MC855 - Projeto em Sistemas de Computacao
MapReduce

Islene Calciolari Garcia

Instituto de Computag¢do - Unicamp

Segundo Semestre de 2015

Motivacio - T———

v

Exemplo retirado do livro do Tom White: Hadoop: The
Definitive Guide

v

Achar a temperatura maxima por ano em um conjunto de
arquivos texto

v

Fazer todo o trabalho duro em Unix...

v

Entender a importéncia de um framework

Weather dataset

Dados crus

Example 2-1. Format of a National Climate Data Center record

0057

332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # observation date

0300 # observation time

4

+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12

+0171 # elevation (meters)

99999

Vo020

320 # wind direction (degrees)

1 # quality code

N

0072

1

00450 # sky ceiling height (meters)
1 # quality code

C

N

010000 # visibility distance (meters)
1 # quality code

Fonte: Tom White

Weather dataset —

Organizag3o dos arquivos

% 1s raw/1990 | head
010010-99999-1990. gz
010014-99999-1990. g7
010015-99999-1990.gz
010016-99999-1990. g7
010017-99999-1990.gz
010030-99999-1990. g2
010040-99999-1990. gz
010080-99999-1990. gz
010100-99999-1990. gz
010150-99999-1990. g2

Fonte: Tom White

Weather dataset —

Cédigo em awk

Example 2-2. A program for finding the maximum recorded temperature by year from NCDCh
records

#1/usr/bin/env bash
for year in all/*
do
echo -ne “basename $year .gz "\t"
gunzip -c $year | \
awk '{ temp = substr($o, 88, 5) + 0;
q = substr($o, 93, 1);
if (temp !=9999 8& q ~ /[01459]/ 8& temp > max) max = temp }
END { print max }'
done

Fonte: Tom White

Weather dataset —

Como paralelizar?

v

Muiltiplas threads?
Um computador por ano?

v

v

Como atribuir trabalho igual para todos?
» Como juntar os resultados parcias?

Como lidar com as falhas?

v

Weather dataset —

How the data is represented in the
actual file

0067011990999991950051507004 . . . 9999999IN9+00001+99999999999. . .
0043011990999991950051512004 . . . 9999999IN9+00221+99999999999. . .
0043011990999991950051518004 . . . 9999999N9-00111+99999999999. . .
0043012650999991949032412004 . . . 0500001N9+01111+99999999999. . .
0043012650999991949032418004 . . . 9500001N9+00781+99999999999. . .

March 25, 2014 CS455: Introduction to Distributed Systems [Spring 2014] 117.23
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Weather dataset —

How the lines in the file are presented
to the map function by the framework

/ keys: Line offsets within the file

(0, 0067011990999991950051507004 . . .9999999N9+00001+99999999999. .
(106, 0043011990999991950051512004 . . .9999999IN9+00221+99999999999. .
(212, 0043011990999991950051518004 . . . 9999999IN9-00111+99999999999. .
(318, 0043012650999991949032412004 . . .0500001N9+01111+99999999999. .
(424, 0043012650999991949032418004 . . .0500001N9+00781+99999999999. .

(AL

The lines are presented to the map function as key-value pairs

March 25,2014 CS455: Introduction to Distributed Systems [Spring 2014] L17.24
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Weather dataset T ———

Map function

0 Extract year and temperature from each record and
emit output

(1950, ©0)

(1950, 22)
(1950, -11)
(1949, 111)
(1949, 78)

March 25,2014 CS4535: Introduction to Distributed Systems [Spring 2014] L17.25
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

T NN

Weather dataset T ———

The output from the map function

0 Processed by the MapReduce framework before
being sent to the reduce function

o Sort and group <key, value> pairs by key

0 In our example, each year appears with a list of all
its temperature readings

(1949, [111, 781)
(1950, [o, 22, -111)

March 25,2014 CS455: Introduction to Distributed Systems [Spring 2014] L17.26
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

T NSNS

Weather dataset —

What about the reduce function?
|

o All it has to do now is iterate through the list supplied
by the maps and pick the max reading

