The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems

Andreas E. Feldmann and Dániel Marx

Seminário de MO829 Edson T Zegarra

December 13, 2016

Introdução

2 Cutwidth de soluções minimal

3 Treewidth de soluções minimal

Introdução

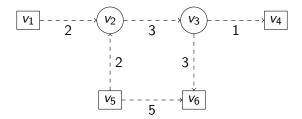
Directed Steiner Network (DSN)

Dado um grafo G dirigido com pesos nas arestas e uma lista $(s_1,t_1),...,(s_k,t_k)$ de pares de terminais, o objetivo é computar um subgrafo de custo mínimo que contem um caminho $s_i \to t_i$ para todo i=1,...,k.

 Na literatura o problema também é chamado Directed Steiner Forest

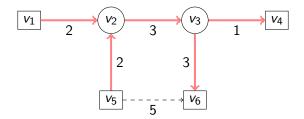
Example

 $(v_1, v_4), (v_5, v_4), (v_5, v_6)$



Example

 $(v_1, v_4), (v_5, v_4), (v_5, v_6)$



\mathcal{H} -DSN

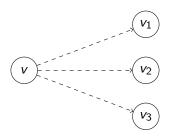
 Os pares (s₁, t₁), ..., (s_k, t_k) na entrada do DSN podem ser interpretados como um grafo padrão (dirigido sem pesos) em um conjunto R de terminais.

\mathcal{H} -Directed Steiner Network (\mathcal{H} -DSN)

Dado um grafo G dirigido com pesos nas arestas, um conjunto $R\subseteq V(G)$ de terminais e un grafo sem pesos dirigido $H\in \mathcal{H}$ em R; o objetivo é computar um subgrafo de custo mínimo $N\subseteq G$ tal que N contem um caminho $s\to t$ para todo $st\in E(H)$

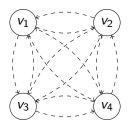
Exemplo

 Se H é uma out-star o problema é o Directed Steiner Tree (DST)



Exemplo

 Se H é um clique bidirecionado o problema é o Strongly Connected Steiner Subgraph (SCCC)



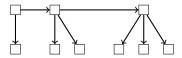
Grafo Caterpillar

λ_0 -caterpillar

Um grafo λ_0 -caterpillar é construído da seguinte forma: Seja um caminho dirigido $(v_1,...,v_{\lambda_0})$ a partir de v_1 até v_{λ_0} . Sejam $W_1, ..., W_{\lambda_0}$ conjuntos de vértices de arestas disjuntos dois a dois tal que $v_i \in W_i$ para cada $i = 1, ..., \lambda_0$. Depois, agregar arestas tal que cada W_i seja uma out-star com raiz v_i . O λ_0 -caterpillar resultante é um *out-caterpillar*. Se W_i forma uma in-star com raiz em v_i o grafo caterpillar resultante é um *in-caterpillar*. Um 0-caterpillar é o grafo vazio. A classe $\mathcal{C}_{\lambda,\delta}$ contem todos os grafos dirigidos H tal que existe um conjunto de arestas $F \subseteq E(H)$ de tamanho no máximo δ para o qual as arestas sobrantes $E(H) \setminus F$ geram um λ_0 -caterpillar para algum $\lambda_0 \leq \lambda$.

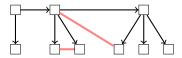
Exemplo de grafo Caterpillar

• Para $\lambda=3$ e $\delta=3$



Exemplo de grafo Caterpillar

• Para $\lambda=3$ e $\delta=3$



Equivalente transitivo

- Se existe caminho $s \to t$ podemos agregar a aresta st em H.
- Agregar uma aresta transitiva não muda a solução
- Se diz que dois grafos padrões são equivalentes transitivos se seus fechos transitivos são isomorfos.
- Se denoda como $C^*_{\lambda,\delta}$ à classe de padrões que são equivalentes transitivos a $C_{\lambda,\delta}$

Resultado principal do artigo

Theorem

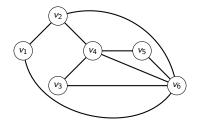
Seja H uma classe enumerável de padrões.

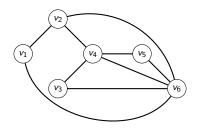
- Se existem constantes λ e δ tal que $H \subseteq C^*_{\lambda,\delta}$, então \mathcal{H} -DSN com parâmetro k = |R| é FPT e pode ser resolvido em $2^{O(k+\max\{\omega^2,\tau\omega\log\omega\})}n^{O(\omega)}$ onde $\omega = (1+\lambda)(\lambda+\delta)$ e τ é o número da covertura por vértices do grafo $H \in \mathcal{H}$.
- ② Caso contrário, se não existem tais constantes λ e δ , então o problema é W[1]-hard para o parâmetro k.

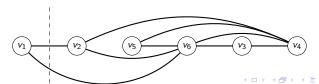
Esboço

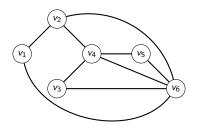
- Primeiro, vamos limitar o cutwidth de um grafo padrão
- Depois, vamos a limitar o treewidth do grafo padrão e generalizar para grafos caterpillars.

