
Tópicos em Sistemas
Operacionais

Ext2, Ext3, Ext4 e
Consistência

Islene Calciolari Garcia

Instituto de Computação - Unicamp

Segundo Semestre de 2013

Sumário

Material utilizado

Ext3/4 file systems, Don Porter, Stony Brook University

File Systems under Linux, André Brinkmann, Universitat
Paderborn

Experimentos práticos com debugfs e fsck

(inspirados no trabalho de Henrique e Tiago, MO806 2s2007)

http://www.cs.stonybrook.edu/~porter/courses/cse506/f12/slides/ext4.pdf
http://www.scalus.eu/files/2012/04/File_Systems_under_Linux1.pdf

Ext3/4 file systems, Don Porter, slide 1

Ext3/4 file systems
Don Porter

CSE 506

Ext3/4 file systems, Don Porter, slide 3

Ext2 review

ò  Very reliable, “best-of-breed” traditional file system
design

ò  Much like the JOS file system you are building now

ò  Fixed location super blocks

ò  A few direct blocks in the inode, followed by indirect
blocks for large files

ò  Directories are a special file type with a list of file names
and inode numbers

ò  Etc.

Sobre os experimentos em CSE 506, Stony Brook

This course will focus on implementing key OS kernel features in
the JOS kernel. JOS provides skeleton code for much of the less
interesting components of the OS, allowing you to focus on key
implementation details. The JOS lab was developed at MIT, and
has been used at several other universities, including Stanford,
Texas, and UCLA.
Lectures and readings in the course will serve to draw out general
principles, add needed background for the labs, and map details
from the JOS implementation to real-world OSes, like Linux and
Windows. In my own experience, most of the mapping is fairly
intuitive: once you understand the simple code in JOS, the same
pattern is clear in the much more complicated Linux source code.

Ext3/4 file systems, Don Porter, slide 4

File systems and crashes

ò  What can go wrong?

ò  Write a block pointer in an inode before marking block as
allocated in allocation bitmap

ò  Write a second block allocation before clearing the first –
block in 2 files after reboot

ò  Allocate an inode without putting it in a directory –
“orphaned” after reboot

ò  Etc.

Ext3/4 file systems, Don Porter, slide 5

Deeper issue

ò  Operations like creation and deletion span multiple on-
disk data structures

ò  Requires more than one disk write

ò  Think of disk writes as a series of updates

ò  System crash can happen between any two updates

ò  Crash between wrong two updates leaves on-disk data
structures inconsistent!

Ext3/4 file systems, Don Porter, slide 6

Atomicity

ò  The property that something either happens or it doesn’t

ò  No partial results

ò  This is what you want for disk updates

ò  Either the inode bitmap, inode, and directory are updated
when a file is created, or none of them are

ò  But disks only give you atomic writes for a sector L

ò  Fundamentally hard problem to prevent disk corruptions
if the system crashes

Ext3/4 file systems, Don Porter, slide 7

fsck

ò  Idea: When a file system is mounted, mark the on-disk
super block as mounted

ò  If the system is cleanly shut down, last disk write clears
this bit

ò  Reboot: If the file system isn’t cleanly unmounted, run
fsck

ò  Basically, does a linear scan of all bookkeeping and
checks for (and fixes) inconsistencies

Ext3/4 file systems, Don Porter, slide 8

fsck examples

ò  Walk directory tree: make sure each reachable inode is
marked as allocated

ò  For each inode, check the reference count, make sure all
referenced blocks are marked as allocated

ò  Double-check that all allocated blocks and inodes are
reachable

ò  Summary: very expensive, slow scan of the entire file
system

Experimento prático: Criando um sistema ext2

Criando imagem zerada

$ dd if=/dev/zero of=hd.dmp bs=4k count=1024

Construindo o sistema de arquivos ext2

$ mke2fs hd.dmp

Verificando que está ok

$ fsck.ext2 -f hd.dmp

Povoando o sistema via debugfs

$ debugfs -w hd.dmp

debugfs: write a.txt a.txt

Experimento prático: Bloco livre, mas marcado
O sistema de arquivos poderia chegar a esta configuração?

debugfs: stat a.txt

Inode: 12 Type: regular Mode: 0644 Flags: 0x0

...