0 Example output at the reducer?

(1949, 111)
(1950, 22)

March 25, 2014 CS455: Introduction to Distributed Systems [Spring 2014] 117.27
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

T NSNS

Credit

Much of this information is from the Google Code University:

http://code.google.com/edu/parallel/mapreduce-tutorial.html

See also: http://hadoop.apache.org/common/docs/current/
for the Apache Hadoop version
Read this (the definitive paper):

http://labs.google.com/papers/mapreduce.html

J

October 29, 2014 © 2014 Paul Krzyzanowski 2

Fonte: Prof. Paul Krzyzanowski

-

Background

N

* Traditional programming is serial

+ Parallel programming
— Break processing into parts that can be executed concurrently on
multiple processors

* Challenge

— ldentify tasks that can run concurrently
and/or groups of data that can be processed concurrently

— Not all problems can be parallelized

J

October 29, 2014 © 2014 Paul Krzyzanowski 3

Fonte: Prof. Paul Krzyzanowski

(" : :
Simplest environment for parallel processing

~N

* No dependency among data
» Data can be split into equal-size chunks - shards
» Each process can work on a chunk

» Master/worker approach

— Master:
« Initializes array and splits it according to # of workers
» Sends each worker the sub-array
» Receives the results from each worker
— Worker:
» Receives a sub-array from master
» Performs processing
» Sends results to master

N

J

October 29, 2014 © 2014 Paul Krzyzanowski 4

Fonte: Prof. Paul Krzyzanowski

-

MapReduce

-

» Created by Google in 2004
— Jeffrey Dean and Sanjay Ghemawat

* Inspired by LISP
— Map(function, set of values)
» Applies function to each value in the set
(map ‘length () (@) (ab) (abc))= (0123)
— Reduce(function, set of values)
* Combines all the values using a binary function (e.g., +)
(reduce #+ ‘(1234 5))= 15

J

October 29, 2014 © 2014 Paul Krzyzanowski 5

Fonte: Prof. Paul Krzyzanowski

-

MapReduce

N

* MapReduce
— Framework for parallel computing
— Programmers get simple API
— Don’t have to worry about handling
« parallelization
« data distribution
* load balancing
« fault tolerance

 Allows one to process huge amounts of data (terabytes
and petabytes) on thousands of processors

J

October 29, 2014 © 2014 Paul Krzyzanowski 6

Fonte: Prof. Paul Krzyzanowski

: Who has it?

» Google
— Original proprietary implementation

» Apache Hadoop MapReduce
— Most common (open-source) implementation
— Built to specs defined by Google

* Amazon Elastic MapReduce
— Uses Hadoop MapReduce running on Amazon EC2

G

J

October 29, 2014 © 2014 Paul Krzyzanowski 7

Fonte: Prof. Paul Krzyzanowski

p
MapReduce

* Map: (input shard) — intermediate(key/value pairs)

— Map calls are distributed across machines by automatically partitioning the
input data into M "shards".

— MapReduce library groups together all intermediate values associated with
the same intermediate key & passes them to the Reduce function

* Reduce: intermediate(key/value pairs) — result files

— Accepts an intermediate key & a set of values for the key
— It merges these values together to form a smaller set of values

— Reduce calls are distributed by partitioning the intermediate key space into
R pieces using a partitioning function
(e.g., hash(key) mod R).The user specifies the # of partitions (R) and the
partitioning function.

N J

October 29, 2014 © 2014 Paul Krzyzanowski 8

Fonte: Prof. Paul Krzyzanowski

s

MapReduce

G

* Map
Grab the relevant data from the source
User function gets called for each chunk of input
Spits out (key, value) pairs

* Reduce
Aggregate the results
User function gets called for each unique key

J

October 29, 2014 © 2014 Paul Krzyzanowski 9

Fonte: Prof. Paul Krzyzanowski

s

MapReduce: what happens in between?

.

