Algoritmos Parametrizados

Árvores de busca limitadas

Lehilton Pedrosa Segundo Semestre de 2018

Instituto de Computação – Unicamp

Roteiro

- 1. Ramificação
- 2. Cobertura por vértices
- 3. Recorrências
- 4. Conjunto de vértices de retroalimentação

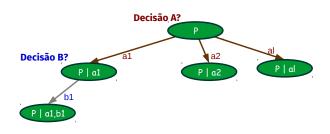
Ideia: backtracking

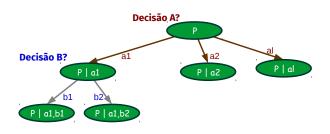
· Fazer uma sequência de decisões

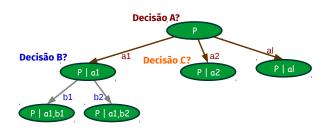
- · Fazer uma sequência de decisões
- · Em cada decisão, obter um subproblema

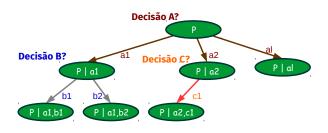
- · Fazer uma sequência de decisões
- · Em cada decisão, obter um subproblema
- · Uma folha representa uma solução

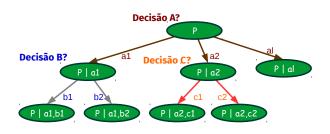
- · Fazer uma sequência de decisões
- · Em cada decisão, obter um subproblema
- Uma folha representa uma solução (ou a inexistência dela)











Pergunta: Como usar árvores de busca para obter FPT?

Pergunta: Como usar árvores de busca para obter FPT?

· Tamanho da árvore é pequeno

Pergunta: Como usar árvores de busca para obter FPT?

· Tamanho da árvore é pequeno (função de k)

Pergunta: Como usar árvores de busca para obter FPT?

- · Tamanho da árvore é pequeno (função de k)
- · Tempo gasto em cada nó é polinomial

Pergunta: Como usar árvores de busca para obter FPT?

- · Tamanho da árvore é pequeno (função de k)
- · Tempo gasto em cada nó é polinomial

Vamos considerar:

· Uma instância / de um problema de minimização

Pergunta: Como usar árvores de busca para obter FPT?

- · Tamanho da árvore é pequeno (função de k)
- · Tempo gasto em cada nó é polinomial

Vamos considerar:

- · Uma instância / de um problema de minimização
- Uma medida $\mu(I)$:

Pergunta: Como usar árvores de busca para obter FPT?

- · Tamanho da árvore é pequeno (função de k)
- · Tempo gasto em cada nó é polinomial

Vamos considerar:

- · Uma instância / de um problema de minimização
- Uma medida $\mu(I)$: (queremos que $\mu(I)$ dependa só do parâmetro k)

Em cada nó da árvores executamos uma ramificação

Em cada nó da árvores executamos uma ramificação

Ramificação de I

Crie instâncias I_1 , ..., I_ℓ tais que:

Em cada nó da árvores executamos uma ramificação

Ramificação de I

Crie instâncias $l_1, ..., l_\ell$ tais que:

1. dada solução S_i de I_i , existe solução $h_i(S_i)$ de I

Em cada nó da árvores executamos uma ramificação

Ramificação de I

Crie instâncias I_1 , ..., I_ℓ tais que:

1. dada solução S_i de I_i , existe solução $h_i(S_i)$ de I e $\{h_i(S)\}_{1 \le i \le \ell}$ contém solução ótima;

Em cada nó da árvores executamos uma ramificação

Ramificação de I

Crie instâncias I_1 , ..., I_ℓ tais que:

- 1. dada solução S_i de I_i , existe solução $h_i(S_i)$ de I e $\{h_i(S)\}_{1 \le i \le \ell}$ contém solução ótima;
- 2. ℓ é uma função do parâmetro $\mu(I)$ somente;

Em cada nó da árvores executamos uma ramificação

Ramificação de I

Crie instâncias I_1 , ..., I_ℓ tais que:

- 1. dada solução S_i de I_i , existe solução $h_i(S_i)$ de I e $\{h_i(S)\}_{1 \le i \le \ell}$ contém solução ótima;
- 2. ℓ é uma função do parâmetro $\mu(I)$ somente;
- 3. existe c > 0 tal que $\mu(I_i) \le \mu(I) c$ para cada i.

