
Humpback Whale Identification Challenge:
An Overview of the Top Solutions

Henrique da Fonseca Simões João Meidanis

April 29, 2021

Contents

1 Introduction 1
1.1 Private Leaderboard and Candidate Solutions 2
1.2 Computational Resources . 2

2 Competition Dataset 3
2.1 Training Example Class Distribution 3
2.2 Image Properties . 4

2.2.1 Image Sizes . 4
2.2.2 Image Color . 5
2.2.3 Contrast . 5

2.3 Bad Quality Images . 8

3 First Place Solution 11
3.1 Data Treatment . 11

3.1.1 Image Masks . 11
3.1.2 Bounding Boxes . 12
3.1.3 Standardized Image Sizes . 12
3.1.4 Data Augmentation . 12

3.2 Special Techniques . 17
3.2.1 Flipped Images . 17
3.2.2 Pseudo Labels . 18
3.2.3 Class Balance . 18

3.3 Network Architecture . 19
3.3.1 Backbone Network . 19
3.3.2 Local and Global Features . 21
3.3.3 Loss Functions . 22
3.3.4 Training Procedure . 25

3.4 Reproducing Solution Training . 26
3.4.1 Training Steps . 27
3.4.2 Results . 28

3.5 Conclusion . 29

4 Second Place Solution 30
4.1 Data Treatment . 30

4.1.1 Image Sizes . 31
4.1.2 Bounding Boxes . 31
4.1.3 Data Augmentation . 32

i

CONTENTS

4.2 Problem Specific Techniques . 37
4.3 Network Architecture . 37

4.3.1 Common Flow . 37
4.3.2 Backbone Networks . 38
4.3.3 Loss Functions . 41
4.3.4 Inference Phase . 43
4.3.5 Training Procedure . 43

4.4 Model Ensemble . 44
4.5 Reproducing Solution Training . 44
4.6 Conclusion . 45

5 Third Place Solution 47
5.1 Data Treatment . 47

5.1.1 Bounding Boxes and Alignment 47
5.1.2 Data Augmentation . 48

5.2 Special Techniques . 50
5.2.1 Image Rotation . 50
5.2.2 Class Grouping . 50
5.2.3 Classification Leak . 51
5.2.4 Flipped Images . 51

5.3 Network Architecture . 51
5.3.1 Backbone Network . 51
5.3.2 Loss Function . 53
5.3.3 Training Procedure . 54

5.4 Inference Phase . 56
5.4.1 Cosine Similarity . 57

5.5 Ensemble Method . 57
5.6 Reproducing Solution Training . 58
5.7 Conclusion . 58

6 Acknowledgments 60

Appendices 66

A Extra Bad Quality Images 67

ii

Chapter 1

Introduction

The Kaggle platform hosts many competitions in the area of Machine Learning.
In each competition, solutions are ranked by quality on public and private leader-
boards [Kag19a].

Public leaderboards provide publicly visible submission scores based on a rep-
resentative sample of the competition’s data. Private leaderboards, on the other
hand, are revealed only at the end of the competition along with the subset of data
used to calculate them, and determine the competition winners. As a result, models
that perform well on the public leaderboard, but not on the private leaderboard, are
probably overfitting.

In the case of the Humpback Whale Identification Challenge [Kag19b], the public
leaderboard contained 22% of pre-selected examples from the test dataset, while the
private leaderboard had the other 78% of testing data points. For this competition,
the evaluation function used to determine correct labeling was the Mean Average
Precision at five (MAP@5), which is given by

1

U

U∑
u=1

min(n,5)∑
k=1

P (k) · rel(k), (1.1)

where U is the number of images, P (k) is the precision at cutoff k, n is the number
of predictions per image, and rel(k) is an indicator function equaling one if the item
at rank k is a relevant (correct) label, and zero otherwise. For this competition, a
label is considered relevant just once for an observation u. This means the value
scored for a correct prediction first appearing at the i-th position is equal to i−1,
with i ∈ [1,min(n, 5)] ⊂ N. As a result, if all correct labels are among the top-2
predictions, one achieves a final score greater than or equal to 0.5.

Besides this competition, in 2018, one year before its launching, a playground
competition on the same subject took place in Kaggle [Kag18]. Playground compe-
titions are a type of “for fun” competitions that usually include small cash prizes,
and are mainly targeted at newcomer competitors [Kag19a]. For the Humpback
Whale Identification Challenge, the playground competition had its own training
and testing datasets. This fact was leveraged by some solution developers during
the later challenge.

The choice of participants’ solutions analyzed here is based on their ranking on
the private leaderboard, and on availability of solution code and training procedures,

1

CHAPTER 1. INTRODUCTION

Place Team Score

1st Jian Qiao & Peiyuan Liao & Thomas Tilli & Yiheng Wang 0.97309

2nd Tao Shen 0.97208

3rd Jinmo Park 0.97113

4th David Austin 0.96783

5th Roman Solovyev & Weimin Wang 0.96781

Table 1.1. Top-5 ranking on the private leaderboard in the Humpback Whale Iden-
tification Challenge.

as presented in Section 1.1.
Since our goal is also to try to reproduce the selected solutions’ trained models

and their performances, we present in Section 1.2 the computational resources used
in our experiments. The remaining chapters of this report are organized as follows.
In Chapter 2 we present some statistics and peculiarities regarding the competition
dataset. Chapters 3 through 5 detail each selected solution and our results trying
to reproduce their network models.

1.1 Private Leaderboard and Candidate Solutions

At the end of the competition, the private leaderboard was published, and the top-5
ranking had the configuration shown in Table 1.1. In line with the Deep Learning
community culture, most top ranking solutions were made publicly available by the
competitors, some of which are objects of analysis in this report.

The first-placed team was one that shared their solution. This team was com-
posed by four members, as shown in Table 1.1. Their real identities could be found
through their public social media. Their solution is the first one to be analyzed,
in Chapter 3. In Chapter 4, the second-placed solution, developed by Tao Shen,
is analyzed. In Chapter 5, Jinmo Park’s solution, which got the third place, is
discussed.

1.2 Computational Resources

In order to try to reproduce the training results analyzed in this report, a server
with an Intel Xeon Silver 4110 Octa Core 2.10GHz processor, with 126 GB RAM
memory, and configured with 3 NVIDIA GeForce RTX 2080 Ti GPUs, with 11 GB
of memory GDDR6 each, was used (see Section 6).

Most software packages needed to run the algorithms could be installed using the
Docker Engine [Doc20] from community built images made available through Dock-
erHub. In our experiments, we used the image Deepo, which has many frequently
used Deep Learning packages installed [Yan17].

2

Chapter 2

Competition Dataset

This chapter offers an overview of the data used by competitors to train and test
the algorithms created to solve the problem of identifying humpback whales by their
tails [Kag19b]. The aspects considered in this analysis are the distribution of the
examples over the classes (i.e., number of pictures for each individual whale), the
image properties, and issues with non-standardized images, photograph angle, and
occlusion.

The competition dataset contained thousands of images of humpback whale
flukes. The data was divided in two parts: one for training the machine learning
algorithm — with images manually labeled with an ID — and another for testing
it — which did not include any labels. Competitors were required to deal only with
the training data in order to develop their solutions, and use the test data only for
submitting the results. See Table 2.1 for the exact number of images in each of those
datasets.

All data information collected throughout this report was obtained from the
Kaggle platform: the image files themselves and the training data labels.

2.1 Training Example Class Distribution

In order understand the example distribution among the classes, we used the labels
available for the training data points, which contained the correspondence between
image files and the class they belong to. The number of times a given whale ID
appears in the labeling gives directly the number of examples available for that

Dataset Number of examples Percentage

Train 25361 76.11

Test 7960 23.89

Total 33321 100.00

Table 2.1. Number of examples per dataset and corresponding percentages relative
to all data points.

3

CHAPTER 2. COMPETITION DATASET

Examples Occurrences

1 2073

2 1285

3 568

4 273

5 172

6 136

Examples Occurrences

7 86

8 76

9 62

10 46

11 39

12 26

Examples Occurrences

13 14

14 16

15 19

16 16

17 17

18+ 81

Table 2.2. Occurrences of the number of examples per whale ID available in the
training set.

whale. With this information, we obtained the number of occurrences for each class
size (see Table 2.2).

Even though there was a reasonable number of examples for training and testing,
the training dataset did not have the same number of examples for each whale.
Probably the same thing occurred with the testing dataset. Moreover, there were
considerably more data points for some whales than others. Around 87.3% of the
whales in the training dataset had less than six photographs, and 41.4% had only a
single image for their identification (see Figure 2.1). Besides, around 38.1% of the
images are pictures of unlabeled whales, collectively classified with the new whale
tag.

2.2 Image Properties

One important piece of information for building a neural network is the shape of
the data the network will be processing. Some image processing net architectures,
such as fully connected nets, require a fixed size image as input. Therefore, it is
useful to analyze image size variation over the dataset, and other image properties,
such as contrast, which can force the network to account for unimportant details, if
no normalization is done. For this part of the analysis, train and test datasets were
processed separately, in order to identify possible differences that could challenge
competitors.

2.2.1 Image Sizes

Both training and testing datasets had a broad variety of image shapes, some of
them more frequent than others. In the combined dataset, the most frequent image
size was 1050 × 700 pixels. However, images with that size represent only around
13.77% of the data points available. Other image sizes that were also very frequent
are shown in Table 2.3.

The remaining examples have dimensions distributed as shown in the Figure 2.2.
Image width is less variable than height. Roughly 70% of the images are between
970 and 1150 pixels wide in both training and testing sets. On the other hand,

4

CHAPTER 2. COMPETITION DATASET

Figure 2.1. Frequency of number of examples per whale in the training dataset.

image height was more broadly distributed, with most heights ranging from 200 to
900 pixels. This image ratio makes sense, because the whale tail usually covered the
image width almost entirely, while height varied, mainly due to cropping and tail
angle before diving.

2.2.2 Image Color

Another relevant aspect for image classification when there are few examples per
class is image color. Black and white images have the same information across the
color channels. This means the network will not be able to use information about
color hue to classify a grayscale image.

To detect image color, we used the Pillow Python library [LC19] to open the
image and convert it to RGB format. If the image is already in this format, nothing
is done. Otherwise, i.e., the image is in gray scale, all the RGB pixel values are
set to the same intensity, preserving the original image content. With all images in
RGB format, the image will be in gray scale if, and only if, every pixel has the same
intensity across all its color channels.

In the analyzed dataset, most images were colored, but nearly 30% of the images
were in gray scale (see Table 2.4).

2.2.3 Contrast

Contrast, in the context of Deep Learning, refers to the standard deviation of the
pixels in an image or region of an image [GBC16]. More specifically, the contrast in

5

CHAPTER 2. COMPETITION DATASET

Width Height
Percentage

Train Test

700 500 2.63% 1.81%

1050 450 6.14% 6.58%

1050 525 5.14% 5.11%

1050 591 1.10% 0.98%

1050 600 10.05% 7.89%

1050 700 13.13% 15.80%

1050 701 1.04% 1.87%

Table 2.3. Image shapes in the train and test datasets with more than 1% of oc-
currence in any of them. Most images have a width of 1050 pixels, with varying
heights. Some images are off by a single pixel in one of the dimensions, probably
due to inaccurate cropping.

Dataset
Gray scale Colored

Images Percentage Images Percentage

Train 8270 32.61% 17091 67.39%

Test 2089 26.24% 5871 73.76%

Table 2.4. Number of images colored and in gray scale in the training and testing
datasets and their corresponding percentages in the dataset.

the entire image is given by√√√√ 1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

(
Xi,j,k − X̄

)2
, (2.1)

where X is the image represented as a tensor, with the first index representing the
row, the second the column and the third the color channel in RGB and X̄ is the
mean intensity of the entire image:

X̄ =
1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

Xi,j,k. (2.2)

Although not directly related to the task at hand, contrast may still play an
important role in the task solution, because the network may have to expend extra
effort to conclude that contrast is irrelevant. When a high number of examples

6

CHAPTER 2. COMPETITION DATASET

(a) (b)

Figure 2.2. Image size distribution in the train (pink) and test (green) datasets. (a)
Variety of sizes (regardless of frequency). (b) With the bubble radius proportional
to the logarithm of the frequency. Note that a significant set of the data are 1050px
pixels wide (vertical line on the charts); in addition, it is noticeable that three sets
of images differ only in terms of the re-scaling factor (diagonal lines on both charts).

are available, this is often not a problem, since the model will probably learn which
kinds of variability it should be invariant to. However, with only a moderate amount
of examples available, as in this competition’ dataset, dealing with contrast may be
needed to eliminate avoidable generalization error.

In order to analyze contrast, we calculated it for each example available in
each dataset using the NumPy Python library’s built-in algorithm for figuring the
standard deviation over tensors [Num19]. Since grayscale and colored images were
present in both datasets, as shown in Section 2.2.2, all images were first converted to
RGB color format, as described previously. Note this does not change the standard
deviation value over grayscale images, since standard deviation across a single color
dimension image (i.e. with 8-bit pixels values, black and white ‘L’ format) is given
by

σ =

√√√√ 1

rc

r∑
i=1

c∑
j=1

(
Xi,j − X̄

)2
(2.3)

=

√√√√ 1

3rc

r∑
i=1

c∑
j=1

3 ·
(
Xi,j − X̄

)2
(2.4)

=

√√√√ 1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

(
X̃i,j,k − X̄

)2
(2.5)

7

CHAPTER 2. COMPETITION DATASET

(a) (b)

Figure 2.3. Contrast distribution of the images in (a) the train dataset, and (b) the
test dataset.

where X̄ is given by

X̄ =
1

rc

r∑
i=1

c∑
j=1

Xi,j (2.6)

=
1

3rc

r∑
i=1

c∑
j=1

3 ·Xi,j (2.7)

=
1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

X̃i,j,k (2.8)

and X̃ is the image tensor representing the image after the conversion to RGB,
with the original pixel value replicated over the three RGB color channels, which is
exactly the same as Equation 2.1.

