MC504 Sistemas Operacionais

Virtualização

Prof. Dr. Eng. Isaías Bittencourt Felzmann

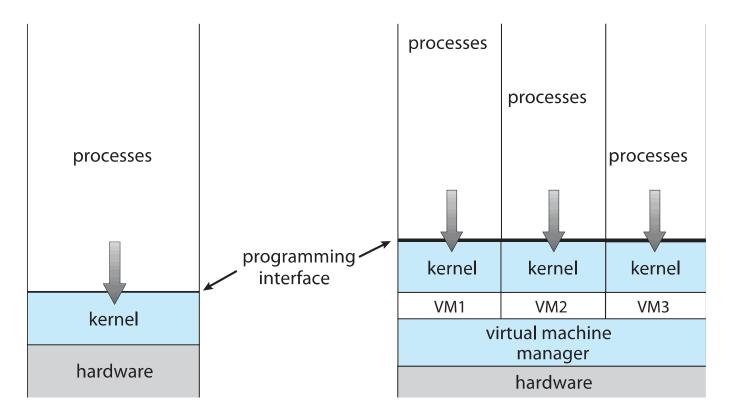
isaias@ic.unicamp.br

Campinas, 2s/2025

Copyright Note

The following set of slides are copyright Silberschatz, Galvin and Gagne, 2018. Modifications were made for their use in conjunction with MC504. The original material is available at os-book.com.


Os direitos autorais do conjunto de slides a seguir pertencem a Silberschatz, Galvin and Gagne, 2018. Foram feitas modificações para seu uso em MC504. O material original está disponível em <u>os-book.com</u>.


Overview

- Fundamental idea abstract hardware of a single computer into several different execution environments
 - Similar to layered approach
 - But layer creates virtual system (virtual machine, or VM) on which operation systems or applications can run
- Several components
 - Host underlying hardware system
 - Virtual machine manager (VMM) or hypervisor creates and runs virtual machines by providing interface that is *identical* to the host
 - (Except in the case of paravirtualization)
 - Guest process provided with virtual copy of the host
 - Usually an operating system
- Single physical machine can run multiple operating systems concurrently, each in its own virtual machine

System Models

Non-virtual machine

Virtual machine

Implementation of VMMs

- Vary greatly, with options including:
 - Type 0 hypervisors Hardware-based solutions that provide support for virtual machine creation and management via firmware
 - ▶ IBM LPARs and Oracle LDOMs are examples
 - Type 1 hypervisors Operating-system-like software built to provide virtualization
 - Including VMware ESX, Joyent SmartOS, and Citrix XenServer
 - **Type 1 hypervisors –** Also includes general-purpose operating systems that provide standard functions as well as VMM functions
 - Including Microsoft Windows Server with HyperV and RedHat Linux with KVM
 - Type 2 hypervisors Applications that run on standard operating systems but provide VMM features to guest operating systems
 - Including VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

Implementation of VMMs (Cont.)

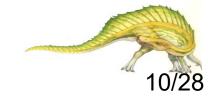
- Other variations include:
 - Paravirtualization Technique in which the guest operating system is modified to work in cooperation with the VMM to optimize performance
 - Programming-environment virtualization VMMs do not virtualize real hardware but instead create an optimized virtual system
 - Used by Oracle Java and Microsoft.Net
 - Emulators Allow applications written for one hardware environment to run on a very different hardware environment, such as a different type of CPU

Implementation of VMMs (Cont.)

- Application containment Not virtualization at all but rather provides virtualization-like features by segregating applications from the operating system, making them more secure, manageable
 - Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs
- Much variation due to breadth, depth and importance of virtualization in modern computing

Benefits and Features

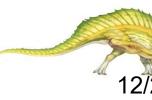
- Host system protected from VMs, VMs protected from each other
 - i.e., A virus less likely to spread
 - Sharing is provided though via shared file system volume, network communication
- Freeze, suspend, running VM
 - Then can move or copy somewhere else and resume
 - Snapshot of a given state, able to restore back to that state
 - Some VMMs allow multiple snapshots per VM
 - Clone by creating copy and running both original and copy
- Great for OS research, better system development efficiency
- Run multiple, different OSes on a single machine
 - Consolidation, app dev, ...


Benefits and Features (Cont.)

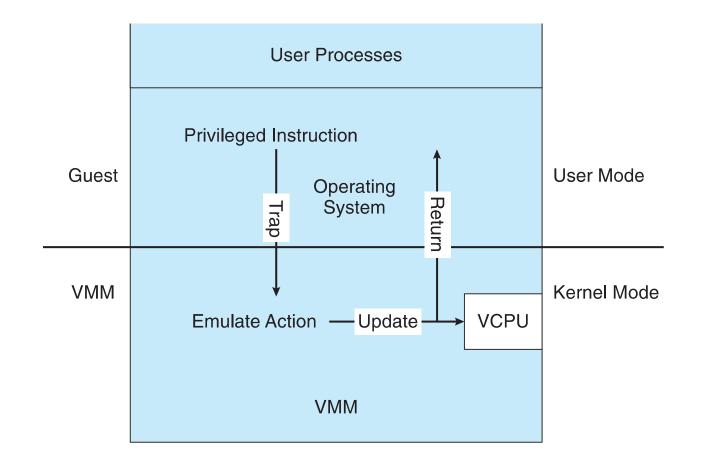
- Templating create an OS + application VM, provide it to customers, use it to create multiple instances of that combination
- Live migration move a running VM from one host to another!
 - No interruption of user access
- All those features taken together -> cloud computing
 - Using APIs, programs tell cloud infrastructure (servers, networking, storage) to create new guests, VMs, virtual desktops