Limitando a altura

Um algoritmo de ramificação tem altura limitada:

Limitando a altura

Um algoritmo de ramificação tem altura limitada:

• se $\mu(I)$ < 0, então instância é fácil;

Limitando a altura

Um algoritmo de ramificação tem altura limitada:

- se $\mu(I)$ < 0, então instância é fácil;
- · grau de ramificação ℓ de um nó é limitado;

Limitando a altura

Um algoritmo de ramificação tem altura limitada:

- se $\mu(l)$ < 0, então instância é fácil;
- · grau de ramificação ℓ de um nó é limitado;
- · altura é limitada

Framework para FPT

Framework para FPT

Framework para FPT

Solução é um subconjunto de algum universo *U*:

1. Identificamos $S \subseteq U$ pequeno

Framework para FPT

Solução é um subconjunto de algum universo *U*:

1. Identificamos $S \subseteq U$ pequeno (em tempo polinomial)

Framework para FPT

- 1. Identificamos $S \subseteq U$ pequeno (em tempo polinomial)
- 2. Adivinhamos qual elemento de S está em uma solução ótima

Framework para FPT

- 1. Identificamos $S \subseteq U$ pequeno (em tempo polinomial)
- 2. Adivinhamos qual elemento de S está em uma solução ótima
- 3. Garantimos que a medida $\mu(l)$ diminui

Framework para FPT

- 1. Identificamos $S \subseteq U$ pequeno (em tempo polinomial)
- 2. Adivinhamos qual elemento de S está em uma solução ótima
- 3. Garantimos que a medida $\mu(l)$ diminui (i.e., o "número" de decisões que faltam diminui)

Recapitulando:

· Queremos encontrar $X \subseteq V(G)$ tal que $E[G - X] = \emptyset$

- Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$

- Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$ (usando técnicas de LP)

- Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$ (usando técnicas de LP)
- Algoritmo exato: $\mathcal{O}(4^k k^{\mathcal{O}(1)})$ (para k fixo)

Recapitulando:

- · Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$ (usando técnicas de LP)
- Algoritmo exato: $\mathcal{O}(4^k k^{\mathcal{O}(1)})$ (para k fixo)

Observação

Para $v \in V(G)$:

– ou v está na solução;

Recapitulando:

- Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$ (usando técnicas de LP)
- · Algoritmo exato: $\mathcal{O}(4^k k^{\mathcal{O}(1)})$ (para k fixo)

Observação

Para $v \in V(G)$:

- ou v está na solução;
- ou N(v) está na solução.

Recapitulando:

- Queremos encontrar $X \subseteq V(G)$ tal que $E[G X] = \emptyset$
- Núcleo: 2k vértices em tempo $\mathcal{O}(n\sqrt{m})$ (usando técnicas de LP)
- Algoritmo exato: $\mathcal{O}(4^k k^{\mathcal{O}(1)})$ (para k fixo)

Observação

Para $v \in V(G)$:

- ou v está na solução;
- ou N(v) está na solução.

Observação

Se, para todo $v \in V(G)$, $d(v) \le 1$, então Cobertura por vértices é polinomial.

Ramificação

• Escolha $v \in V(G)$

Ramificação

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;

9

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova v de G;

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova v de G;
 - 1.2 faça $k \leftarrow k 1$

Ramificação

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:

```
1.1 remova v de G;
```

1.2 faça
$$k \leftarrow k - 1$$

2. Se N(v) está na solução:

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova *v* de *G*;
 - 1.2 faça $k \leftarrow k 1$
 - 2. Se N(v) está na solução:
 - 2.1 remova *N[v]* de *G*;

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova *v* de *G*;
 - 1.2 faça $k \leftarrow k 1$
 - 2. Se N(v) está na solução:
 - 2.1 remova *N[v]* de *G*;
 - 2.2 faça $k \leftarrow k |N(v)|$.