The results obtained for image contrast are shown in Figure 2.3. Most images
have a considerably high contrast value, with a mean value of 60 pixels of contrast.
This shows that candidates who applied global or local contrast normalization might
have achieved better generalization in their algorithms.

2.3 Bad Quality Images

Among all the available images, some were really unusual and could raise issues for
participants to deal with. Malek Badreddine [Bad19], who was a participant in the
competition, found some examples of problematic images in the training dataset.
Some of these are shown in Figures 2.4, 2.5, 2.6, and 2.7, which are all classified as
new whales. Another outstanding example is the one shown in Figure 2.8, which
is actually a whale drawing with a specified ID. In this case, at least, there are
ten other pictures of the same whale available in the training set, which probably
helped dealing with it. Interestingly, one of these ten images is also problematic, and
illustrates the issue of poor photo angle (see Figure 2.9). The remaining examples
found by Badreddine are available in Appendix A.

8

CHAPTER 2. COMPETITION DATASET

Figure 2.4. Two pictures, probably of the same whale, in the same image file.

Figure 2.5. Picture of the front side markings of the fluke instead of the back side.

Figure 2.6. Noisy image and only half of the fluke exposed in the image.

Figure 2.7. Poor aspect ratio (2528× 382 px).

9

CHAPTER 2. COMPETITION DATASET

Figure 2.8. Whale sketch with handwriting.

Figure 2.9. Problematic photo angle for the same whale that was sketched.

10

Chapter 3

First Place Solution

Strategies and a brief explanation of the network used in this solution were published
on the Kaggle Forum [Qia19], and authors’ code was made available through the
GitHub platform [QLTW19].

As described in the Qiao et al. solution post, they used many different techniques
to solve the problem, some of them aimed at increasing a few percentage points in
the score. In next sections we analyze the solution from different aspects, including
data treatment, network architecture, and strategies used to increase generalization.

3.1 Data Treatment

The strategies used regarding the competition data were essentially:

• building masks identifying the whales’ tail in the images;

• using detection to crop the images to be processed;

• standardizing image sizes; and

• augmenting the data using several different transformations.

The next sections discuss each strategy more closely.

3.1.1 Image Masks

In order to help the network identify important parts of the images, i.e. the flukes,
Qiao et al. created masks for each image available in the dataset (see Figure 3.1).
These were used as a 4th input channel with the images’ usual RGB channels being
the other three.

The neural network probably used to create the masks, according to an answer
to another competitor in the solution discussion forum [Qia19], was the U-net. This
network is based on the idea of performing several convolutions and pooling, reducing
the image dimensions while doubling the feature channels in each pooling stage,
and then performing an expansive path, consisting of an up-sampling of the feature
map followed by an “up-convolution”, and a concatenation with the corresponding
cropped feature map from the contraction stage [RFB15].

11

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.1. Some masks created to facilitate the process of identifying a whale by
its tail.

3.1.2 Bounding Boxes

Another strategy used was the creation of bounding boxes to remove useless back-
ground information. The exact method used to obtain these boxes is not detailed
by the winners, but a basic processing on the masks should be enough to define the
boxes, since the masks have all the informative pixels set as white, and all others
set as black.

3.1.3 Standardized Image Sizes

As shown in Chapter 2, one concern about the data was image sizes, which varied
considerably. The solution developed by Qiao et al. dealt with this problem by
standardizing the dimensions during image load. The input tensor used in the final
version had dimensions (4, 512, 256), where the first entry represents RGB + mask
channels, and the last two entries corresponds to width and height, respectively.

It is important to state that the resizing operation was done always after applying
the bounding boxes cut. This way, the entire whale’s fluke fit the image used as input
to the network, even though the image was originally distorted and not centered.

3.1.4 Data Augmentation

A standard method to increase the network performance on classification tasks is
regularization through data augmentation, which is particularly effective for object
recognition [GBC16]. This strategy consists in creating new fake data using the
ones available in the dataset by applying operations like translation, rotation, and
scaling.

In the case of the solution provided by Qiao et al., several operations were applied
to images with different probabilities (see Table 3.1). However, unlike usual practice,
these new images were not stored in the hard drive as new files. Instead, they were

12

CHAPTER 3. FIRST PLACE SOLUTION

Transformation Probability

Random erase 0.5

Random shift 0.5

Random scale 0.5

Random angle rotation 0.5

Mask deletion 0.5

Noise
Speckle 0.25

Gaussian 0.25

Brightness shift 0.125

CLAHE 0.125

Table 3.1. Image transformation applied to images for augmentation, and their
probability of being applied to each image during training.

created and stored on volatile memory, used by the learning procedure, and then
discarded.

Some operations applied to images had no effect, due to parameter values that
make the operation an identity function. Those have not been considered in this
analysis as data augmentation.

Next, a more detailed explanation of each transformation in Table 3.1 is given,
showing the parameters and the effects they produce.

Random Erase, Shift and Scale

Random erase is a data augmentation technique intended mainly to solving the issue
of occlusion, increasing the network robustness [ZZK+17]. The erasing procedure
consists in randomly choosing a rectangular part of the image and resetting its pixels.
One may use random or mean image values to replace the original pixels, or even
zero the pixels. Some examples of the resulting images are shown in Figure 3.2.

The strategy used by Qiao et al. was selecting a random position in the image
being processed as the start position of the erasing, and a size for the rectangle to
set the values as zeroes. The rectangle size was randomly chosen within the range
[5, 10], resulting in an erasure of at most 0.076% of the image information.

Another approach, related to erasing, is shifting. It consists of changing each
pixels’ position (i, j) to a position (i+ ε, j + δ) for some small values ε, δ ∈ Z. The
randomly chosen values for ε and δ used by Qiao et al. lie within the ranges [−10, 10]
and [−15, 15], respectively. The part of the image left uncovered by the move had
its pixel values set to zero.

Even though it leads to part of the image becoming invisible, similarly to erasing,
the main purpose of this method is to make the network invariant to translation.
This means the first layers of the net will be capable of identifying the presence of

13

CHAPTER 3. FIRST PLACE SOLUTION

(a) Mean value method (b) Random filling method (c) Zero filling method

Figure 3.2. Examples of the random erase applied to images from the Humpback
Whale Identification Challenge. In the first two examples, a rectangle with dimen-
sions in the interval [50, 100] was used to make the visualization easier. In the third
example, the method used by the winners was applied, in order to illustrate the
effect of the transformation. The erasing (black square) is on the upper right fluke
side (arrow) in the third example. All images were first cut using the bounding
boxes created for this whale photograph and then resized to (512, 256).

features that characterize a certain whale even if the photograph is not taken exactly
at the same position in which the algorithm was trained.

Yet another method used was random (re)scale, consisting of randomly choosing
a new scale for the image and resizing it. Similarly to the other approaches, they used
zero-filling outside of the image’s placement, which was also randomly chosen. As
scaling factor, a value was randomly chosen between 90% and 100%, which implies
that most of the image was still the whale’s tail.

Since masks were also being used, all these transformations were applied exactly
the same way to the masks, to keep consistency.

Random Rotation

Image rotation has a similar goal as image translation, but is probably more impor-
tant in terms of data augmentation. This is because Convolutional Neural Networks
are naturally invariant to small translations, due to their convolutional kernels be-
ing applied one next to the other and therefore sharing a great deal of information
about the image region. Effects similar to rotation might be accomplished by con-
volutions in deeper layers of the network, but require the network to learn these
transformations [GBC16]. In this sense, the winners decided to apply the transfor-
mation directly to the image, letting the rotation angle be randomly chosen within
the range [−25, 25] in degrees.

Mask Deletion

Even though masks were created for all images, the winners decided to sometimes
let the network figure out on its own how to extract information about the whale’s
flukes in the image without using the masks. This was accomplished by literally
erasing the mask layer by setting all its values to zero.

14

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.3. Example of an image with Gaussian noise injection with σ = 0.5 and
µ = 0.

Noise Injection

Noise is defined as unwanted signal that disturbs the original signal due to physical
phenomena linked to the acquisition and transmission of the information. In the
context of Image Processing and Deep Learning, different mathematical functions
might be used to artificially produce noise for using as data augmentation or even
as a regularization strategy [KC17]. Here we discuss Gaussian noise, originally used
to model thermal noise effect on electronic devices, and speckle noise.

Mathematically, Gaussian Noise is a type of additive noise given by the formula

ŝ(x) = s(x) + η, (3.1)

where ŝ(x) is the resulting signal, s(x) is the pure signal, and η is a random variable
drawn from a Gaussian distribution given by

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (3.2)

where σ and µ are called noise parameters. Usually µ, which represents the mean
of the distribution, is set to zero, and the noise is controlled only by the standard
deviation σ. In the case of an entire image, the values of η are usually drawn
independently for each pixel in the image.

This is essentially the approach used by Qiao et al., configuring σ = 0.5, and
adding noise to the luminosity channel of the image transformed from RGB to CIE-
LAB [CF97]. This means that around 68% of the noise added to the image will
be within the range [−σ, σ] = [−0.5, 0.5], in a context where the maximum and
minimum pixel value lie in the interval [0, 1].

In fact, this might be seen as a strong noise being added to the image, as shown
in Figure 3.3, and could lead to a network failing completely to recognize the image
if it is not trained to deal with it [KC17].

As shown by Koziarski and Cyganek [KC17], noise injection as a form of data
augmentation can significantly increase the generalization of the Deep Learning
algorithm if the type of noise which the network will face is present in the dataset.
Otherwise, in the case where the image signals are virtually pure, the performance
might even be worse if the injection is done during training.

15

CHAPTER 3. FIRST PLACE SOLUTION

(a) (b)

Figure 3.4. Difference between noisy image using (a) the standard modeling of
speckle noise, and (b) the modeling used by the winners.

However, considering the different types of image quality composing the Hump-
back Whale Identification Challenge dataset, such a downside effect would not be
expected.

Differently from Gaussian noise, speckle noise [AB07] is modeled as a multiplica-
tive noise. In other words, it is given by

ŝ(x) = η · s(x), (3.3)

where ŝ(x), s(x) and η are respectively the resulting signal, noise-free signal, and
noise value drawn from a normal distribution (Equation 3.2) with zero mean (µ = 0)
and variance one (σ = 1).

In the case of the speckle noise used by Qiao et al., the multiplicative term was
slightly different, given by

η = 1 + η̃, (3.4)

where η̃ was drawn from the normal distribution independently for each pixel value
in the image. Using this approach, most pixel values do not get as dark as they would
with the transformation given by Equation 3.3. A comparison of both approaches
is shown in Figure 3.4.

Brightness Shift

The transformation named brightness shift by Qiao et al. was the addition of a
constant value to all pixel values in the image, i.e., it was given by

Ti,j,k = Xi,j,k + α (3.5)

where T andX are tensors representing respectively the transformed and the original
images, with the first two dimensions representing the spatial dimensions, and the
third the color channel. In the final submission code, the constant value α was set
to 0.1, an increase of 10% on the maximum possible pixel value.

16

CHAPTER 3. FIRST PLACE SOLUTION

(a) Original image (b) CLAHE

Figure 3.5. Example of enhancement provided by applying CLAHE.

Contrast Limited Adaptive Histogram Equalization (CLAHE)

Adaptive Histogram Equalization (AHE) is a technique used in Image Processing
to correct image contrast by applying to each pixel in the image the histogram
equalization mapping based on a contextual region. This method has produced
great results in medical imaging, and was further developed to enhance even more
the quality of the images. One important enhancement done was the introduction
of the clipped or contrast-limited AHE (CLAHE), which limits the level of contrast
enhancement to prevent overenhancement of noise [PAP+86].

Basically, the idea is to redistribute the image pixel values to a more uniform
distribution, limiting the amount of pixels that can have the same value. This means
that an image with nearly uniform regions, and thus high peaks in the histogram,
can be greatly improved (see Figure 3.5).

3.2 Special Techniques

Some (unexpected) techniques were used in the first place solution to increase some
few score points on the classification result. Among them, we cite introducing
new images to the dataset, creating fake new whales, and even application of post-
processing based on class prediction frequency.

3.2.1 Flipped Images

Even though horizontally flipped images do not keep the label, since most whales’
tail marks are not symmetrical (see Figure 3.6 for an example), Qiao et al. found
it useful to augment the data with such a transformation. The idea came from a
competitor post on the Kaggle Forum [Che19].

Following this idea, all images were flipped during training and inference phase,
having a new class assigned to them if not classified as new whale. Flipped new
whales remain new whales. For inference, flipped image prediction was used to
balance the original image prediction, by averaging both of them to generate the
final classification. In this averaging process, only the new classes were considered
for the flipped image, while only the original classes were considered for the original

17

CHAPTER 3. FIRST PLACE SOLUTION

(a)

(b)

Figure 3.6. Example of non-symmetrical marks on whale’s tail. (a) Original image.
(b) Horizontally flipped image.

image. Moreover, the vectors were added in a way that the original entry for a given
whale matched its counterpart’s entry.

3.2.2 Pseudo Labels

This strategy consisted in using a trained model with high confidence on its pre-
dictions to assign labels to training data from the playground competition. In this
process, Qiao et al. augmented the training dataset by 1774 images with labeling
confidence greater than 0.96.

3.2.3 Class Balance

After some investigation on the whale classification, Qiao et al. observed a correlation
between number of labels and scores. Thus, they introduced a post-processing phase
in their classification to further balance their predictions.

After the output was generated by their network, the classification produced for
images was analyzed, and the following procedure was applied. For a given image,
if the absolute network confidence difference between predictions for the first and
second class was less than 0.3, and the second class was not used in any top-1
prediction, and the first class was used in top-2 predictions “many times”, first and
second class were switched.

In other words, if the network was in doubt about which class to assign to a
given image, they kept the classification when either the second class was always
chosen to be the top-1 prediction for other images, or the first class was not used
many times as the top-2 prediction.

