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1. INTRODUCTION

The principal result of this paper is the following:

TrHEOREM 1. Let A and B be two matirices of the same size. Let their row spaces
be B, and R,; their column spaces €, and €,. If

d = dimension (#, N R,),

¢ = dimension (¢, N €,),
d if r(A) designates rank of A, then
r(A) + r(B) — ¢ — d £ (A + B) = r(4) + r(B) — max (c, d).

The proof of this theorem is in Section 4. Section 5 discusses the application of this
heorem to multivariate analysis, particularly to Cochran’s. theorem [2], which
asserts that if A, ..., A, are symmetric n X n matrices for which

_(;) A+ ..+ A, =1,
(I HA4) + ...+ r4,)=n

AA; =0 fori + j.

'~ Various versions of Cochran’s theorem have been considered, [1], [3], [4], and [5].
The key point of the theorem seems to be that the rank of the sum is the sum of the
anks. Theorem 1 enables us to easily characterize the condition that #(4 + B) =
= 1(4) + r(B). (Theorem 2.) This then provides an extension of Cochran’s result,
temoving the condition that the matrices be symmetric and that their sum be the
identity. (Theorem 3.)

* As indicated above, we use r(A) to designate the rank of the matrix 4, and d(«)
for the dimension of the vector space =/. We also use I and 0 indiscriminately to
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2. THE PROJECTOR OF A SPACE

Given a vector subspace 7 of the space of 1 x n vectors, there is a unique sym-
metric, idempotent n x n matrix A satisfying

(1) od = aif and only if x € o7 .
() rank of 4 = dimension of &/ .

This symmetric, idempotent matrix is called the projector of . If oy, oy, ..., o,
are an orthonormal basis of =, then 4 = ajo, + ... + oo, or if A is a matrix
whose rows are a basis of <, then 4 = A’(44")""' A. Any 1 x n vector B may be
represented uniquely as the sum of a vector in .2/ and a vector in the orthogonal
complement of <, by writing § = B4 + B(I — A). The projector of the orthogonal
complement of o7 is I — 4, and r(4) + (I — A) = n.

We will use an overscore to represent the projector — given a matrix B, the notation
B will mean the projector of the row space of B; thus B is the unique matrix satisfying

(I) B = B,

(I1) BB = B.
(II1) B = TB for some T, i.e., the rows of B are in the row space of B.
(IV) BB = B,

(V) r(B) = r(B).
The projector provides a convenient method for representing the rank of a com-
posite matrix as a sum — for example, we write

r(;) B r(AB + /;3(1 - E))

and since the rows of AB are in the row space of B, they may be removed by element-
ary row operations; thus

0 (5)=r ("5 ") = rmy+ ol -,

B

since the rows of A(I — B) are orthogonal to the rows of B.
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For the column version of this formula, we write
HR, S) = r(S) + r[(I - S’) R]
where S’ is the projector of the column space of S, or the projector of the row space

of S'.
A slightly more complicated application of this device gives this formula:

® r((g) = 1)+ 1(5) + 1l = $) KU = ]

where S’ is the projector of the column space of S and T the projector of the row
space of T. To prove this, we write

’"(?ﬁ) R r(RT+ I;SI -7 .(S‘)) e r(R(I ; T) f)) ”
=HT)+ R = T),8) = HT) + n(S) + r[(I — S)R(I — T)].

3. BOUNDS FOR THE RANK OF A PRODUCT

We need the results of this section to prove the main theorem. We want bounds
on the rank of 4B; to get them we write

B
B)=r :
)= 1)
then use formula (1) to get

) (B) = r(4B) + r[B(I — AB)].

where AB is the projector of the row space of AB. Now if A is the projector of the
row space of A, then AB(I — AB) = 0, since for some T, A = TA. Thus (3) may be

written r(B) = r(AB) + r[(I — A) B(I — 4B)],

which gives these bounds on r(A4B),

HB) - (1 - ) B] < r(4B) < r(B),

and the weaker result,

r(B) — r(I —A) < r(4B) < r(B).

The latter is known as Sylvester’s law of nullity, usually written as
4 r(4) + r(B) — n < r(4B) < r(B)

where r(I — A) = n — r(4) = n — r(A), assuming that Ais p x nand Bisn x gq.
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4, BOUNDS FOR THE RANK OF A SUM

This theorem gives upper and lower bounds for the rank of a sum.

THEOREM 1. Let A and B be two matrices of the same size, let their row spaces
be #, and R,, their column spaces €, and €,. Then

(5) HA) + n(B) — d(#, n R,) — d(€, N €,) < (4 + B)
and
(6) r(4 + B) = r(A4) + r(B) — max {d(Z, n R,). d(€, 0 %)} .

We first prove (6), which is quite easy, then (5), which is not so easy. We have
HA + B)S d(@R, + R;) = d(®,) + d(R,) — d(R, " R,).
Since d(#,) = r(A) and d(#,) = r(B), we have
A + B) £ r(A) + r(B) — d(#, n &),

and a similar argument on the column spaces yields (6).

Using the fact that

/A
rkB) —d(@, + R;) = f(A) + r(B) — d(@, @)

and
1A, B) = d(¢, + €,) = r(A) + r(B) — d(¢, n ¢,),

we may write (5) in the form
() r(’;) + (A4, B) < r(A + B) + r(4) + r(B).