— Grab the relevant data from the source (parse into key, value)
— Write it to an intermediate file

 Partition
— Partitioning: identify which of R reducers will handle which keys
— Map partitions data to target it to one of R Reduce workers based on a
partitioning function (both R and partitioning function user defined)

N /

(~ Shuffle (Sort) N
— Fetch the relevant partition of the output from all mappers
— Sort by keys (different mappers may have output the same key)

Map Worker

* Reduce
— Input is the sorted output of mappers
— Call the user Reduce function per key with the list of values for that key

Reduce Worker

(e Map N

to aggregate the results

/

J

October 29, 2014 © 2014 Paul Krzyzanowski 10

Fonte: Prof. Paul Krzyzanowski

-

s N
MapReduce: the complete picture
client master
Shard 0 Assign tasks
Shard 1 el
b Reduce Output
Shard 2 \ worker flle 1
Shard 3 Ak 2
worker
.
Reduce Output
p worker file 2
ap IF
Shard M-1 .)
L - R work items
M work items
J

October 29, 2014

© 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

11

(Step 1: Split input files into chunks (shards)

» Break up the input data into M pieces (typically 64 MB)

Shard 0

Shard 1

Shard 2 Shard 3 Shard M-1

G

Input files

Divided into M shards

J

October 29, 2014

© 2014 Paul Krzyzanowski 12

Fonte: Prof. Paul Krzyzanowski

Ve

Step 2: Fork processes

-

 Start up many copies of the program on a cluster of machines
— 1 master: scheduler & coordinator
— Lots of workers

+ |dle workers are assigned either:
— map tasks (each works on a shard) — there are M map tasks
— reduce tasks (each works on intermediate files) — there are R

* R = # partitions, defined by the user

Remote fork

J

October 29, 2014 © 2014 Paul Krzyzanowski 13

Fonte: Prof. Paul Krzyzanowski

(Step 3: Run Map Tasks

Shard 2

-

* Reads contents of the input shard assigned to it
+ Parses key/value pairs out of the input data

» Passes each pair to a user-defined map function
— Produces intermediate key/value pairs
— These are buffered in memory

read Map

worker

J

October 29, 2014

© 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

14

p
Step 4: Create intermediate files

N

+ Intermediate key/value pairs produced by the user’s map function
buffered in memory and are periodically written to the local disk
— Partitioned into R regions by a partitioning function

Shard 2

Map
worker

local write

Intermediate file

Partition 1

Partition 1

Partition R-1

J

October 29, 2014

© 2014 Paul Krzyzanowski

15

Fonte: Prof. Paul Krzyzanowski

Step 4a. Partitioning

» Map data will be processed by Reduce workers

— The user’s Reduce function will be called once per unique key generated
by Map.

» This means we will need to sort all the (key, value) data by keys and
decide which Reduce worker processes which keys — the Reduce
worker will do this

» Partition function: decides which of R reduce workers will work on
which key
— Default function: hash(key) mod R
— Map worker partitions the data by keys

+ Each Reduce worker will read their partition from every Map worker

J

October 29, 2014 © 2014 Paul Krzyzanowski 16

Fonte: Prof. Paul Krzyzanowski

e A
Step 5: Reduce Task: sorting
* Reduce worker gets notified by the master about the location of
intermediate files for its partition
* Uses RPCs to read the data from the local disks of the map workers
* When the reduce worker reads intermediate data for its partition
— It sorts the data by the intermediate keys
— All occurrences of the same key are grouped together
4 M
Map local write | |ntermediate remote read Reduce
worker file N worker
- J
4 N
: L1
Map local write | |ntermediate remote read Reduce
worker file worker
_\ / J

October 29, 2014

© 2014 Paul Krzyzanowski

17

Fonte: Prof. Paul Krzyzanowski

Step 6: Reduce Task: Reduce

* The sort phase grouped data with a unique intermediate key

» User’s Reduce function is given the key and the set of intermediate

values for that key
— <key, (value1, value2, value3, value4, ...) >

» The output of the Reduce function is appended to an output file

Intermediate
file

Intermediate
file

remote read

Intermediate
file

Output
file

J

October 29, 2014

© 2014 Paul Krzyzanowski

18

Fonte: Prof. Paul Krzyzanowski

Step 7: Return to user

* When all map and reduce tasks have completed, the
master wakes up the user program