18

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.7. Overall neural network architecture used by Qiao et al.

3.3 Network Architecture

During the competition period, several network architectures were tested by the
winners, including simpler solutions such as softmax classifiers with fixed threshold.
However, some of them did not perform as well as expected, requiring them to find
different approaches. In the end of the competition, the final architecture used by
them was composed of a backbone SENet-154 [HSS18], with local and global feature
extraction as the last network layers.

The network input was standardized to be of size (4, 512, 256) as discussed in
Section 3.1.3, and this was directly fed into the backbone network as shown in
Figure 3.7. This network has, as shown next, 2048 feature maps of size (16, 8)
each as output, in this case. Using this output, global and local features could be
extracted to generate the network loss and the classification output. Further details
on each of these steps are given in Sections 3.3.2 and 3.3.3.

3.3.1 Backbone Network

The base network used in the final submission was a Squeeze-and-Excitation Net-
work with 154 layers (SENet-154). This network was proposed by Jie Hu et al. as a
modification of the 64×4d ResNeXt-152 [XGD+17] — which adds block stacking to
a residual network, namely ResNet-152 [HZRS16] — by incorporating a unit called
“Squeeze-and-Excitation” (SE) block into it [HSS18].

More details on the SENet-154 architecture design with the input and parameters
used by Qiao et al. are given next. To simplify the explanation, first we describe
how the building blocks work, and then how more complicated structures are built
using these blocks, raising the level of abstraction.

SE Block

This special network building block is capable of modeling interdependencies be-
tween channels. Basically, the strategy used here is to capture global information

19

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.8. SE-Block operations.

about each input channel — in this case, by average pooling — and to pass this
information through fully connected layers with some kind of non-linearity such as
ReLU. After that, a vector intended to indicate the relevance of each channel is
obtained and used to weight the original block’s input. Applying this strategy was
shown to increase performance of the entire network [HSS18]. See Figure 3.8 for an
architectural sketch.

SE Bottleneck

Before passing features through the SE Block, a few convolutions are done, possibly
changing the spatial dimensions of features, on a block called SE Bottleneck. This
series of operations is used several times on the network with different values for the
stride s and the number of output planes 4d, with s, d ∈ N.

As apparent in Figure 3.9, the number of output planes is always 4d, but some-
times the input does not match this number of features. Since this part of the
network uses a residual learning framework, the residual, i.e. the bottleneck input,
has to be added later to the SE Block output. In order to make this possible, a
downsampling convolution is done, making the dimensions once again compatible.
The same happens when the spatial dimensions are changed by a convolution with
stride greater than one. This residual step used in these paths is mainly responsible
for preventing such a deep network from degrading the training accuracy [HZRS16].

Overall SENet-154 Structure

The SENet-154 network uses the principle of stacking multiple blocks to build several
layers. In this case, the entire net consists of five main layers, each one occupying a
row in Figure 3.10.

The first one performs certain operations upon the raw input, in this case the
image itself. These operations are convolutions that compute several features and
reduce the spatial dimensions of the input, and pooling, as can be seen with further
details in Figure 3.10.

This first step generates 128 feature maps, which are fed to the second layer. This
layer performs three consecutive full rounds through the bottleneck path, increasing
the number of features. Similarly, the next (third) layer uses eight stacked SE Bot-
tleneck paths, having the feature dimensions reduced, while the number of features
is increased. The next two layers use a similar strategy, further reducing the spatial

20

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.9. SE-Bottleneck model.

dimensions and increasing the number of feature maps, by using, respectively, 36
and 3 bottleneck paths.

The full process generates an output consisting of 2048 feature maps of size
(16, 8). In the original SENet-154, more steps would take place after this result,
having a fully connected layer using dropout applied to it. However, these steps
have been included in the final processing used by Qiao et al. as a global feature
extraction, which is described next.

3.3.2 Local and Global Features

Among the custom parts of the network, local and global feature extractions are
some of the most important ones. They compose the last layers of the network and
are basically designed to generate the classification output using the features created
by the backbone network, and calculate the loss associated with the entire model.

Local feature extraction is a component of the Part-based Convolutional Baseline
(PCB) initially proposed in the field of person re-identification. It was created to
conduct uniform partition on convolutional layers for learning part-level features,
which are then processed to reinforce within-part consistency through the refined
part pooling (RPP) [SZY+18].

For whale identification, Qiao et al. used the PCB idea of uniform partition ap-
plied to the backbone network result to create a pipeline for the model loss and
classification. The within-part consistency was not a concern for the solution im-
plemented. Besides that, the number of horizontal stripes used was set to 8 instead
of 6 (the recommended value). According to them, the choice of using horizontal
stripes came from the hypothesis that this would make it easier to distinguish flipped
images from their counterparts.

On the other hand, global feature extraction is essentially an average pool over
the whole spatial dimension of feature maps from the backbone network, as shown

21

CHAPTER 3. FIRST PLACE SOLUTION

Figure 3.10. SENet-154 overall model. For each SE Bottleneck path used in the
network, we included the parameters used in the step for the stride (s) and number
of output feature maps (4d).

in Figure 3.7. These features, which can be understood as a summary of the local
feature information, are directly used in a fully connected layer without bias to
generate the classification vector, which then passes through a sigmoid activation
and is used to predict which classes are more likely to be assigned to the whale in
question.

This way, global features might be seen as the usual final layers from a conven-
tional SENet-154, which include a global average pool, followed by dropout with
dropping rate of 0.2, and a fully connected layer. Yet the softmax classifier is not
used by the competitors, who opted for a sigmoid function applied to the last layer
output instead. Another difference relies on the fact that the classification vector is
also used to compute the loss, along with global and local features. This is described
in Section 3.3.3.

3.3.3 Loss Functions

Two different loss functions are used to generate the model loss: Triplet Loss and
Binary Cross-Entropy (BCE) Loss. The first is used upon the local and global
features, while the second upon the classification result. Then, both are added,
resulting in the final loss term. In the sequel, each term is described more precisely.

(Hard) Triplet Loss

As discussed by Hermans et al. [HBL17], Triplet Loss, proposed by FaceNet [SKP15],
came from a modification of the Large Margin Nearest Neighbor (LMNN) loss func-
tion created by Weinberger and Saul [WS09]. The latter is based on the idea of
having the algorithm learn a linear transformation that roughly satisfies two crite-
ria: points which belong to same class have to be close to one another and points

22

CHAPTER 3. FIRST PLACE SOLUTION

from different classes have to be far apart by a margin. To accomplish this, “target
neighbors” — points which belong to the same class — and “impostors” — points
from other classes — are selected prior to the training for each data point, and those
respectively contribute to a pulling and pushing term of the loss function. These
terms lead the network to know and learn whether the clustering is good enough.
Based on the transformation learned, it is then possible to apply the k-Nearest
Neighbors (kNN) algorithm [CH67] to classify unseen data points.

Differently from the aforementioned, Triplet Loss does not require points from
the same class yi to collapse into a single point, but only to be closer to positive
examples than negative ones, by at least a margin. Mathematically, this is achieved
by describing the loss function as

Ltri(θ) =
∑
a,p,n

ya=yp 6=yn

max (0,m+Da,p −Da,n) , (3.6)

where θ is the parameter of the neural network function, a, p and n are the anchor,
positive and negative examples respectively, m is the margin constant, and Di,j is
the distance between i and j data points.

Hermans et al. show that using the (non-squared) Euclidean distance as metric
works better than its squared version, due to stability. Moreover, they point out
other issues regarding triplet selection for large datasets. For Triplet Loss to lead
points of the same class into the same cluster, long enough training is necessary.
When the dataset is too large, such training is infeasible. Thus, they presented a
version of Triplet Loss which samples triplets only within the randomly sampled
batch, and figures the loss using the hardest positive and negative examples among
them. By hard positive and negative examples they mean respectively examples
from the same class but with very little similarity and similar-looking examples from
different classes. See Figure 3.11 for examples from the Humpback Identification
Challenge.

It is important to guarantee the existence of triplets with hard examples, since
showing easy examples repeatedly to the network will not be of great help after a
long enough training time. Using the randomly sampled batch helps dealing with
this, after all it will contain on average moderate examples, which might be seen as
the best ones to use in general.

Qiao et al. followed this strategy, but instead of creating a batch using P classes
with K examples each, as proposed by Hermans et al., they used a slightly different
approach. Every time a class was randomly chosen from the dataset, an anchor and
a positive example were randomly loaded, along with an identified negative example
and another without identification (i.e. from the new whale class). As a result,
each batch had at least one positive and two negative examples. One might notice
that, in this case, hard negative examples are more prevalent within the batch than
hard positive examples, since the number of whales that share negative examples is
greater within a batch sampled this way.

As shown in Figure 3.7, Triplet Loss is calculated over the local and global
features. In both cases, hardest examples are found using the Euclidean distance
and the loss is computed as in Equation 3.6 with margin m = 0.3.

23

CHAPTER 3. FIRST PLACE SOLUTION

(a)
(b)

Figure 3.11. Hard examples part of the Humpback Whale Identification Challenge
dataset. (a) Hard positive example: the image below belongs to the testing set, while
the above is part of the training set. (b) Hard negative example: the above image,
labeled as w c20b4e0, belongs to the training set, while the test image (below) is
from the w fd57399 class, which has a single training image available.

Binary Cross-Entropy Loss

Binary Cross-Entropy Loss is computed over the classification result after the sig-
moid function has been applied to it, to guarantee that each entry in the classification
vector will lie in the interval [0, 1]. As a consequence, the output values can be fed
to the following function

LBCE(X, Y ; θ) =
1

Cn

C∑
k=1

n∑
i=1

− [Yk,i · logXk,i + (1− Yk,i) · log(1−Xk,i)] (3.7)

where X and Y are the input (e.g. classification after being fed to the sigmoid
function) and target tensors, respectively, with the first entry corresponding to the
C batch examples, and the second corresponding to each of the n classes, and θ
being the network parameter. In their solution, this loss was usually used twice
upon the classification result, each time using different input and target tensors.

First, for each example in the batch, the absolute difference between the result of
the sigmoid of the network classification output and the one-hot classification vector
was calculated. Then, the top-30 highest error values for each example were placed
in a tensor X, and fed to the BCE Loss function (Equation 3.7) with the target
tensor Y with all entries zeroed. This produced a scalar that composed the error,
which penalized high values for wrong classes and low values for the correct one.

24

CHAPTER 3. FIRST PLACE SOLUTION

Second, when there was at least one non-new-whale example in the batch, an-
other loss term was calculated using only these examples and added to the final loss.
This time, the input tensor X was defined as the network output after being fed
to the sigmoid function, and the target tensor Y had all its entries set to 1. This
means that the network was penalized once again if it wrongly did not attribute a
high value for the identifiable whale classes.

Both these terms were then added to generate the final term for BCE Loss shown
in Figure 3.7.

3.3.4 Training Procedure

Having in mind the highly imbalanced classes in this competition, the first-solution
authors got inspiration for their training strategy on academic research dealing with
this issue, along with other, standard strategies.

First, regarding the backbone model, one training strategy used was the transfer
learning technique [PY09], which helps to decrease the training time and increase
generalization. This approach is based essentially on the idea of importing parame-
ters from a trained model which performs a similar task. Intuitively, this is believed
to increase performance and decrease training time, since a pre-trained neural net-
work is already able to identify features from the images that enable class separation.
Thus, the network does not need to learn everything from scratch.

In case of the transfer learning used by the competitors, the model had its
parameters configured from a SENet-154 network pre-trained on the ImageNet
dataset [RDS+15, Cad17]: a large image dataset organized according to the WordNet
hierarchy [Mil95]; in other words, a dataset that contains several images illustrating
several nouns, including objects, animals, and geological formations.

Second, a similar strategy to the one proposed by Sun et al. [SZY+18] was also
used to deal with local feature extraction training. This can be mainly seen from
the fact that the model was trained using the following steps, which are mostly the
same as the ones proposed by Sun et al., except for the absence of a p-category part
classifier.

• First, the model is trained using only classes that contain at least 10 images, to
convergence. The convergence criterion was to achieve 0.98 on mean precision
at five on the training set;

• Second, all but the two last layers of the backbone network are fixed (frozen)
— feature extractors stay unfrozen —, and the model continues from the best
place it has stopped, now using all the images available in the training dataset;

• Finally, a fine-tuning step is done from the best checkpoint achieved on the
second step, still with the network layers fixed.

Besides that, inspiration from other papers can be found in this training pro-
cedure. In particular, the strategy of using only the images which contain at least
some fixed number of examples can be found on a paper by Yandong Guo and Lei
Zhang [GZ17], where they present certain techniques to be used on face recognition,

25

CHAPTER 3. FIRST PLACE SOLUTION

when few training examples are available. These are called one-shot or underrep-
resented classes. Even though the whale identification challenge also faced under-
represented classes, most new ideas presented in Guo and Zhang’s work are not
included in the final solution developed by Qiao et al. However, as stated before,
the strategy of training first on a base set — a set consisting only of classes with
high number of examples —, and then on the set containing the one-shot classes is
indeed used on the first-place solution.

Parameter Initialization

Most parameters used on the network were configured using transfer learning, as
described previously, but the ones used on the last layers (global and local feature
extraction) had to be initialized heuristically.

Fully Connected Layer. They had the fully connected weight matrix initial-
ized with values drawn from a normal distribution with mean µ = 0 and standard
deviation σ = 10−3, and biases all set to zero.

Normalization. Batch normalization bias was set not to be learned on either
global or local path.

Convolution. Parameters in the convolution performed on the local path were
set using the default initialization implemented by the PyTorch library, which sam-
ples for both weights and biases from the uniform distribution U(−

√
k,
√
k), where

k = 1
Cin·k1·k2 , with Cin, k1 and k2 being respectively the number of input channels,

first kernel dimension and second kernel dimension.