BLOCKS:

(0):162

TOTAL: 1

debugfs: testb 164

debugfs: setb 164

$ fsck.ext2 -f hd.dmp

Experimento prático: Bloco indexado por inode, mas livre
O sistema de arquivos poderia chegar a esta configuração?

debugfs: stat a.txt

Inode: 12 Type: regular Mode: 0644 Flags: 0x0

...

BLOCKS:

(0):162

TOTAL: 1

debugfs: freeb 162

$ fsck.ext2 -f hd.dmp

Experimento prático: Bloco indexado por inode, mas livre
O que pode acontecer se o sistema não for recuperado rapidamente?

debugfs: freeb 162

debugfs: write b.txt b.txt

stat b.txt

...

BLOCKS:

(0):162

TOTAL: 1

$ fsck.ext2 -f hd.dmp

Experimento prático: Inode usado em diretório, mas livre
O sistema de arquivos poderia chegar a esta configuração?

debugfs: stat a.txt

Inode: 12 Type: regular Mode: 0644 Flags: 0x0

...

BLOCKS:

(0):162

TOTAL: 1

debugfs: freei 12

$ fsck.ext2 -f hd.dmp

Experimento prático: Inode usado em diretório, mas livre
O que pode acontecer se o sistema não for recuperado rapidamente?

debugfs: rm b.txt

debugfs: stat a.txt

Inode: 12 Type: regular Mode: 0644 Flags: 0x0

...

BLOCKS:

(0):162

TOTAL: 1

debugfs: freei a.txt

debugfs: write b.txt b.txt

debugfs: stat b.txt

$ fsck.ext2 -f hd.dmp

Experimento prático: erro no número de links
O sistema de arquivos poderia chegar a esta configuração?

debugfs: mi a.txt

Ext3/4 file systems, Don Porter, slide 9

Journaling

ò  Idea: Keep a log of what you were doing

ò  If the system crashes, just look at data structures that
might have been involved

ò  Limits the scope of recovery; faster fsck!

File Systems under Linux, André Brinkmann, slide 38

Journaling	
 File	
 Systems	

•  “A	
 journaling	
 file	
 system	
 is	
 a	
 file	
 system	
 that	
 logs	
 changes	
 to	
 a	

journal	
 (usually	
 a	
 circular	
 log	
 in	
 a	
 specially-­‐allocated	
 area)	
 before	

actually	
 wri>ng	
 them	
 to	
 the	
 main	
 file	
 system”	

•  Problem	
 descrip>on	
 without	
 Journaling:	

–  A	
 crashed	
 computer	
 or	
 file	
 system	
 might	
 lead	
 to	
 inconsistent	
 data	
 on	
 a	
 file	

system	

–  Full	
 file	
 system	
 needs	
 to	
 be	
 checked	
 and	
 repaired	

è This	
 process	
 might	
 take	
 mul>ple	
 hours!	

è Idea:	

–  Write	
 all	
 data	
 to	
 a	
 journal	
 first,	
 then	
 to	
 its	
 final	
 des>na>on	
 on	
 disk	

–  On	
 a	
 crash,	
 only	
 the	
 journal	
 has	
 to	
 be	
 checked	
 for	
 unfinished	
 transac>ons	

–  Opera>ons	
 can	
 be	
 executed	
 atomically	

Slide based on Wikipedia

Ext3/4 file systems, Don Porter, slide 10

Undo vs. redo logging

ò  Two main choices for a journaling scheme (same in databases,
etc)

ò  Undo logging:

1) Write what you are about to do (and how to undo it)

ò  Synchronously

2) Then make changes on disk

3) Then mark the operations as complete

ò  If system crashes before commit record, execute undo steps

ò  Undo steps MUST be on disk before any other changes! Why?