Now none of the five ranks in (7) is changed if we replace A and B by PAQ and PBQ
with P and Q non-singular. Thus we may assume A and B have any form obtained
by performing identical elementary row and column operations on each of them.
We may, for example, assume that 4 and B have this form

1,00 RSO
A=|0 00}, B=[TOO
000 0.0 I,

In that case, we have

r(';) = 1) + 1(S) + (L),
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and
r(4, B) = r(1,) + n(T) + (I,),

so that we will prove (7) if we can prove that

(5) )+ r9)+ ) s o (7 e (

I+R S
oy

dropping the subscript on I, assumed to be n x n. Using formula (2), we write

r(i(S)) + r(L;R g) =2r(S) + 2r(T) + r[(l - S)(I + R)(I - T)] +
+r[(f - S)R(I — T)]

and this leads to the inequality

9) r(R S) g (’ + & g) > 2r(S) + 2n(T) + #[(I - §) (I - T].

TO I
r[I —S)R(I — T)] = r[(I = S)(=R) (1 -7)].
Using (4) with n = r(I), we have
I -8)YI-T)]zn-nS)+n—rT)—n

and putting this in (9) we have

r(RS)+r-(I+Rg)§"(S)_+ n(T) + n. -

TO T

This establishes formula (8), and hence (7), which is equivalent to (5); the proof
of Theorem 1 is complete.

5. THE RANK OF THE SUM AND THE SUM OF THE RANKS

Theorem 1 enables us to characterize the condition that rank be additive for a pair
of matrices:

THEOREM 2. Let A and B be two matrices of the same size, with row spaces #,, #,
and column spaces €, €,. Then

r(A + B) = r(A) + r(B)
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if, and only if
dim (2, N #,) = dim (¢, N €,) = 0.

The proof follows immediately from (5) and (6).

The fact that rank is additive for a set of matrices is a strong condition. We will
develop some consequences of this condition in a few conclusions leading up to
Theorem 3, which is a sort of generalized Cochran’s Theorem. First, we point out
that if rank is additive on a set of matrices, it is additive on subsets:

LeMMA 1. If rank is additive for a set of matrices,
A, + A; + ... + A,)) = r(4,) + r(4;) + ... + (4,).,

then rank is additive for sets of matrices formed by adding distinct A’s from that
set — for example, if

A, + ... + A;)) = r(A) + ... + r(Ay),
then
r(Ay, + As) + r(ds + Ag + Ayo) + r(ds + Ag) =
=r(d; + As + Ay + Ag + Ay + As + A).

To give the gist of the proof, consider the example of the theorem. Let
A=A+ A;, B=A;+ Ag+ Ay, C= A4+ Ay,
and let D be the sum of the matrices in Ay, ..., A;, not included in 4, B, or C, that is,

D=A2+A4+A7+A11+A|2-
Then

4) +...+r(4)=r{A+B+C+D)sr{A+B+C) +
+ (D) £ r(4) + r(B) + {C) + r(D) = r (4,) + ... + r(4;3).

Thus all inequalities are equalities, and
A+ B+ C) = r(4) + r(B) + r(C).

The converse of this lemma is not true — rank can be pairwise additive but yet
not finitely additive, for example, for these three positive semi-definite matrices:

12 1.3 1 4
24/ \39/" \416/)°
rank is pairwise additive but not additive over all three.

460



7

LEMMA 2. If r(4 + B) = r(A) + r(B) and if A and B each commute with their
sum, S = A + B, then AB = BA = 0.

Proof: Since A commutes with S, it commutes with S — 4 = B. Since the row
space of AB = BA is in both the row space of A and the row space of B, Theorem 2
shows that AB = BA = 0. '

We are now able to give this generalized version of Cochran’s Theorem mentioned
in the Introduction. We find that symmetry has no essential role in the theorem,
and Condition II, that Y A; = I, can be replaced by the condition that each A;
commutes with Y A,.

THEOREM 3. Let A, A,, ..., A, be square matrices for which rank is additive,
A, + ...+ A4,) =r4,) + ... + r(4,),
and let S be their sum:

S=A, +...+ A,.
Then

(10) AA; =0 for i+j
if and only if each of the A’s commutes with the sum:
(11) AS =84y, =12 cos s

Proof: Condition (10) certainly implies (11). To prove that (11) implies (10)
we prove that A4, = A;4; =0. Let A=A, B=A;,and C = 4; + ... + 4,
Using Lemmas 1 and 2, we know that A(B + C) = (B + C) 4 = 0, and hence
A? = AS = SA. Going to a similarity transformation if necessary, we may assume

that 4 has the form ((? g), with G non-singular. Then we write A + B+ C = §

GO\, (B B\, (CiC\_ (S5
00 B, B, & il S, S,

Since A = AS = SA4 and G is non-singular, it follows that S must have the form

i . Thus

078,
By By\ , (Ci C2\_ (00
B, B, o 0s,)

Now according to Lemma 1, #(B + C) = r(B) + r(C), and it follows that the rows

in the form
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of (B, B,) and of (C, C,) must all be zero, or else Theorem 2 would be violated.

By the same argument, the columns of (Bl) and (Cl) must be zero. Thus B =
3 3

= o ,and AB = BA = 0.
0 B,
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