Hyperparameters

In terms of hyperparameters, the configuration used in the solution was the follow-
ing.

Optimization Algorithm Parameters. The final version of the solution used
the Adam optimization algorithm [KB14], with exponential decay rates for moment
estimates β1 = 0.9 and β2 = 0.99, and weight decay coefficient α = 2 · 10−4.

Learning Rate. This hyperparameter might be seen as one of the most im-
portant parameters to be configured correctly. As discussed by Goodfellow et
al. [GBC16], overshooting the learning rate can lead to complete failure of the learn-
ing algorithm, as well as undershooting it, which leads to very little progress being
made at each iteration — possibly making the algorithm stuck in a high training
error point. In this case, the authors of the solution set this hyperparameter with
value ε = 3 · 10−4 during the first and second steps. On the last training phase,
the intention was to fine-tune the optimization only, so a smaller learning rate was
configured, ε = 3 · 10−5.

3.4 Reproducing Solution Training

As shown earlier, the source code of the solution developed by the first-place com-
petitors was made publicly available through the GitHub Platform [QLTW19], and
contained all auxiliary files and scripts necessary to run the training procedures

26

CHAPTER 3. FIRST PLACE SOLUTION

specified by the authors. However, this does not mean the exact same result can be
reached, since learning processes are inherently stochastic.

Along with the files available in the GitHub repository, the authors used several
images from the playground competition. These images had to be included in the
original training dataset in order to have all labeled images in training folds available
for training. More details about the folding is given in Section 3.4.1.

Next, we describe the results obtained with the trained models.

3.4.1 Training Steps

For getting as close as we could to the result achieved by Qiao et al. during the
competition, we set to strictly followed the steps provided by them.

In this respect, we used the source code provided, altering only the batch size
used by the training algorithm. This had to be done due to differences in memory
and number of GPUs used by them versus what was available to us. As commented
in a response to another competitor, they used 5 NVIDIA Titan X Pascal GPUs,
with 12GB of memory GDDR5X each. This allowed them to use batch size 12,
while our configuration permitted just 5. It is important to note that these batch
sizes are not exactly the number of images processed by the network. For each batch
example, three other images are loaded along with it: one positive example (another
image of the same whale), and two negative examples (one from another identified
whale and the other from the new whale class).

Recall that the training consisted of three steps:

• Convergence using examples with at least 10 classes with the network fully
adaptive;

• Inclusion of all examples with all but last two layers frozen; and

• Fine-tuning with smaller learning rate.

All these steps were followed altering only the necessary parameters. This means
the default (first) training fold was used. These folds were created by splitting the
training data into two different sets: validation and training. Each fold contained
all images originally available for training, differing among them in which images
were present in each set. For all splits, the number of validation examples was
742, representing only around 3% of the data available for training. Another key
difference among the folds was the presence or not of the playground images. All
but the first fold had all labeled images from the playground competition training
set, which consisted of 1774 images.

Hence, the default configuration provided by Qiao et al. did not include new
training images at all. At first, we followed this approach, even though we knew
that the authors used playground images in their solution. Then, we conducted
another full training procedure, this time using the second fold — which did include
the playground images. All the partial and final results for both fully training
attempts are presented in the next section.

27

CHAPTER 3. FIRST PLACE SOLUTION

MAP@5 Top@1 Training
time

M
o
d
el

S
te

p

Train Validation Train Validation

1 0.995 0.3477 99.1 34.6 9h

2 0.462 0.8323 35.7 76.4 14h

F
ir

st

3 0.623 0.8643 46.0 80.0 11min

1 0.992 0.3747 98.6 37.3 10h

2 0.467 0.8130 45.4 74.4 14h

S
ec

on
d

3 0.569 0.8724 39.9 81.3 18min

Table 3.2. Partial results on each training step of the trained models. (Above) First
training model, using only original data. (Below) Second trained model, using extra
labeled images.

Model
Leaderboard score

Public Private

Qiao et al.’s 0.97461 0.97309

First 0.82299 0.85070

Second 0.84870 0.86513

Table 3.3. Official results on public and private leaderboards on Kaggle Platform
for Qiao et al.’s final submission and our training attempts.

3.4.2 Results

Both trained models had their phases disjoint, in other words, checkpoints have
not been shared between the model using playground images and the one did not.
Moreover, all training steps were followed as described in Section 3.3.4 in both cases.

Partial results for each step for the first and second model are shown in Table 3.2.
The resulting model from the third step on both attempts was used to generate

a classification for submission on the Kaggle Platform. The goal was to evaluate
the trained model exactly the same way the competitors had evaluated theirs. An
important aspect to note is that the post-processing step (class balance) was not
applied before submitting the classifications to the platform, since neither its precise
description nor its code had been given by the authors.

The classification score on the public and private leaderboards is shown in Ta-
ble 3.3.

28

CHAPTER 3. FIRST PLACE SOLUTION

3.5 Conclusion

In this solution, several different strategies were used to overcome the challenges
proposed by the competition, including heavy data augmentation using many trans-
formations, creating masks, and using face recognition and person re-identification
strategies. In general, the solution can be seen as metric learning and classification,
differently from other high score solutions. In order to check the reproducibility of
the model training, two different training procedures were performed: one not using
pseudo-labeled data and the other using them. In both attempts, the scores were
around 10 points below the ones achieved by the solution authors.

29

Chapter 4

Second Place Solution

Similarly to Qiao et al.’s, this solution’s code was published on the GitHub plat-
form [She19b]. However, a brief description of the solution and partial results ob-
tained during the competition was created by Tao Shen in the code repository, not
on the Kaggle Forum. In order to give further details about the solution — probably
to the competition hosts and the community — and share thoughts and experiences
applied to solve the challenge, the author made presentation slides available along
with the code.

As shown on the presentation slides, Shen’s prior-knowledge in the fields of face
recognition and person re-identification based on Deep Learning helped him deal
with some of the competition’s challenges.

To present this solution, we use a similar approach to that used in Chapter 3.
This means we first analyze Shen’s approaches regarding the competition data, in
Section 4.1. Then, a discussion on problem-specific techniques used in the solu-
tion ensues, in Section 4.2. In Section 4.3, we cover the network design, including
the backbone networks, the loss functions, and the training procedure. Unlike the
first-placed solution, Shen used model assembling as the last part of the classifica-
tion pipeline, to further increase the prediction confidence. The ensemble model is
described in Section 4.4. Finally, Section 4.5 shows our results using the solution
algorithm.

4.1 Data Treatment

Data treatment usually involves augmenting the dataset, and choosing how to ma-
nipulate the data points. Shen decided to use two different image sizes — a specific
feature of his solution. Besides, special care is taken to frame the important part of
the image, i.e. the fluke, by creating bounding boxes. Moreover, many transforma-
tions are applied to the images to augment the data and help the network account
for important variation factors, probably improving generalization.

More information about these tactics is presented in the next sections.

30

CHAPTER 4. SECOND PLACE SOLUTION

(a) (b)

Figure 4.1. Example different aspect ratio benefits. In both examples, the first
image (top) is in its original ratio, while the second is resized to (512, 256), and
the third (bottom) to (512, 512). All images were first cut using bounding boxes,
and then resized. (a) Example where resizing to (512, 256) greatly improves the
exposure of the markings, while the 1:1 aspect ratio starts to distort too much the
fluke shape. (b) Example which benefits from the (512, 512) image size, due to the
even further exposure of the markings without much distortion.

4.1.1 Image Sizes

Instead of choosing a single image size to work with in the model, Shen decided to
train all its pipeline using two different image sizes: (512, 256) and (512, 512). He has
not given an explanation of why these specific values were selected, but we can see
that the exposure of markings on the whale fluke can benefit from different aspect
ratios. Figure 4.1 shows examples where both image sizes enhance the visualization
of the markings.

4.1.2 Bounding Boxes

Just as the first-placed team did, Shen also used bounding boxes to cut images
before resizing and feeding them to the network. The code repository contains the
detailed bounding-box method, which is based on Convolutional Neural Networks,
but distinct from the nets aimed at segmentation.

31

CHAPTER 4. SECOND PLACE SOLUTION

Figure 4.2. Example of the keypoint positions (dots) the network would estimate
with the used settings. The dashed rectangle represents the bounding box generated
directly using the keypoints, while the solid rectangle is the representation of a
bounding box used to cut the images. The latter is just a zoom out (120%) of the
former.

Instead, he used a CNN designed for multi-person pose estimation, namely, the
Cascaded Pyramid Network (CPN) [CWP+18]. In person pose estimation, networks
are intended to output a set of keypoints, which represent each pose-meaningful joint
— such as elbows, knees, and shoulders — and body endpoints, including the head,
hands, and feet. Besides finding “simple” (visible) keypoints with a GlobalNet, CPN
introduced a solution to estimate occluded or invisible keypoints more precisely, by
using a RefineNet, which processes the GlobalNet ’s feature maps.

GlobalNet uses a backbone network to generate feature maps. Looking for more
confident predictions, Shen used two different backbone networks to perform the
task: 32x4d SE-ResNeXt-101 and 32x4d SE-ResNeXt-50. With both sets of points
available, the final bounding box coordinates are defined as the arithmetic average
of the networks’ guesses.

For the identification of the fluke, keypoints are set on four extreme points of the
tail, as shown in Figure 4.2. A relevant aspect here is the use of a model capable of
identifying occluded points, since some flukes in the dataset were indeed occluded
by water (see Figure A.5 for an example). However, since this network was only
intended to generate the bounding boxes, this capability was not explored further.

4.1.3 Data Augmentation

Following standard practice, Shen also selected a few transformations to apply to
images before network processing. The transformations applied are summarized in
Table 4.1. Similarly to the first solution authors’ choice, he decided to augment the
data only virtually, by applying the transformation when an image is loaded and
discarding the modified image afterwards.

The next sections discuss each transformation in Table 4.1 in more details.

32

CHAPTER 4. SECOND PLACE SOLUTION

Transformation set # of transformations Probability

Gray scale transform
0 0.5

1 0.5

Perspective transform
without cropping

0 0.5

1 0.5

Random rotation and shear 1 1

Gaussian noise
Gaussian blur

Hue and saturation addition
Piecewise affine transformation

Perspective transform with cropping

0 0.33

1 0.33

2 0.33

Table 4.1. Transformation sets selected to augment the training dataset, number
of transformations to apply, and probability for each value. For instance, there is a
50% change an image will be transformed into gray scale, then a 50% change it will
not have its perspective transformed without cropping, a 100% chance that it will
be rotated and sheared, and then a 33% chance of having a single transformation
among those listed in the forth row applied to it, e.g. Gaussian blur. On each set,
the transformations are equally likely to be selected, and are applied in random
order.

Gray Scale Transform

This transformation consists in literally transforming the image from RGB to gray
scale. After the transformation is applied, a tensor with all RGB channels is created
(with the same value in all channels), to respect the input format.

Random Rotation and Shear

Rotation and shear are always used to transform training images, and they are
applied one after the other. As discussed in Section 3.1.4, rotation is a useful
transformation to increase generalization. Shearing has a similar effect, since it is a
linear transformation that preserves the image area and modifies the internal angles
of the original image. Thus it might be seen as an alternative or a complement
to rotation. See Figure 4.3 for a comparative example of these transformations.
First, a rotation around the image center is applied, with the angle (in degrees)
being randomly chosen from the interval [−15, 15], where a positive angle means
clockwise rotation. Then, a shear transformation done upon the result, with x- and
y-axis related angles (in degrees) drawn independently from the uniform distribution
U(−15, 15) as well.

Instead of filling the empty space created by these transformations with black
(i.e. zeroed) pixels, Shen used an alternative method which consists in replicating

33

CHAPTER 4. SECOND PLACE SOLUTION

(a) Original

(b) Rotation (c) Shearing (d) Rotation + Shearing

Figure 4.3. Comparative example of the (b) rotation transformation, (c) shear
transformation, and (d) both operations applied together, in contrast to (a) the
original image. Fixed angles were selected for both transformations for comparison
purpose: 15 degrees for rotation, 5 degrees for x-axis shearing, and 15 degrees for
y-axis shearing.

the border pixels across the entire empty extent.

Additive Gaussian Noise

This strategy is essentially the same as that discussed in Section 3.1.4. However, two
peculiarities are present in Shen’s augmentation. First, he uses a standard deviation
sampled from the uniform distribution U(0, 0.01) per image (considering the pixel
values lying in the interval [0, 1]), which represents a noise of 0% to 1% on average.
Second, with a 50% probability the noise values are drawn independently for each
color channel, as opposed to a single value for all color channels (as used by Qiao et
al.). Such a small noise is practically unnoticeable for humans.

Gaussian Blur

Gaussian blur, differently from Gaussian noise, is modeled by a convolution op-
eration, with kernel values being a finite and discrete representation of a two-
dimensional Gaussian distribution given by

G(x, y) = p(x)p(y) (4.1)

=
1

σ
√

2π
exp

(
−(x− µ)2 + (y − µ)2

2σ2

)
, (4.2)

where p(t) is the one-dimensional Gaussian distribution (Equation 3.2), σ is the
standard deviation of the distribution, and (µ, µ) is the highest G(x, y) value co-
ordinate. For this operation, µ is chosen so that its peak is in the central element

34

CHAPTER 4. SECOND PLACE SOLUTION

of the kernel. In other words, the kernel is build in such a way that it is vertically
and horizontally symmetrical with respect to the central element, and the values
decrease as they depart from the center. In practice, this kind of noise can be found
on photos taken when the camera is not properly focused (see Figure A.1 for an
example from the Humpback Whale Identification Challenge dataset).

In terms of effects on neural networks, Dodge and Karam show that some state-
of-the-art networks are very sensible to this noise, causing most of them to have
small changes as first layers propagate to higher layers, and thus possibly changing
the prediction result [DK16]. This finding can, possibly, be extended to most Deep
Neural Networks found in the literature. Even though deeper networks seem to deal
better with this issue, augmenting the data points with this transformation during
training is still a reasonable approach.

