Reduções entre problemas

Observação: quando você está explicando uma redução $A \prec B$, dada a instância (genérica) I_A , você deve explicar como **construir** a instância (específica) I_B .

Questão 1. Sejam P_1 e P_2 dois problemas tais que $P_1 \prec_n P_2$ e suponha que P_1 tem cota inferior $\Omega(n \log n)$, onde n é um parâmetro que mede o tamanho da entrada do problema P_1 . Quais das seguintes afirmações são verdadeiras? Justifique cuidadosamente as suas respostas.

- (a) $\Omega(n \log n)$ também é cota inferior para P_2 .
- (b) Todo algoritmo que resolve P_1 também pode ser usado para resolver P_2 .
- (c) Todo algoritmo que resolve P_2 também pode ser usado para resolver P_1 .
- (d) O problema P_2 pode ser resolvido no pior caso em tempo $O(n \log n)$.

Questão 2. Sejam P_1 e P_2 dois problemas tais que um deles tenha cota inferior $\Omega(n^k)$, para algum k > 1, e o outro é solúvel em tempo $O(n \log n)$. Se P_1 é redutível a P_2 em tempo linear, diga qual é qual. O parâmetro n denota o tamanho da entrada dos dois problemas.

Questão 3. Diz-se que um ponto $p = (x_p, y_p)$ do plano **domina** um outro ponto <u>distinto</u> $q = (x_q, y_q)$ do plano se $x_p \ge x_q$ e $y_p \ge y_q$. Um ponto p é **maximal** em relação a um conjunto de pontos P se $p \in P$ e nenhum outro ponto de $P - \{p\}$ domina p (por favor, note que isto **não** significa que p domina todos os pontos de $P - \{p\}$).

Projete um algoritmo de complexidade $O(n \log n)$ para encontrar todos os pontos maximais de um conjunto P de n pontos no plano.

Exemplo: suponha que $P = \{(0, n-1), (1, n-2), \dots, (n-2, 1), (n-1, 0)\}$. Quais sãos os pontos maximais de P?

Questão 4. Considere o seguinte problema: dados n intervalos (fechados) na reta real, definidos pelos seus pontos de início e de fim, projete um algoritmo que lista todos os intervalos que estão contidos dentro de pelo menos um dos outros intervalos passados na entrada. O seu algoritmo deve ter complexidade $O(n \log n)$.

Questão 5. Denote por MAXIMAL o problema do exercício ?? e por INTERVAL o problema do exercício ??. Encontre uma redução de complexidade linear de MAXIMAL para INTERVAL.

É possível usar o algoritmo desenvolvido no exercício anterior e a redução proposta por você para projetar um algoritmo para MAXIMAL? Em caso afirmativo, como se compara a complexidade deste algoritmo com a do algoritmo do exercício 4?

Questão 6. Encontre uma redução de complexidade linear de INTERVAL para MAXIMAL.

Questão 7. Usando o conceito de dominância entre pontos do exercício ??, pode-se definir os **Pareto**s de um dado conjunto não vazio de pontos $P = \{p_1, \dots, p_n\}$ no plano da seguinte forma:

- (i) o **Pareto** 1 de P, denotado por P_1 , é o conjunto de pontos maximais de P;
- (ii) para $i \ge 2$, o **Pareto** i de P, denotado por P_i , é o conjunto de pontos maximais de $P \setminus (P_1 \cup ... \cup P_{i-1})$.

Chamemos de **índice de Pareto** de P o maior valor de i para o qual o **Pareto** i é não vazio. Denotemos por i(P) este valor.

Dado um conjunto P como acima, considere o problema de encontrar os i(P) primeiros Paretos de P. Projete um algoritmo $O(n \log n)$ para este problema.

¹Esta lista deve ser feita logo após as aulas do conteúdo correspondente e serve para fixar o conteúdo, confirmar ou identificar as dúvidas. Anote suas dúvidas e procure atendimento! Os exercícios são referências ou transcrições de exercícios dos livros-textos (CLRS/Manber), ou foram gentilmente cedidos por outros professores, particularmente por Flávio Keidi Miyazawa (FKM), Cid Carvalho de Souza e Orlando Lee (CID/OL).

Questão 8. Encontre uma redução polinomial do problema de ordenação de um vetor de n elementos para o problema PARETO do exercício anterior. A sua redução deve ter complexidade O(n).

Pergunta-se: esta redução prova que o algoritmo do exercício anterior é ótimo (do ponto de vista de complexidade computacional)? Justifique sua resposta.

Questão 9. Seja S um conjunto de n pontos distintos do plano. Seja G = (V, E) o grafo completo onde cada vértice de corresponde a um ponto de S (ou seja, V = S). Além disso, suponha que para cada aresta (u, v) em E está associado um custo c(u, v) igual à distância euclidiana entre os pontos $u \in V$ em S.

Mostre que o problema de encontrar uma árvore geradora mínima em um grafo G deste tipo tem cota inferior $\Omega(n \log n)$.

Questão 10. Considere dados um grafo direcionado G = (V, E), um vértice especial s em V e custos $c(v) \ge 0$ para cada vértice v em V. Suponha que o custo de um caminho direcionado representado pela sequência de vértices $(s, x_1, x_2, \ldots, x_k, v)$ seja dado por $\sum_{i=1}^k c(x_i)$, ou seja, o custo de um caminho é a soma do custo dos seus vértices internos. Assim, se (s, v) é uma aresta do grafo, o custo deste caminho é zero.

Deseja-se encontrar um caminho de custo mínimo de s para todos os vértices de $V \setminus \{s\}$.

Encontre uma redução polinomial deste problema ao problema do caminho mínimo usual (com custos nas arestas) visto em aula.

Questão 11. (difícil) Seja G = (V, E) um grafo não direcionado tal que pra cada vértice v do grafo temos associado uma função $b(v) \leq grau(v)$. Um b-emparelhamento é um subconjunto de E tal que cada vértice v não tem mais do que b(v) arestas incidentes a ele. Em outras palavras, um b-emparelhamento é um subgrafo gerador de G onde cada vértice v tem grau menor ou igual a b(v). Um b-emparelhamento máximo é aquele que tem o maior número de arestas possível. Reduza o problema de se achar um b-emparelhamento máximo ao problema de se achar um emparelhamento máximo em um grafo.