* The MapReduce call in the user program returns and the
program can resume execution.
— Output of MapReduce is available in R output files

_ J

October 29, 2014 © 2014 Paul Krzyzanowski 19

Fonte: Prof. Paul Krzyzanowski

-

s N
MapReduce: the complete picture
client master
Shard 0 Assign tasks
Shard 1 el
b Reduce Output
Shard 2 \ worker flle 1
Shard 3 Ak 12
worker
.
Reduce Output
p worker file 2
ap IF
Shard M-1 .)
L - R work items
M work items
J

October 29, 2014

© 2014 Paul Krzyzanowski

Fonte: Prof. Paul Krzyzanowski

20

p
Example

* Map:
— Parse data; output each word and a count (1)

* Reduce:
— Sort: sort by keys (words)
— Reduce: Sum together counts each key (word)
map (String key, String value):

for each word w in value:
EmitIntermediate(w, "1");

// key: a word; values: a list of
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

-

» Count # occurrences of each word in a collection of documents

// key: document name, value: document contents

reduce (String key, Iterator wvalues):

counts

J

October 29, 2014 © 2014 Paul Krzyzanowski

Fonte

21

. Prof. Paul Krzyzanowski

-

N

Locality)
* Input and Output files are on GFS (Google File System)
» MapReduce runs on GFS chunkservers
* Master tries to schedule map worker on one of the
machines that has a copy of the input chunk it needs.
/

October 29, 2014 © 2014 Paul Krzyzanowski 24

Fonte: Prof. Paul Krzyzanowski

Cloudera Tutorial -

MapReduce

Divided in two phases

— Map phase

— Reduce phase

Both phases use key-value pairs as input
and output

The implementer provides map and reduce
functions

MapReduce framework orchestrates
splitting, and distributing of Map and
Reduce phases

— Most of the pieces can be easily overridden

Cloudera Tutorial S

MapReduce

» Job — execution of map and reduce
functions to accomplish a task
— Equal to Java’s main

» Task —single Mapper or Reducer

— Performs work on a fragment of data

Cloudera Tutorial B —

Map Reduce Flow of Data

Data Mapper Map
Split E> Task E> Output

Node #1
o 4 B
[)
PY Reduce Reduce
° ‘:‘> Task :> Output
o Node #X

Mapper Map

Cloudera Tutorial - ————

First Map Reduce Job

« StartsWithCount Job
— Input is a body of text from HDFS
* In this case hamlet.txt
— Split text into tokens
— For each first letter sum up all occurrences
— Output to HDFS

Cloudera Tutorial S

Word Count Job

MapReduce breaks text into lines feeding each line into map functions

Mar. Horatio says 'tis but our fantasy, And will not let fantasy take hold of him
map eee 1 .,n eeoe
(Key=M : val=1) (key=f : val=1) (Key=a : val=1) (key=f : val=1)
(Key=s : val=1) (Key=w : val=1)

MapReduce Shuffle and Sort: group by output key

(Key=f:val=1,1,1,1,) (Key=M : val=1,1,1,1,)
(Key=M : val=1) (Key=K : val=1)
(Key=M : val=1) (Key=M : val=1)
(Key=g : val=1,1,1) (Key=o: val=1,1,1)
reduce eee T15n eeoe reduce
(Key=f: val=4) (Key=M : val=4)

(Key=g : val=3) (Key=0 : val=3)

Cloudera Tutorial -

StartsWithCount Job

1. Configure the Job

— Specify Input, Output, Mapper, Reducer and Combiner
2. Implement Mapper

— Input is text — a line from hamlet.txt

— Tokenize the text and emit first character with a count of

1 - <token, 1>

3. Implement Reducer

— Sum up counts for each letter

— Write out the result to HDFS

4. Run the job

p
Other Examples

* Distributed grep (search for words)
— Search for words in lots of documents
— Map: emit a line if it matches a given pattern
— Reduce: just copy the intermediate data to the output

