with an even
number of vertices cannot be overfull, graphs with odd maximum degree cannot be neigh-
bourhood-overfull. Hence, being Class 2 and being neighbourhood-overfull are vacuously
equivalent for indifference graph with odd maximum degree.

In this paper, we extend these results by considering classes of graphs that are defined
by special vertex perfect elimination orders. As a result, we prove that every doubly chordal
graph with odd maximum degree is Class 1.

2 Definitions and Notations

General terms

In this paper, G denotes a simple, undirected, finite, connected graph. V(G) and E(G)
are the vertex and edge sets of G. A clique is a set of vertices pairwise adjacent in G. A
mazximal cliqgue of G is a clique not properly contained in any other clique. A subgraph of G
is a graph H with V(H) C V(G) and E(H) C E(G). For X C V(G), we denote by G[X]
the subgraph induced by X, that is, V(G[X]) = X and E(G[X]) consists of those edges of
E(G) having both ends in X.

For each vertex v of a graph G, Adj(v) denotes the set of vertices which are adjacent to v.
In addition, N (v) denotes the neighbourhood of v, that is, N(v) = Adj(v)U{v}. A subgraph
which is induced by the neighbourhood of a vertex is simply called a neighbourhood. We
denote by N?(v) the family {N(u) : u € N(v)}. Given a graph G and k > 1, we denote by
G* the graph having V(G¥) = V(G) and satisfying xy € E(G*) if and only if z and y are
distinct and their distance in G is at most k. A vertex v is simplicial if N(v) is complete.
A vertex v is simple if N%(v) is totally ordered by set inclusion. A vertex v € N(v) is a
mazimum neighbour of v if and only if for all w € N(v), N(w) C N(u) holds. A vertex is
doubly simplicial if it is simplicial and has a maximum neighbour.



A perfect elimination order of a graph G is a total order on its vertex set vy,vy,..., v,
such that for each i, 1 < i < n, v; is simplicial in G[vy,vy,...,v;]. A graph is chordal if it
admits a perfect elimination order.

A simple perfect elimination order of a graph G is a total order on its vertex set
v1,V2,...,V, such that for each i, 1 < i < n, v; is simple in Glvy,vs,...,v;]. A doubly
perfect elimination order of a graph G is a total order on its vertex set vy, ve,...,v, such
that for each i, 1 < i < n, v; is doubly simplicial in G[vy,vg,...,v;]. A graph is strongly
chordal if it admits a simple perfect elimination order. A graph is doubly chordal if it ad-
mits a doubly perfect elimination order. We note that, by definition, every strongly chordal
graph is doubly chordal.

A interval perfect elimination order of a graph G is a total order on its vertex set
v1,V2,...,0, such that for every choice of vertices v;,vj,vp with ¢ < j < k, vjvp € E
implies v;v; € E. An interval graph is the intersection graph of a set of intervals of the
real line. Alternatively, a graph is interval if it admits a interval perfect elimination order.
We note that, by definition, every interval perfect elimination order is a perfect elimination
order. In Section 4 we prove that every interval perfect elimination order is a doubly perfect
elimination order.

The degree of a vertex v is deg(v) = |Adj(v)|. The maximum degree is then A(G) =
max,cy () deg(v). A vertex u is universal if deg(u) = [V(G)| — 1.

For us, K,, denotes the complete graph on k > 1 vertices.

Colouring

An assignment of colours to the vertices of G is a function \: V(G) — S. The elements
of the set S are called colours. A conflict in an assignment of colours is the existence of
two adjacent vertices with the same colour. A vertez-colouring of a graph is an assignment
of colours such that there are no conflicts. The chromatic number of a graph G is the
minimum number of colours used among all vertex-colourings of G and is denoted by x(G).

An assignment of colours to the edges of G is a function k: E(G) — S. Again, the
elements of the set S are called colours. A conflict in an assignment of colours is the
existence of two edges with the same colour incident to a common vertex. A vertex u is
said to be satisfied when k(uv) = k(uw) implies v = w, for all neighbours v, w of u. An
edge-colouring of a graph is an assignment of colours such that every vertex is satisfied or,
equivalently, such that there are no conflicts. The chromatic index of a graph G is the
minimum number of colours used among all edge-colourings of G and is denoted by x'(G).

A graph G is said to be Class 1 if x'(G) = A(G) and Class 2 if x'(G) = A(G) + 1.
Vizing’s theorem states that there are no other possibilities: all graphs are either Class 1
or Class 2 [4].

The greedy method for vertex-colouring considers the vertex set of a graph according



to a total order and assign to the current vertex the smallest available colour that does
not create conflicts. A perfect order is a total order on the vertex set of a graph such that
the greedy method vertex-colours optimally all its induced subgraphs. A graph is perfectly
orderable if it admits a perfect order. Every chordal graph is perfectly orderable as every
perfect elimination order is a perfect order.

3 Pull back of complete graphs

Given two graphs G and G’, a pull back is a function f:V(G) — V(G'), such that
e if zy € E(G) then f(z)f(y) € E(G").
e f is injective when restricted to N(v), for all v € V(G).

Lemma 1 If f:V(G) — V(G') is a pull back and &' is an edge-colouring of G' then the
colour assignment k defined by

K(zy) =K' (f(2)f(y))
s an edge-colouring of G.

