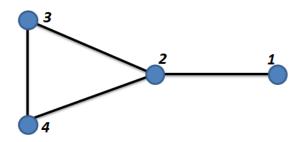
Ata das questões 5.3.1 e 5.3.3 Leandro Teófilo Pinto dos Reis 14 de maio de 2012

Questão 5.3.1. – Enunciado: Compute the cromatic polynomials of the graphs below:

Primeiro grafo (G1). Duas formas de computar o polinômio cromático foram utilizadas: **Ordenação Simplicial** e o **Teorema da Recorrência Cromática**.

1ª forma - Usando ordenação simplicial, temos:

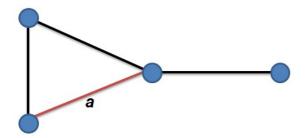


Com isso, obtivemos:

$$\chi(G_1;k) = k(k-1)(k-1)(k-2) = k(k-1)^2(k-2)$$

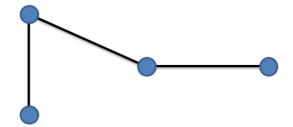
2ª forma – Usando o **Teorema da Recorrência Cromática**, que diz que: Se G é um grafo simples e $\mathbf{a} \in E(G)$, então $\chi(G,k) = \chi(G-a) - \chi(G,a)$;

Para aplicar tal teorema primeiramente escolheremos uma aresta **a** a ser utilizada, como trata figura abaixo.



Como $\chi(G1; k) = \chi(G1 - a; k) - \chi(G1 = a; k)$, teremos de calcular $\chi(G1 - a; k) = \chi(G1 = a; k)$.

Abaixo temos o grafo G1 – a (gerado através da deleção da aresta a de G1).



De acordo com a proposição 5.3.3 do livro: Se G é uma árvore com n vértices, então $\chi(G; k) = k(k-1)^{n-1}$.

Como G1 - a é uma árvore temos: $\chi(G1 - a; k) = k(k - 1)^3$.

Agora precisamos computar **X**(G1 ■ a; k). Abaixo temos o grafo **G1** ■ **a** (gerado através da contração da aresta **a** de G1).

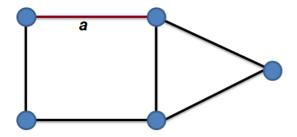
Como **G1.a** também é uma árvore temos χ (G1 • a; k) = k(k – 1)².

Com isso finalmente concluímos que :

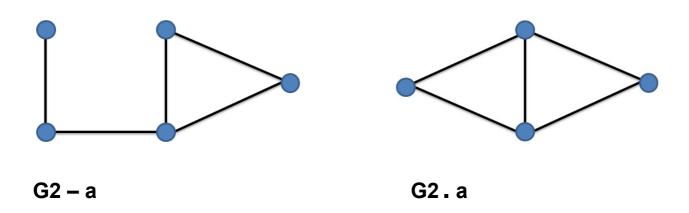
 $\chi(G_{1,k}) = k(k-1)^3 - k(k-1)^2 = k[(k-1)^3 - (k-1)^2] = k[k-1]^2[(k-1)-1] = k(k-1)^2(k-2)$, o que nos leva ao mesmo resultado obtido usando a primeira forma de resolução.

Segundo grafo (G2) – Para computar o polinômio cromático de G2 foi utilizado primeiramente o *Teorema da Recorrência Cromática*.

Utilizamos no Teorema a aresta destacada abaixo.



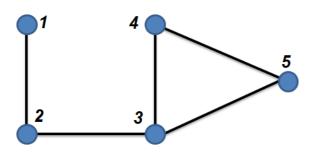
Utilizando essa aresta, geramos os dois grafos abaixo.



Segundo o Teorema da Recorrência Cromática, temos:

$$\chi(G2; k) = \chi(G2 - a; k) - \chi(G2 \cdot a; k)$$

Para calcular χ (G2 – a;k), utilizaremos *Ordenação Simplicial*, o que nos dá:

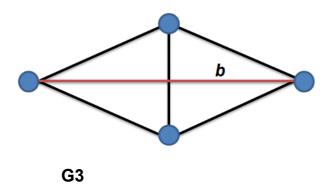


Com isso temos:

$$\chi$$
(G2 - a; k) = k(k - 1)(k - 1)(k - 1)(k - 2) = k(k - 1)³(k - 2)

Para calcular X(G2 ■ a; k), utilizaremos o princípio da adição de aresta para gerar um grafo onde o cálculo do polinômio cromático é mais fácil de ser realizado.