For this transformation, Shen sampled the standard deviation σ randomly from
the interval [0, 1.5]. For this σ range, the same kernel size was always used for this
data augmentation, which is the minimum kernel size (5, 5) implemented by the
library used.

Hue and Saturation Addition

This strategy consists in adding random values of hue and saturation to the image
pixels. To achieve this, a transformation from the RGB color space to the HSV
color space is done, and a certain value is added to the hue (H) and saturation (S)
channels, followed by the inverse transformation.

For Shen’s data augmentation, the aforementioned value is drawn from a uniform
distribution U(−5, 5). In practice, this means the pixel values will change by the
same amount, considering they are lying within the standard 0–255 range. Similarly
to Additive Gaussian Noise, the original and resulting image are indistinguishable
for humans, but may still improve network robustness.

Piecewise Affine Transformation

An affine transformation can be seen as a linear transformation followed by a trans-
lation. It can be shown that this is equivalent to making a series of transformations
combining translation, rotation, scaling, and aspect ratio change. This also increases
the variability in the test and real world data.

In Shen’s solution, piecewise affine transformations were used to create new data
points. With this strategy, the image is virtually separated using a regular grid,
and only pixels in the same neighborhood are affected similarly. This can create
huge distortions when a high number of cells are created. To avoid this unintended
effect, a (small) 4× 4 grid is used instead. Another parameter used to configure the
transformation is the percentage of the image height and width that can be used
to make a pixel shift. Shen used a random percentage drawn uniformly from the
interval [1, 3]. See Figure 4.4 for a comparison of parameters’ effects, including an
example using the solution configuration.

35

CHAPTER 4. SECOND PLACE SOLUTION

Original

4× 4 8× 8 16× 16

1%
1–

3%
3%

10
–3

0%

Figure 4.4. Comparison of the effects of changing the grid size (columns) and trans-
formation weight percentage (rows) for the piecewise affine transformation.

Perspective Transformation

Perspective transformation is an operation which aims at recovering the perspective
based on a set of four points (three of which must not be co-linear). For an example,
one could have a picture of a sheet of paper on a table taken from a plane not parallel
to the table. Then, in order to “fix” the sheet perspective, the sheet’s four corner
points could be used to make the perspective transformation. The resulting image
would look like a photo taken parallel and cropped to fit the sheet size.

However, this transformation is not limited to this. It can also be used to change
the perspective of the entire image, which may be cropped right afterwards. Thus,
it can introduce another source of variability, without changing the image content
drastically. From this point of view, it may be used as a data augmentation trans-
formation.

In Shen’s configuration, the distances between each final corner point and its
correspondent image corner are set to be at most p percent of the image size. When
the image is not cropped, p is drawn (independently for each corner) from a uniform

36

CHAPTER 4. SECOND PLACE SOLUTION

(a) (b) (c)

Figure 4.5. Examples of perspective transformation. (a) Original image. (b) With-
out cropping, with p drawn from U(0, 25). (c) With cropping and p = 10.

distribution U(0, 25) in percentage. On the other hand, when cropping is applied, p
was drawn from U(1, 10). Moreover, resizing is applied in the sequel in both cases, to
keep the same dimensions as before. Figure 4.5 shows examples of results obtained
through this transformation with and without cropping.

4.2 Problem Specific Techniques

Following the idea shared on the Kaggle Forum, as discussed in Section 3.2, Shen
also used the flipped images strategy. In general, the same process is used, and the
few differences found are presented in Section 4.3.4.

In addition, pseudo labeling is also used to augment the training dataset. Sim-
ilarly to the first solution authors, at a point in time when Shen’s model reached
0.940 in the public leaderboard, he used it to label 1505 images from the test set
(about 19% of all test images), and used these images for training since then.

4.3 Network Architecture

As a recommended practical design process [GBC16], first a baseline model structure
was created by Shen, and then constantly enhanced, e.g., by changing loss functions
and hyperparameters, until the final structure led him to the top-5 leaderboard
positions.

The final model consisted of a common flow (described in Section 4.3.1) de-
signed to support different backbone networks attached to it. Different loss func-
tions (shown in Section 4.3.3) were part of this flow, aggregating complementary
strategies to improve generalization. In addition, in order to have a broader range
of guesses, Shen used three different backbone networks (described in Section 4.3.2)
to train several models. Each of these was then used to infer the test image class,
and their results were assembled as described in Section 4.4 to produce the final
classification.

4.3.1 Common Flow

Possibly to facilitate the development of a solution using model assembling, Shen
used a common flow in all his trained models.

37

CHAPTER 4. SECOND PLACE SOLUTION

Figure 4.6. Common flow used by Shen to train all models in his solution. In this
representation, a single image follows the flow. In practice, however, a batch is
required by the Triplet Loss function.

The flow starts with all data treatments covered in Section 4.1. Then, it continues
to a backbone network, which processes the batch and returns feature maps. This
output is then summarized by average pooling on spatial dimensions, and normalized
through batch and Euclidean distance (L2) normalization. At this point, the flow
is split into three segments: (a) where Triplet Loss [HBL17] is calculated; (b) where
ArcFace Loss [DGXZ19] is generated by the Additive Angle Margin Penalty; and
(c) where the output is mapped by a fully connected layer to a classification vector,
which is used both to figure out the adapted Focal Loss [LGG+17] and to generate
the classification result using a sigmoid function. Finally, losses are combined. An
architectural sketch is presented in Figure 4.6.

4.3.2 Backbone Networks

As shown in previous sections, Shen used different backbone networks to have several
models trained, which can then be assembled. In his final pipeline, three CNNs are
used as backbone nets: ResNet-101 [HZRS16], SE-ResNet-101 [HSS18, HZRS16],
and SE-ResNeXt-101 (32×4d) [XGD+17, HSS18]. All these networks have a similar
structure, including their depth. Moreover, they have a very similar structure with
the CNN shown in Chapter 3: SENet-154. As one might recall, SENet is actually a
slightly modified ResNeXt-101, which adopts block stacking and SE blocks.

However, there are differences among these three CNNs regarding internal block
architecture and strategies used in their paths. We present next the overall struc-
ture of each of these networks, referring to architectural sketches from Chapter 3
whenever appropriate.

38

CHAPTER 4. SECOND PLACE SOLUTION

Figure 4.7. Overall structure of ResNet-101, SE-ResNet-101 and SE-ResNeXt-101.
The differences among these networks are concentrated in the bottleneck level.

ResNet-101

Residual Networks were first proposed by He et al., and were designed to solve the
problem of degradation due to large network depth [HZRS16]. The key idea is to
choose a residual function to be learned by the network blocks instead of the direct
mapping. The residue F(X) is the difference between the target mapping Y (X)
and the identity mapping I(X) = X of the input features X. Mathematically, this
can be described as

Y = F(X) +X. (4.3)

Thus, F is the (residual) function to be learned by the network instead of Y
directly. This formulation results in more stability, and consequently allows greater
depths without the degradation issue [HZRS16].

ResNet-101 was one of the first models proposed in the work of He et al. Its
overall structure is shown in Figure 4.7. Other Residual Networks used by Shen,
which are described next, use the same overall structure, except for slight differences
in bottleneck design. Figure 4.8 shows a comparative sketch of the bottlenecks of
the three residual networks used by Shen.

SE-ResNet-101

Aiming at improving deep convolutional networks, Hu et al. [HSS18] proposed the
Squeeze-and-Excitation blocks, as described in Section 3.3.1. One of the networks
resulting from their contribution is an adaptation of ResNet-101: SE-ResNet-101.
This adaptation includes SE Blocks in the network bottleneck, as shown in Fig-
ure 4.8. Moreover, in the implementation code used by Shen, the order of the
strided convolution at the beginning of the block is also different.

39

CHAPTER 4. SECOND PLACE SOLUTION

SE-ResNeXt-101

ResNet-101

SE-ResNet-101

All nets

Figure 4.8. Comparative representation of the bottleneck used by ResNet-101, SE-
ResNet-101, and SE-ResNeXt-101 (32×4d). The SE Block, which is part of the
SE-ResNet-101 and SE-ResNeXt-101, is exactly the same shown in Figure 3.8.

SE-ResNeXt-101 (32×4d)

Another network benefiting from the incorporation of SE Blocks is ResNeXt. This
network is a modification of ResNet, proposed by Xie et al. [XGD+17], which in-
cludes another adaptation to the original network flow. Using the idea of splitting,
transforming, and aggregating, they proposed an aggregated transformation, which
is given by

F(X) =
C∑
i=1

Ti(X), (4.4)

where X is the transformation input, C is the cardinality (size) of the set of trans-
formations, and the Ti can be arbitrary functions. Applying this idea along with
the residual learning framework, the block turns out to be given by

Y = X + F(X) (4.5)

= X +
C∑
i=1

Ti(X), (4.6)

where Y is the block output. Aggregated transformations can be seen as introducing
another dimension to the network besides width and depth. Xie et al. show that
this new dimension increases performance [XGD+17].

For ResNeXt, all Ti have the same topology. In this case, F can be implemented
as a grouped convolution. This is how SE-ResNeXt-101 was implemented in Shen’s
solution, as represented in Figure 4.8. In the ResNeXt used by him, the cardinality

40

CHAPTER 4. SECOND PLACE SOLUTION

C is set to 32, while the block output’s depth is 4d, where d is a hyperparameter
with different values for each block stack (see Figure 4.7).

Another distinctive characteristic of this network is the higher number of feature
maps generated in the bottleneck first convolutions, which is twice the others. This
number of features is similar to the one in SENet-154, discussed in Chapter 3.

4.3.3 Loss Functions

In Shen’s final model design, four loss functions are combined to generate the model
loss: Triplet Loss [HBL17], ArcFace Loss [DGXZ19], CosFace Loss [WWZ+18,
WCLL18], and an adaptation of Focal Loss [LGG+17]. Each of these functions
is applied at a different branch of operations, as shown in Figure 4.6. We discuss
each of them in the next sections.

Triplet Loss

Following a similar approach used by Qiao et al., Shen also used the Triplet Loss
function in his pipeline, despite not considering it a key aspect of his solution. See
Section 3.3.3 for a brief explanation of this loss function.

A difference between Shen’s application and Qiao et al.’s relies on the hard
sampling strategy. While in the first-placed solution classes were chosen randomly,
along with random positive and negative examples, the second-placed solution used
the technique specified by Hermans et al. [HBL17], i.e. a batch is created using P
classes with K examples each. In Shen’s implementation, K was set to 4, and P
was such that the batch size matched a previously specified value. Moreover, a fixed
ratio of around 25% of new whales is always present in the sampled batches.

ArcFace Loss

Here we present in more details the ArcFace Loss [DGXZ19], which is part of a
branch of the common flow, and is considered the key aspect of the solution by the
author, as stated in a response to a competitor [She19a].

Softmax Loss is widely used in classification tasks using neural networks. In its
standard form, it is given by

Lstd = − 1

N

N∑
i=1

log

(
exp

(
W T
yi
xi + byi

)∑n
j=1 exp

(
W T
j xi + bj

)) , (4.7)

where N is the batch size, W and b are respectively the weight matrix and the bias
vector of the last linear layer, yi and xi are respectively the correct label and the
feature vector for the i-th sample, and n is the number of classes. However, this
standard form is shown to have a poor power of discrimination [WWZ+18]. Aim-
ing at solving this issue, different adaptations have been proposed to the standard
Softmax Loss. Most of them use the idea of normalizing both W and xi using the
Euclidean norm and setting the biases to zero, allowing a geometric interpretation
of the inner product between Wj and xi as cos θj, i.e. the cosine of the angle formed

41

CHAPTER 4. SECOND PLACE SOLUTION

by the vectors in the hyperspace. Moreover, a cosine re-scaling factor s is usually
used, as first proposed by Wang et al. [WXCY17].

ArcFace Loss is one of these adaptations, proposed by Deng et al. [DGXZ19].
Their idea is essentially to introduce an additive angular margin m to the argument
of the cosine, yielding the following mathematical expression for the loss:

Larc = − 1

N

N∑
i=1

log

(
exp (s cos(θyi +m))

exp (s cos(θyi +m)) +
∑n

j=1,j 6=yi exp (s cos θj)

)
. (4.8)

This enlarges the decision boundary associated with the classes and increases
discriminatory power. For an analysis of loss function and intuitive examples of the
effect of the margin, see Deng et al.’s work [DGXZ19].

In Shen’s implementation, the margin parameter is configured as suggested by
the authors, i.e. m = 0.5, while the scaling factor is set to s = 64. However, in his
solution, this loss function is only applied when the θj ∈ [0, π]. When θj is outside
that interval, CosFace Loss is used instead, which is described in the next section.

CosFace Loss

CosFace Loss, also called Additive Margin Softmax Loss, is another adaptation
proposed to enhance the Softmax Loss [WWZ+18, WCLL18]. Following a similar
approach to ArcFace’s, this loss introduces a margin parameter also aimed at en-
larging the decision boundary for classes. However, this margin is added in the
cosine space instead. See Deng et al.’s work to a comparative analysis including
these different margin penalties [DGXZ19].

When this loss is applied in Shen’s solution, the additive margin parameter is set
to m sin(m), where m is the margin configured for ArcFace Loss. Since m = 0.5 for
the angular additive margin, m sin(m) ≈ 0.2397 is the numeric value used for the
CosFace margin parameter, which is relatively close to the authors’ recommended
value of 0.35.