- Escolha $v \in V(G)$
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova *v* de *G*;
 - 1.2 faça $k \leftarrow k 1$
 - 2. Se N(v) está na solução:
 - 2.1 remova *N[v]* de *G*;
 - 2.2 faça $k \leftarrow k |N(v)|$.

- Escolha $v \in V(G)$ com grau máximo;
- Temos $S = \{v\} \cup N(v)$ contém elemento de uma solução;
- · Ramificamos em:
 - 1. Se v está na solução:
 - 1.1 remova *v* de *G*;
 - 1.2 faça $k \leftarrow k 1$
 - 2. Se N(v) está na solução:
 - 2.1 remova *N[v]* de *G*;
 - 2.2 faça $k \leftarrow k |N(v)|$.

· cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja au(k) o número de nós

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

 Seja T(k) o número de folhas na árvore de ramificação da Cobertura por vértices

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

 Seja T(k) o número de folhas na árvore de ramificação da Cobertura por vértices

$$T(i) =$$

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

 Seja T(k) o número de folhas na árvore de ramificação da Cobertura por vértices

$$T(i) =$$

Tempo de execução

- · cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

 Seja T(k) o número de folhas na árvore de ramificação da Cobertura por vértices

$$T(i) = \begin{cases} T(i-1) + T(i-2) & \text{se } i \ge 2; \end{cases}$$

Tempo de execução

- cada nó da árvore gasta temo $n^{\mathcal{O}(1)}$
- · seja $\tau(k)$ o número de nós
- TOTAL: $\tau(k)n^{\mathcal{O}}(1)$.

Observação

Dada uma árvore de ramificação $\mathcal T$ com ℓ folhas, então o número de nós de $\mathcal T$ é no máximo $2\ell-1$.

 Seja T(k) o número de folhas na árvore de ramificação da Cobertura por vértices

$$T(i) = \begin{cases} T(i-1) + T(i-2) & \text{se } i \ge 2; \\ 1 & \text{caso contrário.} \end{cases}$$

Calculando

Lema

Para todo $k \ge 0$, $T(k) \le 1,6181^k$.

Obtendo a base da exponencial

Obtendo a base da exponencial

Ideia: vamos tentar fazer $T(k) \le c \lambda^k$.

Observação: a base impacta muito no tempo de execução

Observação: a base impacta muito no tempo de execução

Conclusão: tentar melhorar ao máximo o passo de ramificação

Observação: a base impacta muito no tempo de execução Conclusão: tentar melhorar ao máximo o passo de ramificação Quando ramificamos:

• se v não é parte da solução, então diminuímos k em $|N(v)| \ge 2$

Observação: a base impacta muito no tempo de execução Conclusão: tentar melhorar ao máximo o passo de ramificação Quando ramificamos:

- se v não é parte da solução, então diminuímos k em $|N(v)| \ge 2$;
- mas se |N(v)| > 2?

Observação: a base impacta muito no tempo de execução Conclusão: tentar melhorar ao máximo o passo de ramificação Quando ramificamos:

- se v não é parte da solução, então diminuímos k em $|N(v)| \ge 2$;
- mas se |N(v)| > 2? a árvore é menor!

Observação: a base impacta muito no tempo de execução Conclusão: tentar melhorar ao máximo o passo de ramificação Quando ramificamos:

- se v não é parte da solução, então diminuímos k em $|N(v)| \ge 2$;
- mas se |N(v)| > 2? a árvore é menor!

Observação

Cobertura por vértices é polinomial quando $d(v) \le 2$ para todo $v \in V(G)$.

$$T(i) =$$

$$T(i) =$$

$$T(i) = \begin{cases} T(i-1) + T(i-3) & \text{se } i \geq 3; \end{cases}$$

$$T(i) = \begin{cases} T(i-1) + T(i-3) & \text{se } i \ge 3; \\ 1 & \text{caso contrário.} \end{cases}$$

Agora resolvemos um nó em tempo polinomial sempre que $\Delta(G) \leq 2$:

$$T(i) = \begin{cases} T(i-1) + T(i-3) & \text{se } i \ge 3; \\ 1 & \text{caso contrário.} \end{cases}$$

Teorema

Cobertura por vértices pode ser resolvida em tempo $\mathcal{O}(n\sqrt{m} + 1.4656 \, k^{\mathcal{O}(1)})$.

