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Abstract

The Binary Phylogeny Problem is to reconstruct a tree describing
the evolutionary history of a group of taxa for which a binary matrix
of characteristics is given. Gusfield [5] presented an O(mn)-time algo-
rithm for this problem with n taxa and m characteristics. This bound
is tight if the input is given as an n×m matrix. In this paper we show
that a faster algorithm is possible provided the input is given as a list
of the “1” positions in the matrix. We present a simple algorithm for
this problem based on coloring the vertices of a bipartite graph. The
running time of our algorithm is O(n + m + r), where r is the number
of “1”s in the matrix.

Keywords: combinatorial problems, phylogenetic trees, data structures,

design of algorithms.

1 Introduction

A phylogenetic tree gives an interpretation of the evolutionary history of a
group of taxa. An important problem in science is to build such a tree from
data relating the taxa. In one version of this problem, which we call the
Binary Phylogeny Problem, the tree is constructed from a n×m binary ma-
trix where each row corresponds to a taxon and each column to a character,
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with “1” in position i, j if taxon i has character j. Here, as in the rest of
the paper, n indicates the number of taxa and m, the number of characters.

The goal is to build a rooted tree in which the taxa are leaves and such
that each character corresponds to a rooted subtree that contains exactly
the taxa that have this character.

An O(nm2) algorithm to solve this problem was proposed by Camin
and Sokal [3]. Later, a simple property of the matrix allowed an O(n2m)
algorithm. Recently, Gusfield [5] presented an O(nm) algorithm. All these
results assume that the input is given as an n × m matrix. However, the
input can be represented more efficiently as a bipartite graph.

The matrix format needs Ω(nm) space to store it, and in this case Gus-
field’s upper bound is tight because an algorithm must look at all positions
in the matrix before it can even decide whether there is a phylogeny or not.

The bipartite graph format is defined as follows. Let X be the set of rows
of the matrix M and Y the set of columns. There is an edge between i ∈ X

and j ∈ Y if and only if M [i, j] = 1. This format requires only O(n+m+ r)
space, where r is the number of ones in M . If M is sparse this represents
a big savings. Furthermore, for the bipartite graph format one can design
a linear time algorithm, that is, one running in O(n + m + r) time. Notice
that for the bipartite graph G = (V, E) we have |V | = |X| + |Y | = n + m

and |E| = r. Even if the matrix is not sparse, the new algorithm is simpler
and more elegant than previous ones.

Agarwala, Fernández-Baca, and Slutzki [1] were the first to find efficient
solutions to the binary phylogeny problem for sparse matrices. Meidanis
and Munuera [6] also gave a fast algorithm based on PQ-trees [2]. The
advantages of the algorithm presented here are the following:

• production of a tree with minimum number of internal nodes, instead
of one internal node per character as some of the previous construc-
tions.

• the coloring scheme used has applications in other problems involving
binary matrices, for instance, testing for the consecutive ones property.
It is known that all matrices with a phylogeny have the consecutive
ones property but not vice-versa [5].

• use of very simple data structures.

In addition, it is interesting to note that the order of processing the
characters is different in each approach. Agarwala, Fernández-Baca, and
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Figure 1: A matrix with an associated phylogeny.

Slutzki process the characters in nonincreasing order by size; the present
approach processes them in non decreasing order; and the PQ-tree approach
processes them in an arbitrary order.

We remark that Gusfield’s algorithm [5] can also be adapted to run in
linear time if the input is a bipartite graph, but again our algorithm is
simpler.

The rest of this paper is organized as follows. In Section 2 we present
some definitions used in this paper. Section 3 contains the main results.
Concluding remarks appear in Section 4.

2 Definitions

Let M be an n × m binary matrix. We say that M admits a phylogeny
or has a phylogeny when it is possible to build a rooted tree T for which
the rows of M are in one-to-one correspondence with the leaves of T and
such that for each column A of M the leaves that correspond to rows with
a “1” in column A are precisely the leaves of a rooted subtree of T . In this
case any such tree T is called a phylogenetic tree or a phylogeny for M .
The phylogeny may not be unique.

Figure 1 shows a matrix with a corresponding phylogeny. In this figure
C1, C2, and C3 represent the columns whereas 1, 2, 3, 4, and 5 represent
the rows of M . Figure 2 shows a matrix which has no phylogeny.