Focal Loss Adaptation

Inspired by the Focal Loss idea of weighting the loss function output differently
based on the confidence of the network and the correctness of the prediction, Shen
created an adaptation of this loss function. This modified function also includes the
Binary Cross-Entropy Loss, described in Section 3.3.3. In order to describe it, first
some auxiliary functions must be introduced, namely

h(x) =

{
0, if x > 0;

|x|, otherwise,
(4.9)

ζ(x) = log(1 + ex), (4.10)

and

X∗j,i =

{
−Xj,i, if i = yj;

Xj,i, otherwise,
(4.11)

42

CHAPTER 4. SECOND PLACE SOLUTION

where Xj,i is the fully connected layer output shown in Figure 4.6, with the first
index representing the batch example, the second index representing the i-th class,
and yj being the j-th example label. Shen’s adapted function is given by

L = LBCE +
1

Cn

C∑
j=1

n∑
i=1

σ(X∗j,i)
γ
[
h(X∗j,i) + ζ(−|Xj,i|)

]
. (4.12)

where C and n are, respectively, the batch size and the number of classes, and γ is
a hyperparameter set at 2.

4.3.4 Inference Phase

As shown in Figure 4.6, the inference phase follows the path that leads to the
classification output. This path processes both non-flipped and flipped test images,
resulting in two classification results by each model. Both values are combined later
on, as shown in Section 4.4. When a test image is flipped, only the vector entries
regarding flipped classes are used. This way, flipped images are classified, in the
end, as the non-flipped class corresponding to the inferred flipped class.

4.3.5 Training Procedure

Following the same strategy used by Qiao et al., Shen used transfer learning and
started with models pre-trained with the ImageNet dataset [RDS+15]. Every model
was then trained to specialize in the task of identifying whales by their tails. To
accomplish this, the first two backbone network layers are frozen, while the others
(most of the net) are free to learn, specializing to solve the task at hand.

In terms of the flow used for model training, an approach differing from the first-
placed solution was used, though. In the present solution, all networks are trained
separately, always for a hundred epochs. During this phase, the learning rate is
automatically updated, as discussed below in the section on hyperparameters.

Parameter Initialization

By using transfer learning, practically all model parameters are already set at start
up, since Shen’s common flow does not extend much the network flow through
convolution or other parametric operations. For Batch Normalization, shown in
Figure 4.6, neither the mean µ = 0 nor the standard deviation σ = 1 are set as
parameters to be learned.

The fully connected layer on the ArcFace Loss path is initialized with weight
and bias parameter values drawn from the uniform distribution U(−

√
k,
√
k), with

k = 1/Cin, where Cin is the number of input channels (2048). On the adapted Focal
Loss path, the weight matrix is initialized with values drawn from the uniform
distribution U(−1, 1), followed by an L2 normalization on the class dimension.

Hyperparameters

Besides the hyperparameters already discussed throughout this chapter, such as loss
margins, a few additional hyperparameters were configured for the final model.

43

CHAPTER 4. SECOND PLACE SOLUTION

0 20 40 60 80 100

1 · 10−5

1 · 10−4

1 · 10−3

Epoch
L

ea
rn

in
g

R
at

e

Figure 4.9. Learning rate warm-up schedule.

Optimization Algorithm Parameters. The Adam optimization algorithm [KB14]
is used, with exponential decay rates β1 = 0.9 and β2 = 0.999, and weight decay
α = 2 · 10−4.

Learning Rate. The base learning rate is set to 3 · 10−4, and is constantly
updated during the training as described in the next section.

Warm-up Learning Rate

Learning rate warm-up is a heuristic for adapting the learning rate during training.
When a significantly large batch size is used to train a network, a poor learning
progress is empirically identified. However, this heuristic is shown to help prevent
large and unstable changes in the fully connected layers of the network when a large
batch size is used, thus leading to a successful training [GKXS18].

Shen decided to include this strategy in his solution, and defined the learning
rate update schedule based on the training epoch shown in Figure 4.9.

4.4 Model Ensemble

As mentioned in previous sections, the final classification is given by an ensemble
of models. Each model varies in terms of (i) the backbone network used, (ii) the
input image size, and (iii) the usage of pseudo labels. Table 4.2 shows each com-
bination more precisely. Moreover, for each model, two classification outputs are
generated: one for original test images and other for flipped test images. Both clas-
sification results are used for creating the final classification, which means that 20
different predictions are combined. Possibly to reduce the computational burden,
Shen had all classifications used in the assembling procedure contain only the top-5
high confidence predictions.

4.5 Reproducing Solution Training

All procedures and steps needed to reproduce Shen’s solution are available on the
GitHub source code repository [She19b]. Along with the code itself, bounding boxes
and pseudo labels used are also available. We followed strictly the process of training
each model, which essentially translates into following what is specified in Table 4.2.

44

CHAPTER 4. SECOND PLACE SOLUTION

Model Backbone Net Image Size Pseudo Labels Weight

(a)

ResNet-101

512× 256
- 1

(b) X 2

(c)
512× 512

- 1

(d) X 2

(e)

SE-ResNet-101

512× 256
- 1

(f) X 2

(g)
512× 512

- 1

(h) X 2

(i)
SE-ResNeXt-101

512× 256 - 1

(j) 512× 512 X 2

Table 4.2. Ensemble models and their respective vote weight.

Since our hardware configuration probably differed from his, for each trained
model, we adapted the batch size to fit our resources. Memory was the main fac-
tor impacting the batch size, because larger image sizes imply more parameters in
the network (increasing memory usage). Table 4.3 shows the maximum validation
precision, batch size, and training time for each trained model.

Finally, our reproduction official score is shown in Table 4.4. It’s notable that
a very similar result was achieved, indicating a good reproduction of the neural
network training and post-processing steps.

4.6 Conclusion

In order to achieve a good classification, this solution incorporated standard prac-
tices to transform the data, reducing the impact of variability on the input, and
used different image sizes to train several deep residual neural network models,
which formed an ensemble. Each of the trained models shared a common flow,
which included different loss functions, some of which are based on ideas from the
fields of face recognition and person re-identification. The final result is built using
20 classification results voted by 10 trained models. In our reproduction, the per-
formance achieved was very close to the authors’, with less than 0.005 in absolute
difference.

45

CHAPTER 4. SECOND PLACE SOLUTION

Model
Validation

Batch Size Training Time

MAP@5 Top@1

(a) 0.943 0.917 64 31h00

(b) 0.947 0.920 64 29h30

(c) 0.926 0.885 16 117h00

(d) 0.932 0.891 16 111h30

(e) 0.934 0.899 64 37h30

(f) 0.942 0.910 64 35h30

(g) 0.924 0.887 32 73h00

(h) 0.934 0.900 32 34h00

(i) 0.940 0.909 64 14h30

(j) 0.941 0.913 32 80h30

Table 4.3. Partial training results for each model. The training time is an approxi-
mation of the time taken to achieve the highest validation MAP@5, which occurred
in different epochs for each model.

Model
Leaderboard score

Public Private

Shen’s 0.97359 0.97208

Ours 0.97150 0.96910

Table 4.4. Official results on public and private leaderboards on Kaggle Platform
for Shen’s final submission and our submission.

46

Chapter 5

Third Place Solution

This solution was developed by Jinmo Park, and achieved the second place on the
public leaderboard, and the third place on the private leaderboard. A brief summary
of the solution and its progress during the competition is available on a post on
the Kaggle Forum [Par19a]. The source code is available on the GitHub platform,
along with all configuration files and extra resources necessary to reproduce this
solution [Par19b].

Park’s solution also used neural networks both to generate bounding boxes and
landmarks as well as to identify the whales by their tails. However, differently from
the top-2 solutions, the classification learned directly by the network is not used
during the inference phase. Instead, the set of features discovered for each identity
in the dataset are compared to the features of each test image during the inference
phase, in order to decide whether both images belong to the same whale.

Many other techniques are used in Park’s solution. We will explore them, with
emphasis on the points not presented in Chapters 3 and 4. We will also present the
overall configuration. Thus, in Section 5.1, we show how Park dealt with the data.
Then, we present some special tactics applied on Park’s solution in Section 5.2. In
the sequel, we describe in Section 5.3 the neural network architecture used, and how
inference is done using the learned features in Section 5.4. Finally, we present our
results in reproducing the solution training and test.

5.1 Data Treatment

This solution followed a similar strategy compared with the top two solutions: stan-
dardize the image format and apply several transformations onto the images. For
standardizing input images, bounding boxes and landmarks are created for each im-
age, and are used to crop and align the whale fluke, as shown in Section 5.1.1. The
other transformations are applied aiming at data augmentation and regularization.
These are described in Section 5.1.2.

5.1.1 Bounding Boxes and Alignment

As the network’s standard input image format, Park decided to have images cropped
in such a way that the resulting image had mostly the whale’s fluke on it. This way,

47

CHAPTER 5. THIRD PLACE SOLUTION

(a) (b)

Figure 5.1. Example of bounding box and landmarks used by Park. (a) Predicted
bounding box (solid line) and landmarks (dots) for an image in dataset. (b) Align-
ment point positions after cropping and resizing the image. The dotted lines indicate
fluke limits (not used in the code — shown here for illustrative purposes only).

noisy background information could be more easily ignored by the network during
the inference process. Moreover, an alignment technique was thought at first to
be always applied to the images, aiming at a standardizing the fluke’s position. In
order to “align” the fluke, some keypoints (landmarks) were chosen by Park to use
as reference. This information, however, was not part of the original dataset. Thus,
another task consisting in predicting both bounding boxes and landmarks had to
be pursued. With indirect help from another competitor, namely Johnson, who
made available a set of hand-labeled keypoints for a thousand images [Joh19], Park
was able to create a deep learning solution to detect these landmarks. This deep
learning solution also predicted the bounding boxes, trained with the data provided
by Osmulski [Osm19]. The bounding boxes and fluke keypoints used by Park are
illustrated in Figure 5.1.

Following image cropping, a resize operation is performed, standardizing the
input image size to (320, 320). After some attempts to tackle the problem, Park
noticed that the alignment operation could have been worsening the results, due to
inaccurate prediction of landmarks and bounding boxes. Thus, he decided to align
each training example with a probability of 0.5. In contrast, all test examples are
always aligned. This slightly increased his score. Therefore, alignment can also be
seen as a form of data augmentation in his solution, since it is not always applied to
the training images. Other data augmentation strategies are discussed in the next
section.

5.1.2 Data Augmentation

Some transformations were chosen by Park for his strategy to augment the data (see
Table 5.1). Most of them are simple and used mainly to increase variability, aiming
at a better generalization. Since some similar transformations have already been
discussed in previous chapters, we focus here on the transformations not previously
seen, referring to the others when necessary.

48

CHAPTER 5. THIRD PLACE SOLUTION

Transformation Probability

Blur
Average 0.5

Motion 0.5

Random addition 1

Random multiply 1

Random scale
Random translation

Random shear
Random rotation

0.5

Random gray scale 0.5

Table 5.1. Data transformations used by Park.

Average and Motion Blur

Like Gaussian Blur, discussed in Section 4.1.3, average and motion blur are applied
using kernels, in order to affect the neighboring pixels only. In average blur, the
kernel calculates the average value of the region and replaces the central element.
In Park’s solution, 3x3 kernels are used for this operation. Motion blur, on the
other hand, makes a transformation that simulates the distortion on the image due
to abrupt motion when taking a photo. For this type of blur in his solution, a
random kernel size is drawn from uniform distribution U(3, 5), which causes an
almost imperceptible visual effect due to the high resolution of the images.

Random Addition and Multiply

Random addition is an arithmetically simple transformation which adds a random
value to all pixel values. In Park’s augmentation, the random value was chosen
uniformly from the interval [−10, 10] per image. With a probability of 0.5, random
values were chosen separately for each color channel. Random multiply is analogous
to addition, but here the image tensor is scaled by the sampled value. In this
solution, the scaling factor was drawn from the uniform distribution U(0.9, 1.1),
and also had a 0.5 probability of having different values sampled per channel.

Random Scale, Translation, Shear and Rotation

Scaling, translation, shearing and rotation are all affine transformations, and they
are all applied together. Scaling refers to the change of the original image spatial
dimensions by some factor, followed by a filling operation when the transformation
shrinks the image, in order to preserve the tensor dimensions. Park chose to use
independent scaling factors on the spatial dimensions, both drawn from the distri-
bution U(0.9, 1.1).

In Park’s solution, translation is based on a random percentage of the image

49

CHAPTER 5. THIRD PLACE SOLUTION

(a) 90 degrees (b) 180 degrees (c) 270 degrees

Figure 5.2. Examples of image rotation due to different fluke position on the pho-
tograph. Rotation angles are clockwise.

dimensions. For both width and height, a random value in drawn from the distribu-
tion U(−0.05, 0.05). Pixel values undefined due to the translation are zeroed, while
the pixels outside the image are ignored.

The last two affine transformations, shearing and rotation, are illustrated in
Section 4.1.3. Here both operation have their angles drawn uniformly from the
interval [−10, 10] (in degrees), and have the empty tensor entries zeroed instead of
replicated.

Random Gray Scaling

Random gray scaling is a transformation that composes the original image and its
grayscale version using a random percentage α of pixel’s exclusion from the original
image. Thus, when α = 0, the image is not changed at all. On the other hand,
when α = 1, the resulting image is entirely in gray scale. Park used an exclusion
probability drawn from the distribution U(0.8, 1). Therefore, original colored images
are mostly converted to gray scale when the operation is applied.

5.2 Special Techniques

Exploring the data characteristics, this solution groups mislabeled whales — includ-
ing some new whales —, rotates some images, uses a classification leak, and flips
the images to create more identities. Next we briefly discuss each of these tactics.

5.2.1 Image Rotation

In order to keep the alignment consistent, Park detected some images which origi-
nally did not have their landmarks in a similar arrangement as the standard position
shown in Figure 5.1. Therefore, they are rotated to better position the flukes, and to
improve the alignment result. It worth noting this transformation is not exploited on
the landmark prediction task, though. See Figure 5.2 for some examples of images
chosen to be always rotated during training the fluke identifier.