Recorrências

Pergunta: Como limitar o tamanho da árvore de busca?

Pergunta: Como limitar o tamanho da árvore de busca?

· representamos o tamanho como uma função T de k

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função *T* de *k*
- · obtemos uma recorrência

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função *T* de *k*
- · obtemos uma recorrência
- · resolvemos a recorrências

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função T de k
- · obtemos uma recorrência
- · resolvemos a recorrências

Vetor de ramificação

Suponha que:

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função T de k
- · obtemos uma recorrência
- · resolvemos a recorrências

Vetor de ramificação

Suponha que:

· cada nó da arvore tem *p* subproblemas;

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função T de k
- · obtemos uma recorrência
- · resolvemos a recorrências

Vetor de ramificação

Suponha que:

- · cada nó da arvore tem p subproblemas;
- · os parâmetros de cada subproblema são $k-d_1, k-2, \ldots, k-p$.

Pergunta: Como limitar o tamanho da árvore de busca?

- · representamos o tamanho como uma função T de k
- · obtemos uma recorrência
- · resolvemos a recorrências

Vetor de ramificação

Suponha que:

- · cada nó da arvore tem *p* subproblemas;
- · os parâmetros de cada subproblema são $k-d_1, k-2, \ldots, k-p$.

Então o vetor $(d_1, d_2, ..., d_p)$ é chamado vetor de ramificação.

· cada nó tem um número constante p de ramos

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

$$T(k) =$$

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

$$T(k) = \left\{ \right.$$

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

$$T(k) = \begin{cases} T(k - d_1) + T(k - d_2) + \dots + T(k - d_p) & \text{se } k \ge p; \end{cases}$$

- · cada nó tem um número constante p de ramos
- para parâmetro $k \le p$, presumimos que a instância é fácil (polinomial)

$$T(k) = \begin{cases} T(k - d_1) + T(k - d_2) + \dots + T(k - d_p) & \text{se } k \ge p; \\ 1 & \text{caso contrário.} \end{cases}$$

Resolvendo a recorrência

· Usamos indução

Resolvendo a recorrência

- · Usamos indução
- · Tentamos uma solução do tipo $T(k) \le c \cdot \lambda^k$

Resolvendo a recorrência

- · Usamos indução
- · Tentamos uma solução do tipo $T(k) \le c \cdot \lambda^k$

Obtemos:

$$\lambda^d \ge \lambda^{d-d_1} + \lambda^{d-d_2} + \dots + \lambda^{d-d_p},$$

onde $d = \max\{d_1, \ldots, d_p\}$.

Resolvendo a recorrência

- · Usamos indução
- · Tentamos uma solução do tipo $T(k) \le c \cdot \lambda^k$

Obtemos:

$$\lambda^d \ge \lambda^{d-d_1} + \lambda^{d-d_2} + \dots + \lambda^{d-d_p},$$

onde $d = \max\{d_1, \ldots, d_p\}$.

Reescrevemos como:

$$\lambda^d - \lambda^{d-d_1} - \lambda^{d-d_2} - \dots - \lambda^{d-d_p} \ge 0$$

Resolvendo a recorrência

- · Usamos indução
- · Tentamos uma solução do tipo $T(k) \le c \cdot \lambda^k$

Obtemos:

$$\lambda^d \ge \lambda^{d-d_1} + \lambda^{d-d_2} + \dots + \lambda^{d-d_p},$$

onde $d = \max\{d_1, \ldots, d_p\}$.

Reescrevemos como:

$$P(\lambda) := \lambda^d - \lambda^{d-d_1} - \lambda^{d-d_2} - \dots - \lambda^{d-d_p} \ge 0$$

 $P(\lambda)$ é o vetor característico de T.