-

J

October 29, 2014

© 2014 Paul Krzyzanowski 25

Fonte: Prof. Paul Krzyzanowski

p
Other Examples

» Count URL access frequency
— Find the frequency of each URL in web logs
— Map: process logs of web page access; output <URL, 1>
— Reduce: add all values for the same URL

-

J

October 29, 2014

© 2014 Paul Krzyzanowski

26

Fonte: Prof. Paul Krzyzanowski

-

Other Examples

-

* Reverse web-link graph
— Find where page links come from
— Map: output <target, source>for each link to target in a page source

— Reduce: concatenate the list of all source URLs associated with a

target.

Output <target, list(source)>

J

October 29, 2014

© 2014 Paul Krzyzanowski

27

Fonte: Prof. Paul Krzyzanowski

-

Other Examples

-

* Inverted index

— Find what documents contain a specific word
— Map: parse document, emit <word, document-ID> pairs

— Reduce: for each word, sort the corresponding document IDs

Emit a <word, list(document-ID)> pair
The set of all output pairs is an inverted index

J

October 29, 2014

© 2014 Paul Krzyzanowski 28

Fonte: Prof. Paul Krzyzanowski

p
MapReduce Summary

* Get a lot of data

* Map
— Parse & extract items of interest

+ Sort (shuffle) & partition

* Reduce
— Aggregate results

» Write to output files

-

J

October 29, 2014 © 2014 Paul Krzyzanowski

30

Fonte: Prof. Paul Krzyzanowski

p
Fault tolerance

G

» Master pings each worker periodically

— If no response is received within a certain time, the worker is
marked as failed

— Map or reduce tasks given to this worker are reset back to the initial
state and rescheduled for other workers.

J

October 29, 2014 © 2014 Paul Krzyzanowski 23

Fonte: Prof. Paul Krzyzanowski

-

N

Locality)
* Input and Output files are on GFS (Google File System)
» MapReduce runs on GFS chunkservers
* Master tries to schedule map worker on one of the
machines that has a copy of the input chunk it needs.
/

October 29, 2014 © 2014 Paul Krzyzanowski 24

Fonte: Prof. Paul Krzyzanowski

p
All is not perfect

N

* MapReduce was used to process webpage data collected by

Google's crawlers.
— It would extract the links and metadata needed to search the pages
— Determine the site's PageRank

» The process took around eight hours.

— Results were moved to search servers.
— This was done continuously.

Web |) Migrate to
MapReduce
[crawlers J::| i) search servers
\ J

~ 8 hours!

J

October 29, 2014 © 2014 Paul Krzyzanowski 31

Fonte: Prof. Paul Krzyzanowski

All is not perfect

* Web has become more dynamic
— an 8+ hour delay is a lot for some sites

» Goal: refresh certain pages within seconds

* MapReduce
Batch-oriented

— Not suited for near-real-time processes
— Cannot start a new phase until the previous has completed
* Reduce cannot start until all Map workers have completed
— Suffers from “stragglers” — workers that take too long (or fail)

— This was done continuously

* MapReduce is still used for many Google services

+ Search framework updated in 2009-2010: Caffeine
— Index updated by making direct changes to data stored in BigTable
— Data resides in Colossus (GFS2) instead of GFS

J

October 29, 2014

© 2014 Paul Krzyzanowski 32

Fonte: Prof. Paul Krzyzanowski

-

-

N
In Practice
* Most data not simple files
— B-trees, tables, SQL databases, memory-mapped key-values
» Hardly ever use textual data: slow & hard to parse
— Most I/0 encoded with Protocol Buffers
J

October 29, 2014 © 2014 Paul Krzyzanowski 33

Fonte: Prof. Paul Krzyzanowski

p
More info

» Good tutorial presentation & examples at:
http://research.google.com/pubs/pub36249.html

» The definitive paper:
http://labs.google.com/papers/mapreduce.html

. J

October 29, 2014 © 2014 Paul Krzyzanowski 34

Fonte: Prof. Paul Krzyzanowski