5.2.2 Class Grouping

As also discovered by other participants, the competition dataset contained some
mislabeled images [Mok19]. This mislabeling consisted of identifiable whales with

50

CHAPTER 5. THIRD PLACE SOLUTION

some of their images labeled as new whale, and different IDs for images of the
same whale. To solve the multi-label issue, Park created new IDs to unify different
labels for the affected whales. Moreover, images classified as new whales, but with
multiple images in the dataset, also had new IDs assigned (although, in the end, it
were classified as the general new whale class).

As a part of a post-processing phase, Park exploited the image sizes to decide
which of the duplicate classes should be the first predicted class. This is done so
that the first predicted class is always the one that has an image whose size is equal
to the size of the test image, if there is any.

5.2.3 Classification Leak

A classification leak occurs when a competitor already knows the label of one or
more test images. Park used a leak published by Wang — member of the first-
placed team [Wan19] — although not in a way affecting the task itself, when seen
as an application to be used afterwards. This leak consisted of labels for test images
from the featured competition which were also available in the previous, playground
competition. He used this information to replace the top-1 class for each test image
involved.

5.2.4 Flipped Images

Similarly to the first- and second-placed teams, Park used the technique of flipping
images to create fake identifiable whales. For details about this strategy, refer to
Section 3.2.1.

5.3 Network Architecture

The architecture developed to identify the whales has a few modifications in terms of
the default setting proposed in the literature. The model uses a Densely Connected
Network as the backbone network [HLVDMW17], which is discussed in Section 5.3.1.

Figure 5.3 shows an architectural sketch of the network. As it can be noticed,
the backbone network is used to generate a set of features, which are later used to
identify the whales, in a process discussed in Section 5.4. To generate the model
loss during training, a pipeline consisting of batch normalization, dropout, a fully
connected layer and another batch normalization is used to generate the feature
vector, where the ArcFace approach (discussed in Section 5.3.2) is used. During
inference, only the feature vector is used, as described in Section 5.4.

In Section 5.3.3, we present parameter settings and the solution’s training pro-
cedure.

5.3.1 Backbone Network

In order to compute high-level features from the input image to be used in the
identification task, a Densely Connected Convolutional Network is incorporated to
the solution; more precisely, the DenseNet-BC-121.

51

CHAPTER 5. THIRD PLACE SOLUTION

Figure 5.3. Network design used by Park to generate embeddings (feature vectors)
for the whales’ flukes.

DenseNets were first presented by Huang et al. as an architecture that exploits
even further the idea of skipping connections introduced by He et al. with Residual
Networks [HLVDMW17, HZRS16]. For Densely Connected Networks, instead of
having a single skipping or residual connection, all layers are directly connected
with previous layers. This connection is done through the concatenation of features,
in contrast to the addition operation of Residual Networks. Huang et al. show many
benefits this architecture can bring, including better accuracy, parameter efficiency,
and less propensity to overfitting.

Next we present an overview of the complete DenseNet-121 architecture with
this solution configuration. The variant DenseNet-BC uses both bottleneck (B)
and compression (C) operations. For more details about other variants of Densely
Connected Networks, see Huang et al.’s work [HLVDMW17].

Dense Blocks and Transition Layers

Dense blocks are the fundamental building blocks of a DenseNet. A dense block is
where the dense connectivity of layers takes place, building the accumulated knowl-
edge of the network. Each dense block has a similar structure: several composite
operations followed by a transition layer. As shown in Figure 5.4a, the composite op-
erations are defined as 1x1 convolutions, with batch normalization (BN) and ReLU
activation — which participates on the Bottleneck variant only, since it is respon-
sible for reducing the number of feature maps —, followed by another convolution
(3x3) with BN and ReLU.

Transition layers are responsible for reducing the spatial dimensions of the fea-
tures generated by the dense blocks, and for summarizing the information needed
by upcoming blocks. Moreover, since this implementation uses compression, a ra-

52

CHAPTER 5. THIRD PLACE SOLUTION

(a) Composite operation.

(b) Transition layer.

Figure 5.4. The two fundamental layers of the DenseNet architecture. Both blocks
are illustrated with an arbitrarily-sized input feature map. (a) Composite operation
layer. Parameter k is the growth rate (set to 32). (b) Transition layer used be-
tween dense blocks in the DenseNet-BC-121. Parameter θ is the compression ratio
mentioned in the text.

tio θ = 0.5 of feature map reduction is also present, possibly removing redundant
information the block creates by reducing the number of feature maps. Figure 5.4b
shows a transition layer configuration.

Overall Structure

Roughly speaking, a DenseNet is built using dense blocks, interspersed with transi-
tion layers. For a 121-layer DenseNet, four dense blocks are used, with 6, 12, 24, and
16 composite operations, respectively. Before starting the dense block pipeline, a
convolution (7x7) is applied, followed by a (max) pooling. A sketch of this architec-
ture is shown in Figure 5.5. Note that the last dense net does not have a transition
layer. Instead, batch normalization is performed. In a conventional DenseNet, a
linear layer with softmax would follow max pooling, in order to generate the clas-
sification result. However, this part is adapted by Park, and the flow follows the
scheme specified in Figure 5.3.

5.3.2 Loss Function

Similarly to the second-placed solution, Park also modeled his solution with the
ArcFace approach [DGXZ19], described in Section 4.3.3. The same strategy was

53

CHAPTER 5. THIRD PLACE SOLUTION

Figure 5.5. DenseNet-121 structure. The classification layer is not represented in
this sketch, since the third place solution had another identification strategy.

used in terms of the CosFace usage for angular values from interval [0, π]. However,
as shown in the previous section, this loss function is the only one contributing to
the model final loss.

5.3.3 Training Procedure

The backbone network is imported indirectly from the PyTorch implementation,
and it uses the ImageNet pre-trained parameters [Cad17, RDS+15]. Differently
from the top two solutions, Park does not freeze any network layer during the
training. However, a scheduler is used to update the learning rate, impacting on the
learning process. Next, a description of parameter initialization, hyperparameter
configuration, and scheduler for this network are presented. Finally, we briefly
comment on the Stochastic Weight Averaging strategy [IPG+18], also a feature of
this solution.

Parameter Initialization

Besides the backbone network parameters — which are given by transfer learning —,
Park initialized the batch normalization and the fully connected layer in Figure 5.3
with the default configuration from PyTorch. In other words, for the normalization,

54

CHAPTER 5. THIRD PLACE SOLUTION

the learnable mean γ is set to 1 and standard deviation β to 0; for the FC layer,
weights and biases are uniformly initialized with values from U(−

√
k,
√
k), with

k = 1/Cin, where Cin is the number of input features. On the other hand, the fully
connected layer part of the ArcFace approach is initialized using the Glorot and
Bengio method [GB10].

Hyperparameters

Besides the hyperparameters already specified throughout this chapter, Park con-
figured the others as follows.

Optimization Algorithm Parameters. The Adam algorithm is used with
β1 = 0.9, β2 = 0.999, and weight decay α = 5× 10−4 [KB14].

Learning Rate. At start-up, it is set to α = 5 × 10−4 on most models (see
Section 5.5 for other configurations). Moreover, a scheduler is used to tune this
value during training. This tuning is described in the next section.

Multi-Step Scheduler

The multi-step scheduler changes the learning rate at some points in the training
procedure, specified in terms of epochs, usually called milestones. This change takes
place by a constant re-scaling with factor γ, which diminishes the learning rate. In
Park’s solution, γ = 0.5, and the milestones are hyperparameters that depend on
the model being trained. As shown in Section 5.5, all models use two milestones,
with (150, 200) used in most of them.

Stochastic Weight Averaging

Studying more closely loss surfaces for deep neural networks, Izmailov et al. pro-
posed the Stochastic Weight Averaging (SWA) method for creating models with
better generalization, based on the parameters (weights) of the intermediary models
obtained during a training with the standard Stochastic Gradient Descent algo-
rithm, with a cyclical or constant learning rate. This method consists in averaging
the weights of the model in pre-selected points during the training procedure. This
is justifiable because they found out that the learning algorithm will surround gen-
eralization optima points, never actually reaching them. They also uncovered that
optima points on the training loss surface are usually shifted with respect to the
test loss surface. Other properties are described and further justify this strategy.
For cyclical learning rates, they chose points so that the learning rate reaches is
minimum value in the cycle; for constant learning rate, a point is chosen in each
epoch [IPG+18].

Park used this strategy to improve the model’s ability to learn relevant feature
vectors. As shown in this section, a scheduler is used to configure the learning rate
in Park’s model. However, since no change is done after the last milestone, it is
justifiable to apply SWA. In the selection of averaging points, the highest validation
average score of the last 20 epochs is considered, and when this highest score is
reached, the last 10 epochs are averaged. Moreover, Park uses a moving average,
which assigns a decreasing weight in chronological order given by rate α = 1/(1+ i),

55

CHAPTER 5. THIRD PLACE SOLUTION

where i is the ordinal number of the model being averaged, i.e. less weight is assigned
to the models closer to the last point. Departing from the standard approach, which
is to average during training, here the model points are combined after the training
ends, in a post-training step.

5.4 Inference Phase

Unlike other competitors who used classification, Park decided to base his solution’s
inference on surface areas on a hypersphere. As shown in Section 5.3, the network’s
final output (considering a single image as input) is a feature vector with 512 entries.
This 512-dimensional space is the one used to characterize the whales, having the
cosine similarity of normalized features as comparison metric.

In order to create a template for each class, the trained neural network is used
to infer the feature factors for the training dataset images, considering only the
identifiable whales, i.e. excluding the new whale class.

However, these features produced by the network are directly related to a single
image, not to the whale’s identity. Therefore, another step has to follow feature
inference, in order to transform or aggregate multi-representations learned for each
identity to create embedding features. Park based his approach on the ArcFace pro-
posal [DGXZ19], which is to compute the feature center and use it as the embedding
features of a class with multiple examples. Although this could be applied directly,
Park decided to refine even further the strategy, by performing the centering process
only with the closest features with respect to the center. When less than four images
are available for a given identity, the feature center (mean) is defined simply as the
embedding feature. Otherwise, an iterative process with two-step reduction is used.
First, the center is computed using all images’ features, then a fourth of the features
are discarded (the farthest from the center). This process is repeated once again if
more than three representations are still available. Finally, the center is computed
for the remaining features. Once the center is determined, a normalization is done
to create a correspondence between feature vectors and the hypersphere surface.

In addition, features are computed both using the fluke alignment (yet condi-
tioned to a 50% chance of not being aligned) and not using it. Besides, because
of the flipping trick (see Section 5.2), another set of feature embeddings is created
considering only flipped images, also varying the alignment.

Then, the test image feature inferences are done, also having the original and
flipped identities’ embedding created separately with both changing the alignment
to increase the number of feature vectors. After this process, a similarity matrix is
created using the cosine similarity, described in Section 5.4.1, for both flipped and
non-flipped images. These similarities are then combined by averaging the results of
the correspondent non-flipped and flipped identities. This resulting matrix is then
used to decide which classes are more likely to correspond to each test image. This
final step is described in Section 5.5, along with the assembling process of different
trained models.

56

CHAPTER 5. THIRD PLACE SOLUTION

Model Scheduler Milestones Learning Rate Class Grouping

1st (250, 350) 5× 10−4 -

2nd (150, 200) 5× 10−4 -

3rd (150, 200) 2.5× 10−4 X

Table 5.2. Changes in configurations used by Park to create different trained models
and generate the final identification. For more information about scheduler mile-
stones, see Section 5.3.3. All other parameters mentioned throughout the chapter
are kept unchanged.

5.4.1 Cosine Similarity

Cosine similarity is a metric that uses the information of the angle between vectors
u and v, through its cosine, to measure distance. Since the vectors are normalized
beforehand, a simple way to obtain the cosine of the smallest angle formed by them
is by the inner product:

〈u, v〉 = vTu = ‖v‖‖u‖ cos θ = cos θ. (5.1)

When cos θ = 1, it follows that θ = 0, i.e. u = v, since the vectors are normalized.
On the other hand, if cos θ = −1, then θ = π and u = −v. In other words, when the
cosine is close to 1, both vectors are pointing to a close position in the hypersphere,
and they are pointing to opposite directions when it is close to −1. Therefore, one
can use this information to identify whether two vectors point to a same position
within a margin, which is analogous to have the classes spread on the surface of the
hypersphere.

5.5 Ensemble Method

To create the submission classification, an ensemble method was conceived to com-
bine the knowledge obtained by three variants of the model. These variations con-
sisted in changes in the training scheduler configuration, learning rate, and label
corrections by class grouping, described in Section 5.2.2. Table 5.2 summarizes the
differences among these three configurations.

Once the cosine similarity matrix is computed for all three models, following the
specified in Section 5.4, the assembling process in done by computing the average
of the cosine similarity matrices. This combined result is then used to selected
the five most likely whale identities for a given image. Because the matrix does
not include the new whale class (since this is actually not a unique whale which
can be discriminated by a single feature embedding), a fixed threshold α = 0.385 is
considered to classify a whale as new, i.e. when the similarity of the next most similar
class is less than α, the new whale class is used as the current guess. This threshold
value was chosen, as explained by Park in his solution overview post [Par19a], to
yield new whale in about 27.6% of the top-1 predictions.

57

CHAPTER 5. THIRD PLACE SOLUTION

Model
Leaderboard score

Public Private

Park’s 0.97419 0.97113

Ours 0.96984 0.96889

Table 5.3. Official results on public and private leaderboards on Kaggle Platform
for Park’s final submission and our submission.

Finally, top-1 class corrections and conversion of grouped classes are done as a
post-processing step, as specified in Sections 5.2.3 and 5.2.2.

5.6 Reproducing Solution Training

Park structured his solution to deal with two tasks: generating landmarks and
identifying the whales by their tails. Thus, we have configuration files to hande each
task. However, his landmark predictions are available in the solution repository
on GitHub [Par19b]. Park also made his trained model available for download.
Since our purposes include checking the reproducibility of the solutions, we retrained
the model used to extract features from the images. Therefore, three models were
trained using the configuration files available in the repository. All parameters shown
throughout this chapter are specified either in these configuration files or directly in
the source code.

