
Efficient Parallel Set-Similarity
Joins Using Hadoop

Chen Li

Joint work with
Michael Carey and Rares Vernica

*

Motivation: Data Cleaning

Star Title Year Genre
Keanu Reeves The Matrix 1999 Sci-Fi
Tom Hanks Toy Story 3 2010 Animation
Schwarzenegger The Terminator 1984 Sci-Fi
Samuel Jackson The man 2006 Crime

Find movies starring Tom Hanks

*

Movies starring S..warz…ne…ger?

Star Title Year Genre
Keanu Reeves The Matrix 1999 Sci-Fi
Tom Hanks Toy Story 3 2010 Animation
Schwarzenegger The Terminator 1984 Sci-Fi
Samuel Jackson The man 2006 Crime

*

Similarity Search

Star Title Year Genre
Keanu Reeves The Matrix 1999 Sci-Fi
Samuel Jackson Iron man 2008 Sci-Fi
Schwarzenegger The Terminator 1984 Sci-Fi
Samuel Jackson The man 2006 Crime

Find movies with a star “similar to” Schwarrzenger.

*

Record linkage

Star
Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Table
R

Table
S

Star
Keanu Reeves

Samuel L. Jackson

Schwarzenegger

…

Step 2: Verification

*

Two-step solution

Star

…

Table
R

Table
S

Star

…

Step 1:
Similarity Join

▪Similarity join for large data sets
▪Techniques applicable to other domains, e.
g.:

Finding similar documents
Finding customers with similar patterns

*

Focus of this talk

▪Formulation: set-similarity join
▪Hadoop-based solutions
▪Experiments

*

Talk Outline

Set-similarity functions

● Jaccard
● Dice
● Cosine
● Hamming
● …

All solvable in this framework

*

*

Set-Similarity Join

Finding pairs of records with a similarity on their join attributes > t

*

Why this formulation?

“Samuel L. Jackson” → {Samuel, L., Jackson}
“Samuel Jackson” → {Samuel, Jackson}

▪Word tokens:

▪Gram tokens:
S c h w a r z e n e g g e r

▪Formulation of set-similarity join
▪→ Hadoop-based solutions
▪Experiments

*

Talk Outline

▪Large amounts of data
▪Data or processing does not fit in one machine

▪Assumptions:
Self join: R = S

Two similar sets share at least 1 token

*

Why Hadoop?

▪Map: <23, (a,b,c)> → (a, 23), (b, 23), (c, 23)

*

A naïve solution

▪Too much data to transfer ☹
▪Too many pairs to verify ☹.

▪Reduce:(a,23),(a,29),(a,50), …→ Verify each pair

Solving frequency skew: prefix filtering

prefix

r1

r2

*

▪Prefixes of similar sets should share tokens

▪Sort tokens by frequency (ascending)

▪Prefix of a set: least frequent tokens

Sorted by frequency

Chaudhuri, Ganti, Kaushik: A Primitive Operator for Similarity
Joins in Data Cleaning. ICDE 2006: 5

Prefix filtering: example

*

▪Each set has 5 tokens
▪ “Similar”: they share at least 4 tokens
▪Prefix length: 2

Record 1

Record 2

▪ Stage 1: Order tokens by frequency

▪ Stage 2: Finding “similar” id pairs

▪ Stage 3: id pairs → record paris

*

Hadoop Solution: Overview

*

Stage 1: Sort tokens by frequency

Compute token frequencies Sort them

MapReduce phase 1 MapReduce phase 2

*

Stage 2: Find “similar” id pairs

Partition using prefixes Verify similarity

*

Stage 3: id pairs → record pairs (phase 1)

Bring records for each id in each pair

*

Stage 3: id pairs → record pairs (phase 2)

Join two half filled records

▪Formulation of set-similarity join
▪Hadoop-based solutions
▪→ Experiments

*

Talk Outline

▪ Hardware
10-node IBM x3650 cluster

Intel Xeon processor E5520 2.26GHz with four cores

Four 300GB hard disks

12GB RAM

▪ Software
Ubuntu 9.06, 64-bit, server edition OS

Java 1.6, 64-bit, server

Hadoop 0.20.1

▪ Datasets: publications (DBLP and CITESEERX)

*

Experimental Setting

*

Running time

Stage 2
Stage 1

Stage 3

*

Speedup

*

Speedup Breakdown

Stage 2 has good speedup

*

Scaleup

Good scaleup

Thank you

Chen Li @ UC Irvine

Source code available at:
http://asterix.ics.uci.edu/fuzzyjoin-mapreduce/

Acknowledgements:
NSF, Google, IBM.

http://asterix.ics.uci.edu/fuzzyjoin-mapreduce/
http://asterix.ics.uci.edu/fuzzyjoin-mapreduce/
http://asterix.ics.uci.edu/fuzzyjoin-mapreduce/

