
A SIMPLE COMBINATORIAL ALGORITHM
FOR DE BRUIJN SEQUENCES

ABBAS ALHAKIM
DEPARTMENT OF MATHEMATICS

& COMPUTER SCIENCE
CLARKSON UNIVERSITY

POTSDAM, NY 13699

Abstract. This note presents a combinatorial method to construct a De Bruijn
cycle for any order n.

1. Introduction

A binary De Bruijn sequence of order n is a string of bits that contains every possible
pattern of size n exactly once each. Although the existence of such sequences is not
obvious, it is well known that they exist for all orders n and that the number of
distinct sequences is 22k−1−k, see De Bruijn [3]. Observe that this number is 1, 1, 2, 16
and 2048 for n = 1, . . . , 5 respectively.

One aspect of these sequences makes them similar to Gray codes. A Gray code is
a Hamiltonian cycle in a hypercube while a de Bruijn cycle is a Hamiltonian cycle
in the so-called De Bruijn digraph. A De Bruijn digraph Gn = (Vn, En) of order n
has the same vertex set as a hypercube, i.e., the 2n binary patterns, but the edges
are different. For two vertices x = (x1, . . . , xn) and y = (y1, · · · , yn), (x,y) is an
edge if and only if yi = xi+1; i = 1, . . . , n − 1. The De Bruijn digraphs of orders 2
and 3 are shown in Figure 1. Interestingly, Eulerian circuits and Hamiltonian cycles
are intimately related in the case of De Bruijn digraphs: the consecutive edges of a
Eulerian circuit in Gn−1 form a Hamiltonian cycle in Gn.

These combinatorial objects have been used to design a rotating drum and to break
a hypothetical key-lock system [4]. Besides these recreational problems, they have
been used in diverse fields such as the generation of pseudo-random sequences. In
fact, linear feedback shift register sequences having the longest period possible are
De Bruijn sequences without the all zero pattern, referred as punctured de Bruijn se-
quences and they have been popular in Engineering applications because they are im-
plemented efficiently by hardware devices called linear feedback shift registers (LFSR),
see Golomb [5].

The first conference on De Bruijn cycles was held in 2004 with a theme of ad-
vancing the interest and knowledge in the area of De Bruijn cycles and their many
generalizations as they are seen to belong to a larger family of combinatorial objects
called universal sets, see [1, 2, 6, 7].

There are various methods for generating De Bruijn cycles, but the most popular
are by finding linear recurrences that can have an almost full period (LFSR), this is

Key words and phrases. De Bruijn sequence, prefer one algorithm.
1



Figure 1. De Bruijn digraphs of orders 2 and 3 respectively

based on primitive polynomials in Galois field GF (2). There are also graphical and
combinatorial methods. Fredricksen [4] is an excellent exposition that surveys the
known methods of generation. In this survey, Fredricksen [4, p. 207] writes “When
the mathematician on the street is presented with the problem of generating a full
cycle, one of three things happens: he gives up, or produces a sequence based on
a primitive polynomial, or produces the [prefer-one sequence]. Only rarely is a new
algorithm proposed.” The prefer-one algorithm is a very simple method amazingly
capable of generating a full cycle. For any positive integer n ≥ 1, the algorithm puts
n zeroes, and proceeds after this by proposing 1 for the next bit and accepting it
when the word formed by the last n bits has not been encountered previously in the
sequence, otherwise 0 is placed. The algorithm stops when both 0 and 1 do not bring
a new word.

Fredricksen cites five authors who discovered the prefer-one algorithm. It is perhaps
worth mentioning that the author of this note rediscovered this same algorithm as a
Hamiltonian problem relating to the graph of some simple Markov chain.

A similar combinatorial algorithm, also given in Fredricksen [4, p. 212], is named
prefer-same algorithm but is more elaborate than the prefer-one. In this note we
present and prove yet another algorithm of the same family, which we refer as the
prefer-opposite algorithm. To the best of the author’s knowledge, it has not been
published any where, or at least it is not popular enough, despite the fact that it
enjoys better properties than its more famous cousins, as will be explained at the end
of this note. For a bit b and a positive integer i we will use the terminology b̄ = 1− b
and bi = b . . . b︸ ︷︷ ︸

i

.

Prefer-Opposite Algorithm
2



1. Let x1 = · · · = xn = 0.
2. i = n + 1
3. If xi−n+1 . . . xi−1x̄i−1 is a pattern that has not appeared before then let xi = x̄i−1,

increment i by one and repeat Step 3.
4. Otherwise, if xi−n+1 . . . xi−1xi−1 is a pattern that has not appeared earlier in the

sequence then let xi = xi−1, increment i by one and go to Step 3.
5. Otherwise, stop.

Lemma 1.1. The algorithm does not produce the all one pattern.

Proof. Let 1n be the all one pattern of size n. Because of the self-loop at this vertex,
it can only appear after the n-pattern 01 . . . 1. By preferring the opposite, the latter
pattern must be followed by 1 . . . 10. �

The next result shows that the all one pattern is the only one that does not appear.