We will use extensively the following well-known characterization of this
property [5]. In the statement below we identify each column A with the



M =







0 1
1 1
1 0







Figure 2: A matrix with no phylogeny.

set of rows that have a “1” in column A.

Theorem 1 A binary matrix M has a phylogenetic tree if and only if for

each pair of columns A and B of M either A ⊆ B or B ⊆ A or else

A ∩ B = ∅.

We sometimes use the term taxon to refer to a row of M and the term
character to refer to a column of M . Also, we will routinely identify a
character with a set of taxa as we did above.

Our graph notation is standard (see, for instance, [4]). We use the
notation adj(v) to denote the set of vertices adjacent to v.

A binary matrix M can be represented as a bipartite graph G = (V, E)
with V = X ∪ Y , where X is the set of rows of M and Y , the set of
columns, and E = {vA | v ∈ X, A ∈ Y, and M [v, A] = 1}. If columns are
viewed as subsets of X as we did earlier, then we can also write simply
E = {vA | v ∈ A}.

3 The Algorithm

In this section we will present a simple algorithm to verify if a given matrix
possesses a phylogeny. The algorithm also constructs a phylogenetic tree if
there is one.

We assume the input is given as a bipartite graph G = (X ∪ Y, E), and
elements of Y are viewed as subsets of X. The algorithm works in two
phases.

The first phase sorts the characters by size (degree in G). This can be
done in linear time using bucket sort or a similar technique.

The second phase uses Theorem 1 to verify, for each pair of columns
A and B whether A ⊆ B, B ⊆ A, or A ∩ B = ∅. Since they are ordered
by size, if we know that |A| ≤ |B| it suffices to check whether A ⊆ B or
A ∩ B = ∅. To check containment we color the vertices of each set in turn



with a different color and use the concept of forbidden colors, which we
explain in the sequel.

In the beginning all vertices have color 0. This color will never be for-
bidden. We process each set in ascending order by size, giving each one a
new color from the list 1, 2, 3, . . .. The color of a set is used to paint all its
elements. If an element x of a set A that is being processed has already
some nonzero color c, this color c is declared forbidden, meaning that we
don’t want to see c again after painting A. If we encounter a forbidden color
again while painting a different set, the input does not have a phylogeny.

The algorithm is shown in Figure 3. Notice that new forbidden colors
are stored in a waiting stack during the painting of the current set, and only
after this set has been completely colored are they marked as forbidden.
Also, after all sets have been processed, an extra pass thru all vertices in X

is needed to check for the presence remaining of forbidden colors.

3.1 Proof of correctness

Throughout this section we will use the notation A ¹ B meaning that A

was placed before B in the first phase of the algorithm. This implies that
|A| ≤ |B|, but the converse is not true.

Matrix M admits a phylogeny if and only if the following property holds
for all columns A and B:

A ⊆ B or B ⊆ A or A ∩ B = ∅ (1)

We will initially prove that, if there are two columns A and B for which
(1) fails, the algorithm returns false.

Without loss of generality suppose A ¹ B. This implies |A| ≤ |B|. Also,
without loss of generality take B as the first set processed after A for which
(1) fails. Let E = A ∩ B and E = A \ E (set difference). Since (1) is not
valid and |A| ≤ |B|, we must have both E and E nonempty. Let v be any
vertex in E and u any vertex in E.

Let’s focus on the coloring phase. When A is processed, its taxa will all
get a certain color a 6= 0. Later, when B is processed, taxon v will get a new
color, b, and its color c at this moment will be declared forbidden. Color c

may or may not be the same as a, but in any case u will have the same color
as v when B is about to be processed, because of the choice of B. Indeed,
if v has color c this is because some set C processed after A and before B

contains v. But then A ¹ C ¹ B and v ∈ A ∩ C imply A ⊆ C, hence u got
color c as well.