To adapt the training to our resources, we increased the batch sizes from 32 to
96 samples. The number of epochs is not directly given by Park on his solution
overview post, but it is shown indirectly to be 300 when he specifies the expected
training time. Despite that, we decided to train it for 500 epochs, following the
specification in the configuration files.

After training each model following the configuration shown in Section 5.5, we
combined the network model points using the SWA strategy, with code found in the
repository. After that, we generated the similarity matrices for all models, combined
them, and generated the final classification result, also using source code available to
performing this task. The final result obtained by this process was then submitted
to the Kaggle Platform. The results are shown in Table 5.3.

5.7 Conclusion

Despite not approaching the task with a classification network, Park was able to
create a high confidence solution. By using simple data transformations and a more
sophisticated alignment technique, he created variations to prevent overfitting and
improve generalization. He also exploited a state-of-the-art neural network to com-
pose flukes’ feature predictions: DenseNet. This network exploits even further the
idea of creating short connections among layers by creating fully connected blocks.

58

CHAPTER 5. THIRD PLACE SOLUTION

In addition, the ArcFace strategy is used to guarantee inter-class discrimination
power for this deep network. As a result, 512-D feature vectors can be created for
each identity, and then used to identify unseen whales by their tails. An ensemble
is also used to improve the predictions, as well as label corrections in a final pro-
cessing step. Finally, our training reproduction led to close results in both public
and private leaderboards, displaying absolute differences around 0.004 and 0.002,
respectively, between our scores and the ones obtained by the author.

59

Chapter 6

Acknowledgments

This work was supported by the São Paulo Research Foundation (FAPESP) under
grant no. 2019/11386-3. We also acknowledge the availability of computational
resources described in Section 1.2, acquired through FAPESP support under grant
no. 2018/00031-7, and maintained by the Institute of Computing/UNICAMP.

We also thank the Kaggle platform for keeping the competition available even
after its deadline, in the late submission format, and the Kaggle community for the
sharing of solutions and comments.

Opinions, hypothesis and conclusions, or recommendations expressed in this ma-
terial are responsibility of the author(s), and do not necessarily reflect FAPESP’s
point of view.

60

Bibliography

[AB07] Tuncer C Aysal and Kenneth E Barner. Rayleigh-maximum-
likelihood filtering for speckle reduction of ultrasound images. IEEE
Transactions on Medical Imaging, 26(5):712–727, 2007.

[Bad19] Malek Badreddine. Bad quality images. https://www.kaggle.com/
c/humpback-whale-identification/discussion/73882, 2019.
Accessed: 2019-12-16.

[Cad17] Remi Cadene. Pretrained models for PyTorch. https://github.

com/Cadene/pretrained-models.pytorch, 2017. Accessed: 2020-
05-17.

[CF97] Christine Connolly and T Fleiss. A study of efficiency and accuracy
in the transformation from RGB to CIELAB color space. IEEE
Transactions on Image Processing, 6(7):1046–1048, 1997.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern classifica-
tion. IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[Che19] Heng CherKeng. Here are the tricks. https://www.kaggle.com/c/
humpback-whale-identification/discussion/79384, 2019. Ac-
cessed: 2020-01-20.

[CWP+18] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang
Yu, and Jian Sun. Cascaded pyramid network for multi-person pose
estimation. In IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7103–7112, 2018.

[DGXZ19] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Ar-
cface: Additive angular margin loss for deep face recognition. In
IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4690–4699, 2019.

[DK16] Samuel Dodge and Lina Karam. Understanding how image quality
affects deep neural networks. In IEEE International conference on
quality of multimedia experience (QoMEX), pages 1–6. IEEE, 2016.

[Doc20] Docker Inc. Docker: Empowering app development for developers.
https://www.docker.com/, 2020. Accessed: 2020-01-31.

61

https://www.kaggle.com/c/humpback-whale-identification/discussion/73882
https://www.kaggle.com/c/humpback-whale-identification/discussion/73882
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://www.kaggle.com/c/humpback-whale-identification/discussion/79384
https://www.kaggle.com/c/humpback-whale-identification/discussion/79384
https://www.docker.com/

BIBLIOGRAPHY

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), pages
249–256, 2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.org.

[GKXS18] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and
Richard Socher. A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

[GZ17] Yandong Guo and Lei Zhang. One-shot face recognition by pro-
moting underrepresented classes. arXiv preprint arXiv:1707.05574,
2017.

[HBL17] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737, 2017.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In IEEE In-
ternational Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4700–4708, 2017.

[HSS18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks.
In IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7132–7141, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[IPG+18] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights leads
to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[Joh19] Paul Johnson. 1000 Hand-Annotated Humpback Whale Fluke
Keypoints. https://www.kaggle.com/c/humpback-whale-

identification/discussion/78699, 2019. Accessed: 2020-05-04.

[Kag18] Kaggle. Humpback Whale Identification Challenge: Can you identify
a whale by the picture of its fluke? https://www.kaggle.com/c/

whale-categorization-playground, 2018. Accessed: 2019-12-24.

[Kag19a] Kaggle. How to use Kaggle: Competitions. https://www.kaggle.

com/docs/competitions, 2019. Accessed: 2019-12-18.

62

http://www.deeplearningbook.org
https://www.kaggle.com/c/humpback-whale-identification/discussion/78699
https://www.kaggle.com/c/humpback-whale-identification/discussion/78699
https://www.kaggle.com/c/whale-categorization-playground
https://www.kaggle.com/c/whale-categorization-playground
https://www.kaggle.com/docs/competitions
https://www.kaggle.com/docs/competitions

BIBLIOGRAPHY

[Kag19b] Kaggle. Humpback Whale Identification: Can you identify a
whale by its tail? https://www.kaggle.com/c/humpback-whale-

identification/overview/description, 2019. Accessed: 2019-
12-18.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KC17] Micha l Koziarski and Bogus law Cyganek. Image recognition with
deep neural networks in presence of noise–dealing with and taking
advantage of distortions. Integrated Computer-Aided Engineering,
24(4):337–349, 2017.

[LC19] Fredrik Lundh and Contributors. Pillow documentation. https:

//pillow.readthedocs.io/en/stable, 2019. Accessed: 2019-12-
17.

[LGG+17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2980–2988, 2017.

[Mil95] George A Miller. WordNet: a lexical database for English. Commu-
nications of the ACM, 38(11):39–41, 1995.

[Mok19] Oleksandr Mokin. List of duplicate whale ids. https:

//www.kaggle.com/c/humpback-whale-identification/

discussion/81885, 2019. Accessed: 2020-05-08.

[Num19] NumPy. NumPy documentation. https://numpy.org, 2019. Ac-
cessed: 2019-12-17.

[Osm19] Radek Osmulski. Fluke detection using fastai. https:

//www.kaggle.com/c/humpback-whale-identification/

discussion/76281, 2019. Accessed: 2020-05-04.

[PAP+86] Stephen M Pizer, John D Austin, John R Perry, Hal D Safrit, and
John B Zimmerman. Adaptive histogram equalization for automatic
contrast enhancement of medical images. In Application of Optical
Instrumentation in Medicine XIV and Picture Archiving and Com-
munication Systems, volume 626, pages 242–250. International Soci-
ety for Optics and Photonics, 1986.

[Par19a] Jinmo “Pudae” Park. 3rd place solution with code: Ar-
cFace. https://www.kaggle.com/c/humpback-whale-

identification/discussion/82484, 2019. Accessed: 2020-04-29.

[Par19b] Jinmo “Pudae” Park. Code for 3rd place solution in Kaggle Hump-
back Whale Identification Challenge. https://github.com/pudae/
kaggle-humpback, 2019. Accessed: 2020-04-29.

63

https://www.kaggle.com/c/humpback-whale-identification/overview/description
https://www.kaggle.com/c/humpback-whale-identification/overview/description
https://pillow.readthedocs.io/en/stable
https://pillow.readthedocs.io/en/stable
https://www.kaggle.com/c/humpback-whale-identification/discussion/81885
https://www.kaggle.com/c/humpback-whale-identification/discussion/81885
https://www.kaggle.com/c/humpback-whale-identification/discussion/81885
https://numpy.org
https://www.kaggle.com/c/humpback-whale-identification/discussion/76281
https://www.kaggle.com/c/humpback-whale-identification/discussion/76281
https://www.kaggle.com/c/humpback-whale-identification/discussion/76281
https://www.kaggle.com/c/humpback-whale-identification/discussion/82484
https://www.kaggle.com/c/humpback-whale-identification/discussion/82484
https://github.com/pudae/kaggle-humpback
https://github.com/pudae/kaggle-humpback

BIBLIOGRAPHY

[PY09] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data Engineering,
22(10):1345–1359, 2009.

[Qia19] Jian “Earhian” Qiao. 1st place solution. https://www.kaggle.

com/c/humpback-whale-identification/discussion/82366,
2019. Accessed: 2019-12-18.

[QLTW19] Jian Qiao, Peiyuan Liao, Thomas Tilli, and Yiheng Wang. Kaggle
humpback whale identification challenge 1st place code. https:

//github.com/earhian/Humpback-Whale-Identification-1st-,
2019. Accessed: 2019-12-18.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. ImageNet large scale visual
recognition challenge. International Journal on Computer Vision,
115(3):211–252, 2015.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Nassir
Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 234–241, Cham, 2015. Springer In-
ternational Publishing.

[She19a] Tao Shen. 2nd place code: end to end whale identi-
fication model. https://www.kaggle.com/c/humpback-whale-

identification/discussion/82366, 2019. Accessed: 2020-03-27.

[She19b] Tao Shen. Humpback Whale Identification Challenge 2019: 2nd
place solution. https://github.com/SeuTao/Humpback-Whale-

Identification-Challenge-2019_2nd_palce_solution, 2019.
Accessed: 2020-02-21.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet:
A unified embedding for face recognition and clustering. In IEEE
International Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 815–823, 2015.

[SZY+18] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Be-
yond part models: Person retrieval with refined part pooling (and a
strong convolutional baseline). In European Conference on Computer
Vision (ECCV), pages 480–496, 2018.

[Wan19] Yiheng “Venn” Wang. Open source all leaks (135 sam-
ples) I detected. https://www.kaggle.com/c/humpback-whale-

identification/discussion/80086, 2019. Accessed: 2020-05-08.

64

https://www.kaggle.com/c/humpback-whale-identification/discussion/82366
https://www.kaggle.com/c/humpback-whale-identification/discussion/82366
https://github.com/earhian/Humpback-Whale-Identification-1st-
https://github.com/earhian/Humpback-Whale-Identification-1st-
https://www.kaggle.com/c/humpback-whale-identification/discussion/82366
https://www.kaggle.com/c/humpback-whale-identification/discussion/82366
https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution
https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution
https://www.kaggle.com/c/humpback-whale-identification/discussion/80086
https://www.kaggle.com/c/humpback-whale-identification/discussion/80086

BIBLIOGRAPHY

[WCLL18] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive
Margin Softmax for Face Verification. IEEE Signal Processing Let-
ters, 25(7):926–930, 2018.

[WS09] Kilian Q Weinberger and Lawrence K Saul. Distance metric learn-
ing for large margin nearest neighbor classification. The Journal of
Machine Learning Research, 10(Feb):207–244, 2009.

[WWZ+18] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,
Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large margin
cosine loss for deep face recognition. In IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages
5265–5274, 2018.

[WXCY17] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille.
Normface: L2 hypersphere embedding for face verification. In ACM
International Conference on Multimedia, pages 1041–1049, 2017.

[XGD+17] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks.
In IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1492–1500, 2017.

[Yan17] Ming Yang. Deepo: set up Deep Learning environment in a single
command line. https://github.com/ufoym/deepo, 2017. Accessed:
2020-02-13.

[ZZK+17] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random Erasing Data Augmentation. arXiv preprint
arXiv:1708.04896, 2017.

65

https://github.com/ufoym/deepo

Appendices

66

Appendix A

Extra Bad Quality Images

Figure A.1. Example of a very blurry image.

Figure A.2. Poor picture angle.

67

APPENDIX A. EXTRA BAD QUALITY IMAGES

Figure A.3. Whale’s tail occluded by water spray.

Figure A.4. Front side of the fluke instead of the back, and partially occluded by
water.

68

APPENDIX A. EXTRA BAD QUALITY IMAGES

Figure A.5. Partial occlusion of the tail, due to water immersion.

Figure A.6. Partially occluded and with text in the image.

69

	Introduction
	Private Leaderboard and Candidate Solutions
	Computational Resources

	Competition Dataset
	Training Example Class Distribution
	Image Properties
	Image Sizes
	Image Color
	Contrast

	Bad Quality Images

	First Place Solution
	Data Treatment
	Image Masks
	Bounding Boxes
	Standardized Image Sizes
	Data Augmentation

	Special Techniques
	Flipped Images
	Pseudo Labels
	Class Balance

	Network Architecture
	Backbone Network
	Local and Global Features
	Loss Functions
	Training Procedure

	Reproducing Solution Training
	Training Steps
	Results

	Conclusion

	Second Place Solution
	Data Treatment
	Image Sizes
	Bounding Boxes
	Data Augmentation

	Problem Specific Techniques
	Network Architecture
	Common Flow
	Backbone Networks
	Loss Functions
	Inference Phase
	Training Procedure

	Model Ensemble
	Reproducing Solution Training
	Conclusion

	Third Place Solution
	Data Treatment
	Bounding Boxes and Alignment
	Data Augmentation

	Special Techniques
	Image Rotation
	Class Grouping
	Classification Leak
	Flipped Images

	Network Architecture
	Backbone Network
	Loss Function
	Training Procedure

	Inference Phase
	Cosine Similarity

	Ensemble Method
	Reproducing Solution Training
	Conclusion

	Acknowledgments
	Appendices
	Extra Bad Quality Images