Ext3/4 file systems, Don Porter, slide 11

Redo logging

ò  Before an operation (like create)

1) Write everything that is going to be done to the log + a
commit record

ò  Sync

2) Do the updates on disk

3) When updates are complete, mark the log entry as obsolete

ò  If the system crashes during (2), re-execute all steps in
the log during fsck

File Systems under Linux, André Brinkmann, slide 40

EXT	
 3	
 Journaling	
 File	
 System	

•  EXT	
 3	
 extends	
 EXT	
 2	
 by	
 journaling	

•  Journal	
 is	
 stored	
 as	
 a	
 file	
 on	
 the	
 file	
 system	
 but	
 may	
 also	
 be	
 stored	
 on	
 a	
 separate	
 par>>on	

•  Journal	
 is	
 implemented	
 as	
 a	
 ring	
 buffer.	
 If	
 the	
 opera>ons	
 are	
 commijed	
 to	
 disk,	
 the	
 journal	
 is	

reused	

•  Journal	
 superblock	
 stores	
 informa>on	
 like	
 block	
 size	
 and	
 pointers	
 to	
 the	
 beginning	

and	
 the	
 end	
 of	
 the	
 journal	

•  Journal	
 descriptor	
 block	
 marks	
 the	
 beginning	
 of	
 a	
 transac>on	
 and	
 contains	

informa>on	
 about	
 following	
 blocks,	
 i.e.	
 their	
 storage	
 loca>on	

•  Journal	
 commit	
 block	
 is	
 wrijen	
 to	
 the	
 end	
 of	
 a	
 transac>on.	
 If	
 the	
 JCB	
 was	
 wrijen,	
 the	

transac>on	
 can	
 be	
 recovered	
 without	
 data	
 loss	

Slide based on V. Prabhakaran et al.: Analysis and Evolution of Journaling File Systems

Experimento prático: Criando um sistema ext3

Criando imagem zerada

$ dd if=/dev/zero of=hd.dmp bs=4k count=1024

Construindo o sistema de arquivos ext3

$ mkfs.ext3 hd.dmp

Verificando que está ok

$ fsck.ext3 -f hd.dmp

Povoando o sistema via debugfs

$ debugfs -w hd.dmp

debugfs: write a.txt a.txt

Experimento prático: Bloco indexado por inode, mas livre
O sistema de arquivos poderia chegar a esta configuração?

debugfs: stat a.txt

...

BLOCKS:

(0):1191

debugfs: freeb 1191

debugfs: write b.txt b.txt

stat b.txt

...

BLOCKS:

(0):1191

$ fsck.ext3 -f hd.dmp

Experimento prático: como simular um crash?

$ qemu ... ???

$ emacs hd.dmp ???

File Systems under Linux, André Brinkmann, slide 39

Journaling	
 File	
 Systems	

•  „Full	
 Journaling“	
 writes	
 all	
 data	
 twice	
 	

è	
 degraded	
 performance	

•  Idea	
 of	
 „Metadata	
 Journaling“:	

–  Only	
 write	
 metadata	
 of	
 a	
 file	
 to	
 the	
 journal,	
 actual	
 file	
 data	
 is	
 directly	

wrijen	
 to	
 disk	
 	

•  File	
 data	
 should	
 be	
 wrijen	
 before	
 the	
 metadata	
 is	
 commijed	
 to	

the	
 journal	
 to	
 prevent	
 file	
 inconsistencies	

•  Example	

1.  Resize	
 file	
 in	
 Inode	

2.  Allocate	
 space	
 for	
 file	
 extension	
 in	
 the	
 free	
 space	
 map	

3.  Write	
 data	
 to	
 the	
 newly	
 allocated	
 area	

What happens if the computer
crashes after step 2?

