Princípio da indução

Questão 1. (CRLS) Exercícios: 2.3-3

Questão 2. (CRLS) (3.2-7) A razão ϕ áurea e seu conjugado $\hat{\phi}$ são as raízes da equação

$$x^2 = x + 1$$

Mostre por indução que o i-ésimo número de Fibonacci F_i satisfaz a igualdade

$$F_{=}\frac{\phi^{i}-\hat{\phi}^{i}}{\sqrt{5}}.$$

Questão 3. (Manber) (2.4) Encontre a uma fórmula fechada para a seguinte forma soma e demostre-a:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$
.

Questão 4. (Manber) (2.19) Mostre que as regiões formadas por n círculos no plano podem ser coloridas com duas cores de forma que que quaisquer regiões vizinhas tenham cores distintas.

Questão 5. (Manber) (2.29) O princípio das caixas de pombo (na sua forma mais simples) afirma o seguinte: se n+1 bolas ($n \ge 1$) são colocada dentro de n caixas, então pelo menos uma caixa conterá mais de uma bola. Demonstre esse afirmação por indução.

Questão 6. (Manber) (2.9) Mostre por indução que, dado um inteiro em sua representação decimal, ele é divisível por três se e somente se a soma de seus dígitos é divisível por três. (Dica: é mais fácil provar um resultado mais forte em que o resto da divisão do número por três é igual ao resto da divisão da soma de seus dígitos por três.)

Invariantes de laço e demonstração de correção

Questão 7. (CRLS) Exercícios: 2.1-3,

Questão 8. (CRLS) Problemas: 2-2, 2-3

Questão 9. (Manber) (2.40) Modifique o algoritmo Converte_Binário de tal forma que ele converta um número dado em base 6 para um número binário. A entrada é um vetor de dígitos na base 6 e a saída é um vetor de bits. Mostre a correção de seu algoritmo utilizando uma invariante de laço.

¹Esta lista deve ser feita logo após as aulas do conteúdo correspondente e serve para fixar o conteúdo, confirmar ou identificar as dúvidas. Anote suas dúvidas e procure atendimento! Os exercícios são referências ou transcrições de exercícios dos livros-textos (CRLS/Manber), ou foram gentilmente cedidos por outros professores, particularmente por Flávio Keidi Miyazawa (FKM), Cid Carvalho de Souza e Orlando Lee (CID/OL).