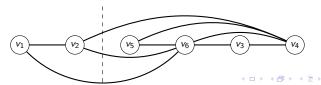
- Um layout de um grafo G é uma função injetiva
 φ: V(G) → N que induz uma ordenação total em V(G).
- Dado um layout, se define o conjunto
 V_i = {v ∈ V(G) : φ(v) ≤ i} e se diz que uma aresta uv cruza o corte (V_i, V̄_i) se u ∈ V_i e v ∈ V̄_i.
- O *cutwidth* de um layout é o máximo número de arestas cruzando qualquer corte $(V_i, \overline{V_i})$ para qualquer $i \in \mathbb{N}$.
- O cutwidth de um grafo é o minimo cutwidth de todos os layouts.

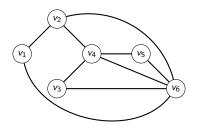


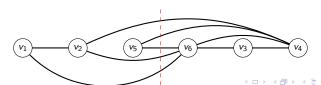


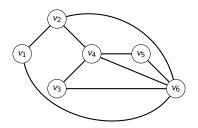


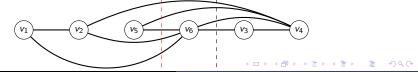


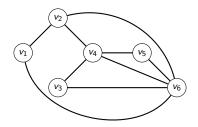


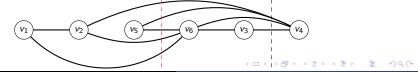


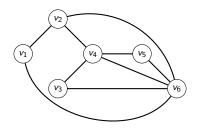


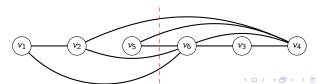












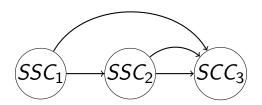
Grafo condensado

- Seja M uma solução minimal de uma instância de H-DSN tal que nenhuma aresta pode ser apagada sem fazer a solução infeasível.
- Contrair todos os SCC (componentes fortemente conetados) de M sem remover arestas com as mesmas cabeças e caudas mas apagando loops, resulta em um multi-grafo direcionado acíciclo D, chamado o grafo de condensação de M.

Lema

Seja G um grafo dirigido G e D seu multi-grafo condensado. Se o cutwidth de D é x e o cutwidth de todo SCC de G é no máximo y, então o cutwidth de G é no máximo x+y

• Seja *D* o multi-grafo condensado:



Lema

O layout dado por uma ordenação topológica φ_D de um multi-grafo aciclico dirigido condensado D que é a união de m caminhos, tem cutwidth no máximo m.

Lema

Qualquer SCC U de uma solução mínima M de um padrão H com no máximo m arestas tem cutwidth no máximo 6m

• U é solução minimal de um padrão H_U com no máximo m arestas

Lema

Qualquer SCC U de uma solução mínima M de um padrão H com no máximo m arestas tem cutwidth no máximo 6m

- U é solução minimal de um padrão H_U com no máximo m arestas
- A união $A_{out} \cup Z$ é um grafo aciclico direcionado

Lema

Qualquer SCC U de uma solução mínima M de um padrão H com no máximo m arestas tem cutwidth no máximo 6m

- U é solução minimal de um padrão H_U com no máximo m arestas
- A união $A_{out} \cup Z$ é um grafo aciclico direcionado
- Qualquer ordem topologico do grafo $A_{out} \cup Z$ tem cutwidth no máximo 6m.

Lema

Qualquer SCC U de uma solução mínima M de um padrão H com no máximo m arestas tem cutwidth no máximo 6m

- U é solução minimal de um padrão H_U com no máximo m arestas
- A união $A_{out} \cup Z$ é um grafo aciclico direcionado
- Qualquer ordem topologico do grafo $A_{out} \cup Z$ tem cutwidth no máximo 6m.
- O limitante é justo (tight)

Cutwidth e Treewidth

- O cutwidth é um limitante superior do treewidth de um grafo
- **Dica**: dada uma ordenação com cutwidth k, considere como bag X_i o conjunto de vértices que estão depois (na ordenação) do elemento i que tem algum vértice (diferente de i) antes que i; para cada i=1,...,n.

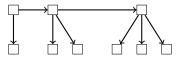
Treewidth de uma solução minimal

Theorem

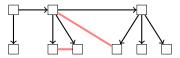
Uma solução minimal M a um padrão $H \in \mathcal{C}^*_{\lambda,\delta}$ é um subgrafo M^C que é solução minimal de um sub-padrão H^C de H com no máximo $(1+\lambda)(\lambda+\delta)$ arestas

• Considere H o grafo caterpillar.

• Para $\lambda=3$ e $\delta=3$



• Para $\lambda=3$ e $\delta=3$



Theorem

O treewidth de uma solução minimal a qualuer padrão em $\mathcal{C}^*_{\lambda,\delta}$ é no máximo 7 $(1+\lambda)(\lambda+\delta)$

Obrigado