Slide based on Wikipedia

Ext3/4 file systems, Don Porter, slide 13

Atomicity revisited

ò  The disk can only atomically write one sector

ò  Disk and I/O scheduler can reorder requests

ò  Need atomic journal “commit”

Ext3/4 file systems, Don Porter, slide 14

Atomicity strategy

ò  Write a journal log entry to disk, with a transaction
number (sequence counter)

ò  Once that is on disk, write to a global counter that
indicates log entry was completely written

ò  This single write is the point at which a journal entry is
atomically “committed” or not

ò  Sometimes called a linearization point

ò  Atomic: either the sequence number is written or not;
sequence number will not be written until log entry on
disk

Ext3/4 file systems, Don Porter, slide 15

Batching

ò  This strategy requires a lot of synchronous writes

ò  Synchronous writes are expensive

ò  Idea: let’s batch multiple little transactions into one
bigger one

ò  Assuming no fsync()

ò  For up to 5 seconds, or until we fill up a disk block in the
journal

ò  Then we only have to wait for one synchronous disk write!

Ext3/4 file systems, Don Porter, slide 16

Complications

ò  We can’t write data to disk until the journal entry is
committed to disk

ò  Ok, since we buffer data in memory anyway

ò  But we want to bound how long we have to keep dirty
data (5s by default)

ò  JBD adds some flags to buffer heads that transparently
handles a lot of the complicated bookkeeping

ò  Pins writes in memory until journal is written

ò  Allows them to go to disk afterward

Ext3/4 file systems, Don Porter, slide 17

More complications

ò  We also can’t write to the in-memory version until we’ve
written a version to disk that is consistent with the
journal

ò  Example:

ò  I modify an inode and write to the journal

ò  Journal commits, ready to write inode back

ò  I want to make another inode change

ò  Cannot safely change in-memory inode until I have either
written it to the file system or created another journal entry

Ext3/4 file systems, Don Porter, slide 18

Another example

ò  Suppose journal transaction1 modifies a block, then
transaction 2 modifies the same block.

ò  How to ensure consistency?

ò  Option 1: stall transaction 2 until transaction 1 writes to fs

ò  Option 2 (ext3): COW in the page cache + ordering of
writes

Ext3/4 file systems, Don Porter, slide 19

Yet more complications

ò  Interaction with page reclaiming:

ò  Page cache can pick a dirty page and tell fs to write it back

ò  Fs can’t write it until a transaction commits

ò  PFRA chose this page assuming only one write-back;
must potentially wait for several

ò  Advanced file systems need the ability to free another
page, rather than wait until all prerequisites are met

Ext3/4 file systems, Don Porter, slide 20

Write ordering

ò  Issue, if I make file 1 then file 2, can I have a situation
where file 2 is on disk but not file 1?

ò  Yes, theoretically

ò  API doesn’t guarantee this won’t happen (journal
transactions are independent)

ò  Implementation happens to give this property by grouping
transactions into a large, compound transactions
(buffering)

Ext3/4 file systems, Don Porter, slide 21

Checkpointing

ò  We should “garbage collect” our log once in a while

ò  Specifically, once operations are safely on disk, journal
transaction is obviated

ò  A very long journal wastes time in fsck

ò  Journal hooks associated buffer heads to track when they get
written to disk

ò  Advances logical start of the journal, allows reuse of those
blocks

Ext3/4 file systems, Don Porter, slide 22

Journaling modes

ò  Full data + metadata in the journal

ò  Lots of data written twice, batching less effective, safer

ò  Ordered writes

ò  Only metadata in the journal, but data writes only allowed after
metadata is in journal

ò  Faster than full data, but constrains write orderings (slower)