Proof: Each edge of G has a colour defined by x. This is because f:V(G) — V(G') is a
pull back function.
Moreover, the colour assignment s has no conflits. In fact, suppose we have two distinct

edges zy and zz. Assume for a moment that k(zy) = k(zz). Hence, k'(f(z)f(y)) =
K'(f(z)f(z)). Since f is a pull back function and y # z € N(x), we have f(y) # f(z) €
N(f(x)). Thus, £’ is not an edge-colouring of G', a contradiction. ]

An edge-colouring x for G is said to be a pull back from an edge-colouring ' for G', if
K is defined from «' as in Lemma 1.

We begin by showing that, if G? admits a vertex-colouring with [ colours, then there is a
pull back f:V(G) — V(K;). We note that, by definition, any vertex-colouring of G2 needs
[ > A(G) + 1 colours. Hence, this result actually says that, if we have a vertex-colouring
of G? with A(G) + 1 colours, then there is a natural way of getting an edge-colouring of G
with A(G) + 1 colours.

Theorem 1 There is a pull back function f:V(G) — V(K;) if and only if x(G?) < 1.

Proof: For the “if” part, let \: V(G?) — S be a vertex-colouring of G? with |S| = I.
Consider a bijection g: S — V(K;). We shall show that the composition f = go ) is a
pull back function f:V(G) — V(K;) (remember that V(G) = V(G?)).



It is clear that the first condition of a pull back function is satisfied by f. Now, notice
that A is also a vertex-colouring of G with [ colours, and that all vertices which have distance
in G at most two, have distinct colours. Hence, f is injective when restricted to N(v) for
all v € V(QG).

For the “only if” part, let f: V(G) — V(K;) be a pull back function. This can be viewed
as a colour assignment with S = V(K;). We are using |S| = [ colours.

If uv € E(G) then f(u)f(v) € E(K;), that is, f(u) # f(v). If u and v are at distance
2 in G then there is w € V(G) with u,v € N(w). Since f is injective in N(w), f(u) is
again distinct from f(v). Hence, there are no conflicts and f is a vertex-colouring of G2. It
follows that x(G?) < 1. ]

The chromatic indices of complete graphs are well-known: K; is Class 1 if [ > 0 is even
and Class 2 if [ is odd. In particular, we get sufficient conditions for a graph G to be Class
1: G has odd maximum degree and G? admits a vertex-colouring with A(G) + 1 colours.

Corollary 1 Suppose x(G?) < 1. Then
e X'(G)<Il—-1ifliseven,l>0

o X'(G) <liflis odd.

Proof: It follows immediatly from Lemma 1, Theorem 1, and the above remarks.

4 Doubly chordal graphs

In this section we shall prove that any odd maximum degree doubly chordal graph is Class 1.
We denote by G; = G[vy,...,v;] the subgraph induced by {vy,...,v,} and N;(v) the neigh-
bourhood of v in Gj.

Lemma 2 If G is doubly chordal then x(G?) = A(G) + 1.

Proof: Let vy,...,v, be a doubly perfect elimination order of G.

For each i, 1 <1 < n, let u; be a maximum neighbour of v; in G;. By definition, for all
w € N;(v;), Ni(w) C Nj(u;). In other words, N2(v;) C Nj(u;). Hence, there are at most
A(G) + 1 vertices in N?(v;), for each 1.

Thus, the greedy method uses at most A(G) + 1 colours to colour the vertices of G?.
Since we need at least A(G) + 1, the result follows. [



Corollary 2 All doubly chordal graphs with odd mazimum degree are Class 1.

We note that in particular Corollary 2 implies that any strongly chordal or interval
graph with odd maximum degree is Class 1. The fact that interval graphs are doubly
chordal follows from the result below.

Lemma 3 FEvery interval perfect elimination order is a doubly perfect elimination order.

Proof: Let G be an interval graph with interval order O = vy, v9,...,v,. We denote by
f(v;) the leftmost neighbour of v;, 1 < i < n. We shall prove that for each 7, 1 < i < n,
NZ(v;) € Ni(f(v;)). This says that O is actually a doubly perfect elimination order.

For consider w € N?(v;). We denote by d;(w, ) the distance between w,z € V(G;) in
the graph Gj.

Case 1: d;(w,v;) = 0. This says that w = v; which implies wf(v;) € E(G;).

Case 2: d;(w,v;) = 1. This says that wv; € E(G;). Hence f(v;) < w. If f(v;) = w, then
w € Ni(f(v;)). Otherwise, f(v;) < w, which implies wf(v;) € E(G;) as O is a interval
order.

Case 3: d;(w,v;) = 2. Let = be a vertex satisfying: wz,vz € E(G;). If © < w < v;, then
f(vi) <z implies wf(v;) € E(G;). If w < z < v;, then f(v;) < w implies wf(v;) €
E(G;) and f(v;) > w implies w < f(v;) < z, which in turn implies wf(v;) € E(G;).

Corollary 3 All strongly chrodal graphs with odd mazimum degree are Class 1. All interval
graphs with odd mazimum degree are Class 1.

5 Conclusions

Consider the chordal graph G depicted in Figure 1. This graph has diameter equals to 2,
i.e., every pair of vertices is at distance at most 2, or more precisely G> = K;. In this
case, we need 7 colours for any vertex-colouring of G2. On the other hand, this graph has
no universal vertex, A(G) = 5 and its chromatic index is 5. Therefore, Lemma 2 does not
generalize to chordal graphs.

On the other hand, we were unable to find any evidence that Corollary 3 does not hold
for chordal graphs (and perhaps even for larger classes). We conjecture that all chordal
graphs with odd maximum degree are in fact Class 1. A more general question would be to
determine the largest graph class for which this is true.



Figure 1: A chordal graph with x(G?) > A(G) + 1.
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