Calculando

Seja λ_0 solução de $P(\lambda) = 0$:

- $P(\lambda) < 0$ para $0 < \lambda < \lambda_0$;
- $P(\lambda) > 0$ para $\lambda > \lambda_0$.

Calculando

Seja λ_0 solução de $P(\lambda) = 0$:

- $P(\lambda) < 0$ para $0 < \lambda < \lambda_0$;
- $P(\lambda) > 0$ para $\lambda > \lambda_0$.

Obtemos $T(k) \leq \mathcal{O}(\lambda_0^k)$

Conjunto de vértices de

Conjunto de vértices de retroalimentação mínimo

Conjunto de vértices de retroalimentação mínimo

Seja G um grafo. Um subconjunto de vértices $X \subseteq V(G)$ é chamado de conjunto de retroalimentação de G se G-X é acíclico.

Decidir: existe conjunto de realimentação com no máximo *k* vértices?

Consideramos o problema com multigrafos

Consideramos o problema com multigrafos, i.e.:

- podem existir laços
- podem existir arestas múltiplas

Consideramos o problema com multigrafos, i.e.:

- podem existir laços
- podem existir arestas múltiplas

Redução FVS.1: Se houver laça em v, remova v e diminua k.

Consideramos o problema com multigrafos, i.e.:

- podem existir laços
- podem existir arestas múltiplas

Redução FVS.1: Se houver laça em *v*, remova *v* e diminua *k*.

Redução FVS.2: Se houver t>2 cópias de uma aresta, remova t-2 cópias.

Consideramos o problema com multigrafos, i.e.:

- podem existir laços
- podem existir arestas múltiplas

Redução FVS.1: Se houver laça em *v*, remova *v* e diminua *k*.

Redução FVS.2: Se houver t > 2 cópias de uma aresta, remova t - 2 cópias.

Redução FVS.3: Se um vértice v tem grau $d(v) \le 1$, remova v.

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

· adicione uma aresta entre os vértices N(v);

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.5: Se k < 0, devolva não.

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.5: Se k < 0, devolva não.

Propriedades

Após executar exaustivamente as reduções, obtemos G

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.5: Se k < 0, devolva não.

Propriedades

Após executar exaustivamente as reduções, obtemos G

sem laços;

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.5: Se k < 0, devolva não.

Propriedades

Após executar exaustivamente as reduções, obtemos G

- sem laços;
- 2. somente com arestas simples ou duplas; e

Redução FVS.4: Se FVS.1 não se aplica e v tem grau d(v) = 2:

- · adicione uma aresta entre os vértices N(v);
- · remova v.

Após as reduções, podemos obter uma instância trivial.

Redução FVS.5: Se k < 0, devolva não.

Propriedades

Após executar exaustivamente as reduções, obtemos G

- sem laços;
- 2. somente com arestas simples ou duplas; e
- 3. com grau mínimo 3.

Vértices pesados

· Considere uma ordenação $(v_1, v_2, ..., v_n)$ de V(G) tal que:

$$d(v_1) \geq d(v_2) \geq \cdots \geq d(v_n).$$

Vértices pesados

· Considere uma ordenação $(v_1, v_2, ..., v_n)$ de V(G) tal que:

$$d(v_1) \ge d(v_2) \ge \cdots \ge d(v_n).$$

• Defina $V_3 = \{v_1, ..., v_{3k}\}.$

Vértices pesados

· Considere uma ordenação $(v_1, v_2, ..., v_n)$ de V(G) tal que:

$$d(v_1) \ge d(v_2) \ge \cdots \ge d(v_n).$$

• Defina $V_3 = \{v_1, \dots, v_{3k}\}.$

Lema

Seja G um grafo tal que $d(v) \ge 3$ para todo $v \in V(G)$. Todo conjunto de retroalimentação de G com tamanho até k tem pelo menos um vértice de V_{3k} .

FPT para Conjunto de retroalimentação

Teorema

Existe um algoritmo para o Conjunto de vértices de retroalimentação que executa em tempo $(3k)^k \cdot n^{\mathcal{O}(1)}$.