Para o grafo G2 a , adicionaremos a aresta *b* destacada abaixo, gerando o grafo G2 a + b, que chamaremos aqui de G3.



Usando Recorrência Cromática, sabemos que:

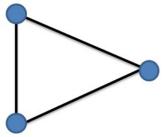
$$\chi(G3,k) = \chi(G3 - b,k) - \chi(G3 \cdot b,k)$$
, o que nos leva a :

$$\chi(G3 - b; k) = \chi(G3; k) + \chi(G3 \cdot b; k)$$
.

Sabendo que G_3 é um K4, podemos facilmente calcular seu polinômio cromático, por se tratar de um grafo simples completo.

$$\chi$$
(G3,k) = k(k - 1)(k - 2)(k - 3)

Para calcular **X**(G3 ■ b; k), procederemos da mesma forma, pois a contração da aresta **b** gera um grafo completo de 3 vértices, que vemos abaixo



G3 • b

Sabendo que G3 • b é um K₃ ,então χ (G3 • b;k) = k(k - 1) (k - 2)

Até agora temos:

$$\chi$$
(G3; k) = k(k - 1)(k - 2)(k - 3)

$$\chi(G3 \cdot b; k) = k(k - 1)(k - 2)$$

Com isso temos:

$$\chi(G3 - b; k) = k(k - 1)(k - 2)(k - 3) + k(k - 1)(k - 2) = k(k - 1)(k - 2)[(k - 3) + 1] = k(k - 1)(k - 2)^2$$

Como $G_3 - b = G2 \cdot a$, temos: $\chi(G2 \cdot a; k) = k(k - 1)(k - 2)^2$. Sabemos também que $\chi(G2 - a; k) = k(k - 1)^3(k - 2)$, agora é só calcular $\chi(G2; k)$.

$$\chi(G2; k) = k(k-1)^3(k-2) - k(k-1)(k-2)^2$$

$$\chi(G2, k) = k(k-1)(k-2)[(k-1)^2 - (k-2)]$$

$$\chi(G2, k) = k(k^2 - 3k + 2) [(k^2 - 2k + 1) - k + 2]$$

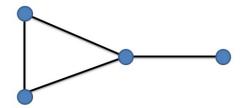
$$\chi(G2, k) = (k^3 - 3k^2 + 2k)(k^2 - 3k + 3)$$

$$\chi(G_2; k) = (k^5 - 3k^4 + 3k^3 - 3k^4 + 9k^3 - 9k^2 + 2k^3 - 6k^2 + 6k)$$

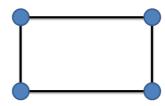
Resposta: $\chi(G2_1k) = k^5 - 6k^4 + 14k^3 - 15k^2 + 6k$

Questão 5.3.1. – Enunciado: Prove que \mathbf{k}^4 – $4\mathbf{k}^3$ + $3\mathbf{k}^2$ não é um polinômio cromático.

Sabendo que no cálculo de $\chi(G; \mathbf{k})$, o maior grau de \mathbf{k} é igual a $\mathbf{n}(G)$ e o segundo coeficiente é igual $-\mathbf{e}(G)$. Então precisaremos de um grafo com 4 (quatro) vértices e 4 (quatro) arestas. Os únicos grafos com tais características são o grafo **pata** e o grafo \mathbf{C}_4 .



Grafo Pata



Grafo C₄

O grafos **pata** e C_4 possuem polinômios cromáticos respectivamente iguais a $k(k-1)^2(k-2)$ e $k(k-1)(k^2-3k+3)$, e ambos possuem um termo linear diferente de zero, o que não acontece na expressão informada.

Quando utilizamos k=2, o resultado da expressão é igual a **– 4**. Como o resultado é um número negativo, isso o **invalida** como polinômio cromático.