ò  Metadata only – fastest, most dangerous

ò  Can write data to a block before it is properly allocated to a file

Ext3/4 file systems, Don Porter, slide 23

Revoke records

ò  When replaying the journal, don’t redo these operations

ò  Mostly important for metadata-only modes

ò  Example: Once a file is deleted and the inode is reused,
revoke the creation record in the log

ò  Recreating and re-deleting could lose some data written to
the file

Ext3/4 file systems, Don Porter, slide 24

ext3 summary

ò  A modest change: just tack on a journal

ò  Make crash recovery faster, less likely to lose data

ò  Surprising number of subtle issues

ò  You should be able to describe them

ò  And key design choices (like redo logging)

Ext3/4 file systems, Don Porter, slide 25

ext4

ò  ext3 has some limitations that prevent it from handling
very large, modern data sets

ò  Can’t fix without breaking backwards compatibility

ò  So fork the code

ò  General theme: several changes to better handle larger
data

ò  Plus a few other goodies

Ext3/4 file systems, Don Porter, slide 26

Example

ò  Ext3 fs limited to 16 TB max size

ò  32-bit block numbers (2^32 * 4k block size), or “address”
of blocks on disk

ò  Can’t make bigger block numbers on disk without
changing on-disk format

ò  Can’t fix without breaking backwards compatibility

ò  Ext4 – 48 bit block numbers

Ext3/4 file systems, Don Porter, slide 27

Indirect blocks vs. extents

ò  Instead of represent each block, represent large
contiguous chunks of blocks with an extent

ò  More efficient for large files (both in space and disk
scheduling)

ò  Ex: Disk sectors 50—300 represent blocks 0—250 of file

ò  Vs.: Allocate and initialize 250 slots in an indirect block

ò  Deletion requires marking 250 slots as free

Ext3/4 file systems, Don Porter, slide 28

Extents, cont.

ò  Worse for highly fragmented or sparse files

ò  If no 2 blocks are contiguous, will have an extent for each
block

ò  Basically a more expensive indirect block scheme

ò  Propose a block-mapped extent, which essentially reverts
to a more streamlined indirect block

Ext3/4 file systems, Don Porter, slide 29

Static inode allocations

ò  When you create an ext3 or ext4 file system, you create
all possible inodes

ò  Disk blocks can either be used for data or inodes, but
can’t change after creation

ò  If you need to create a lot of files, better make lots of
inodes

ò  Why?

Ext3/4 file systems, Don Porter, slide 30

Why?

ò  Simplicity

ò  Fixed location inodes means you can take inode number, total
number of inodes, and find the right block using math

ò  Dynamic inodes introduces another data structure to track this
mapping, which can get corrupted on disk (losing all contained
files!)

ò  Bookkeeping gets a lot more complicated when blocks change
type

ò  Downside: potentially wasted space if you guess wrong
number of files

Ext3/4 file systems, Don Porter, slide 31

Directory scalability

ò  An ext3 directory can have a max of 32,000 sub-
directories/files

ò  Painfully slow to search – remember, this is just a simple
array on disk (linear scan to lookup a file)

ò  Replace this in ext4 with an HTree

ò  Hash-based custom BTree

ò  Relatively flat tree to reduce risk of corruptions

ò  Big performance wins on large directories – up to 100x

Ext3/4 file systems, Don Porter, slide 32

Other goodies

ò  Improvements to help with locality

ò  Preallocation and hints keep blocks that are often accessed
together close on the disk

ò  Checksumming of disk blocks is a good idea

ò  Especially for journal blocks

ò  Fsck on a large fs gets expensive

ò  Put used inodes at front if possible, skip large swaths of
unused inodes if possible

Ext3/4 file systems, Don Porter, slide 33

Summary

ò  ext2 – Great implementation of a “classic” file system

ò  ext3 – Add a journal for faster crash recovery and less
risk of data loss

ò  ext4 – Scale to bigger data sets, plus other features

ò  Total FS size (48-bit block numbers)

ò  File size/overheads (extents)

ò  Directory size (HTree vs. a list)