Theorem 1.2. For any integer n, the Prefer Opposite Algorithm generates a cycle
of size 2n − 1 that includes each pattern exactly once, except the all ones pattern.

Proof. We will prove that the algorithm works by verifying two steps. (1) First,
the algorithm terminates at 0n. (2) All patterns except 1n are included. To see
(1), suppose the algorithm terminates at the point x1 . . . xn. This means that both
x2 . . . xn0 and x2 . . . xn1 must have appeared earlier in the sequence. If x1 . . . xn 6= 0n

then it follows that the (n − 1)-pattern xn−1 := x2 . . . xn must have appeared three
times, the third time being at the very end, as in the following diagram.

0n → · · · → bxn−1 → xn−1x̄n → · · · → b̄xn−1 → xn−1xn → · · · → xn−1xn

Therefore, x1, . . . , xn must have appeared earlier but this is a contradiction because
the algorithm does not allow repetitions. Hence, the algorithm can only terminate
with 0n.

To prove (2) suppose a word w = x1 . . . xn–that does not consist of ones only–does
not appear in the sequence. Then we can assume without loss of generality that
xn−1 = xn = b (if x1 . . . xn−2xn−1x̄n−1 does not appear, neither does x1 . . . xn−2bb).
Under this assumption we will show that the word x2 . . . xn−2bbb does not appear in
the sequence. If it did then we must have also seen x2 . . . xn−2bbb̄. So for some bit c
the following two words are present. cx2 . . . xn−2bb and c̄x2 . . . xn−2bb. But then the
word w must be present. Let us consider two cases.
Case 1. If b = 0, repeating the previous argument inductively shows that the word
z = xn−20 . . . 0︸ ︷︷ ︸

n−1

does not appear. This immediately leads to a contradiction, as it says

that the algorithm does not terminate at zero.
Case2. b = 1. Let i be the smallest index 1 ≤ i ≤ n so that xi = 0 and xj = 1; j > i.
This choice of i is possible due to the assumption that w is not all ones. Now repeating
the same argument above i− 1 times reveals that 01 . . . 1︸ ︷︷ ︸

n−1

is not in the sequence. By

Lemma 1.1, this in turn implies that 1 . . . 1︸ ︷︷ ︸
n−1

0 does not appear. Applying the argument

in Case 1 shows again that the sequence does not end with 0n, which establishes the
proof. �

3



Proposition 1.3. The longest run of ones, 1n−1, is the last run of ones in the se-
quence.

Proof. The proposition claims that 1n−1 is followed by 0n−1 (and then the algorithm
halts). Suppose not. Then 1n−1 is followed by 0j1 for some j < n − 1. This implies
that the pattern 1i0j1; i + j = n− 1 occurs after 01n−1. Since the algorithm cannot
halt at this pattern, it follows that 1i−10j10 and therefore 1i−10j11 occur afterwards.
Applying this argument (n − 2) times implies that 01n−1 occurs subsequently for a
second time, a contradiction. �

To produce a full De Bruijn sequence, the algorithm can therefore be adjusted so
as to count the number of ones in the running end of the sequence, when this count
is n− 1, we append 1 and exit.

The following table displays the prefer-opposite sequence as well as the prefer-one
sequence without the lst n− 1 zeroes for n = 1, . . . , 5. It can be seen that for n ≤ 4
one of these sequences is the reverse of the other. This is not the case though for
n = 5.

By construction, the prefer-one is biased to 1’s, while the prefer opposite tends to
keep the balance between 1’s and 0’s. In fact, Fredricksen [4] states that the prefer-
one sequence has most of its ones in the beginning. For n = 59 the first 106 bits are
90 percent one, and the first 1/4 of the sequence for n = 22 is 60 percent 1. These
percentages of ones within the 1/4 of the prefer-opposite sequences are very close to
50% for n = 10, . . . 20.

n prefer-one sequence prefer-opposite sequence
1 01 01
2 0011 0011
3 00011101 00010111
4 0000111101100101 0000101001101111
5 00000111110111001101011000101001 00000101011010010001100111011111

References

[1] F. Chung, P. Diaconis, R. Graham, Universal Cycles for Combinatorial Structures, Discrete
Mathematics, 110, 43-59, (1992).

[2] J. Cooper, R. Graham, “Generalized de Bruijn Cycles”. Annals of Combinatorics, 8(1): 13-25,
(2004).

[3] N. G. de Bruijn, “A Combinatorial Problem”. Koninklijke Nederlandse Akademie v. Weten-
schappen 49: 758764, (1946).

[4] H. Fredricksen, “A Survey of Full Length Nonlinear Shift Register Cycle Algorithms”. SIAM
Review, 24(2): 195-221, (1982).

[5] S.Golomb, Shift Register Sequences. Holden-Day, Inc., (1967).
[6] D. Knuth, The Art of Computer Programming Vol. 4A. To appear.
[7] C. Savage, “A Survey of Combinatorial Gray Codes”. SIAM Review 39(4): 605-629, (1997).

Clarkson University
E-mail address: aalhakim@clarkson.edu

4