01 Initialize color(v) ← 0 for all v ∈ X

02 Initialize all colors as permitted (not forbidden)
03 new color ← 1
04 for each vertex A ∈ Y in nondecreasing order of size do
05 for each vertex v ∈ adj (A) do
06 if color(v) 6= 0 then
07 if color(v) is forbidden then
08 return false
09 else
10 put color(v) in waiting stack
11 end if
12 end if
13 color(v) ← new color
14 end for
15 new color ← new color + 1
16 remove all colors from waiting stack,

and mark these colors as forbidden
17 end for
18 for each v ∈ X do
19 if color(v) is forbidden then
20 return false
21 end if
22 end for
23 return true

Figure 3: Coloring algorithm for the binary phylogeny problem.



So we are left with a vertex u such that color(u) is forbidden. This color
will be caught either when the next set containing u is processed or in the
end of the algorithm (lines 18–22), if no such set exists after B.

To conclude the proof, let’s show that if (1) holds for every pair of
columns A and B, then the algorithm returns true.

We will do that by showing that no forbidden color is ever detected in
lines 7 or 19, so that the algorithm will reach the last line and will return
true. Indeed, let A be the set corresponding to a forbidden color a and let B

be the set during the process of which color a became forbidden. Of course
we have A ∩ B 6= ∅ and A ¹ B, hence |A| ≤ |B|. Since (1) holds, we must
have A ⊆ B. Therefore, color a was totally eradicated by B’s color and
there is no opportunity for future detection.

3.2 Complexity

We already saw that the sorting phase can be done in O(n + m + r) time.
It is straightforward to check that each line of the algorithm in Figure 3 is

executed O(n+m+r) times. The most tricky part is perhaps the processing
of line 16, but this is bounded by the number of times line 10 is executed,
since everything removed from the stack must have been placed there earlier.
Line 10 is executed at most once for each edge of the graph, so the linear
bound holds.

As for the space complexity, the extra space needed is just a vector of
integers to hold color(v) for each v ∈ X and a vector of booleans to keep
the forbidden information for colors. Since there is one color per set A ∈ Y ,
the total extra space is O(n + m).

3.3 Tree construction

We can easily modify the algorithm given in Figure 3 to build a phylogenetic
tree T at the same time. Of course, the resulting object will only be a valid
tree if the algorithm returns true.

Each node of T will contain the following information:

• a list of characters, which we will call c-list , and

• a list of children (for internal nodes), or a taxon (for leaves).

In addition, according to the definition of phylogenetic tree, each char-
acter A must correspond to a node in the tree. This node is such that its



descendent leaves are exactly the taxa in A. In our construction, this node
is unique and will be the only node containing A in its c-list.

Characters are processed in nondecreasing order of size, so our tree is
built from the bottom up. When a given character is processed, either a
new node is build and this character becomes the only element in the new
node’s c-list, or the character is included in the c-list of an already existing
node. Notice that when a new node is created, all its children have been
created already, because of the processing order.

During the processing of a character, we keep a list of nodes correspond-
ing to the colors put in the waiting stack. Colors correspond to characters,
which in turn are associated to nodes. Previously used colors correspond to
already constructed nodes.

The following modifications in the algorithm will yield the tree.

1. when we begin processing a character, we initialize a children list with
the empty list;

2. when we find a taxon with zero color in a character, we build a leaf
node with it and add it to the children list;

3. when we find a taxon with a nonzero color in a character, we add the
corresponding already existing node to the children list. Care must be
taken in not adding the same node twice. A presence bit is sufficient
for that.

4. when we finish processing a character, we examine the children list. If
it contains only one node, we add the character to this node’s c-list;
otherwise, we build a new node with these children, and whose c-list
will contain just the current character;

5. the same procedure is performed for the final loop in lines 18–22 (keep-
ing a children list, etc.). But, in this case, there is no character to add.
As a result, the root may have an empty character list.

The above additions do not modify the asymptotic time and space com-
plexities.

4 Conclusions

We have presented a simple, efficient algorithm for checking the existence of
a phylogeny for a binary matrix coded as a bipartite graph. The algorithm



runs in time O(n + m + r) where n × m is the size of the matrix and r is
the number of “1” entries.

The space complexity of the algorithm is also linear in n, m, and r. This
algorithms improves on previous ones in that it constructs a more compact
tree, uses simple data structures, and has linear complexity.

The coloring technique used by the algorithm is a powerful idea and may
perhaps be extended to other important problems, for instance, checking the
consecutive ones property for a binary matrix.
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