Building Blocks

- Generally difficult to provide an exact duplicate of underlying machine
 - Especially if only dual-mode operation available on CPU
 - But getting easier over time as CPU features and support for VMM improves
 - Most VMMs implement virtual CPU (VCPU) to represent state of CPU per guest as guest believes it to be
 - When guest context switched onto CPU by VMM, information from VCPU loaded and stored
 - Several techniques, as described in next slides


Building Block – Trap and Emulate

- Dual mode CPU means guest executes in user mode
 - Kernel runs in kernel mode
 - Not safe to let guest kernel run in kernel mode too
 - So VM needs two modes virtual user mode and virtual kernel mode
 - ▶ Both of which run in real user mode
 - Actions in guest that usually cause switch to kernel mode must cause switch to virtual kernel mode


Trap-and-Emulate (Cont.)

- How does switch from virtual user mode to virtual kernel mode occur?
 - Attempting a privileged instruction in user mode causes an error -> trap
 - VMM gains control, analyzes error, executes operation as attempted by guest
 - Returns control to guest in user mode
 - Known as trap-and-emulate
 - Most virtualization products use this at least in part
- User mode code in guest runs at same speed as if not a guest
- But kernel mode privilege mode code runs slower due to trap-andemulate
 - Especially a problem when multiple guests running, each needing trap-and-emulate
- CPUs adding hardware support, mode CPU modes to improve virtualization performance

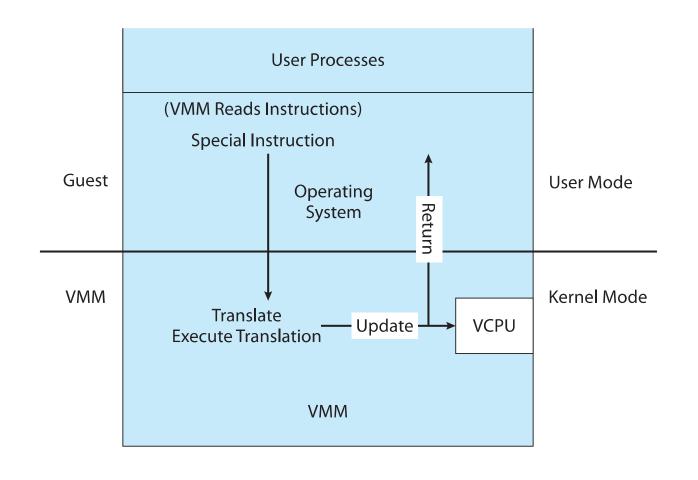
Trap-and-Emulate Virtualization Implementation

Building Block – Binary Translation

- Some CPUs don't have clean separation between privileged and nonprivileged instructions
 - Earlier Intel x86 CPUs are among them
 - Earliest Intel CPU designed for a calculator
 - Backward compatibility means difficult to improve
 - Consider Intel x86 popf instruction
 - Loads CPU flags register from contents of the stack
 - If CPU in privileged mode -> all flags replaced
 - If CPU in user mode -> only some flags replaced
 - No trap is generated

Binary Translation (Cont.)

- Other similar problem instructions we will call special instructions
 - Caused trap-and-emulate method considered impossible until 1998
- Binary translation solves the problem
 - 1. Basics are simple, but implementation very complex
 - 2. If guest VCPU is in user mode, guest can run instructions natively
 - If guest VCPU in kernel mode (guest believes it is in kernel mode)
 - reading a few instructions ahead of program counter
 - b) Non-special-instructions run natively
 - Special instructions translated into new set of instructions that perform equivalent task (for example changing the flags in the VCPU)



Binary Translation (Cont.)

- Implemented by translation of code within VMM
- Code reads native instructions dynamically from guest, on demand, generates native binary code that executes in place of original code
- Performance of this method would be poor without optimizations
 - Products like VMware use caching
 - Translate once, and when guest executes code containing special instruction cached translation used instead of translating again
 - Testing showed booting Windows XP as guest caused 950,000 translations, at 3 microseconds each, or 3 second (5%) slowdown over native

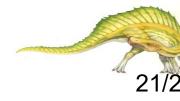
Binary Translation Virtualization Implementation

Nested Page Tables

- Memory management another general challenge to VMM implementations
- How can VMM keep page-table state for both guests believing they control the page tables and VMM that does control the tables?
- Common method (for trap-and-emulate and binary translation) is nested page tables (NPTs)
 - Each guest maintains page tables to translate virtual to physical addresses
 - VMM maintains per guest NPTs to represent guest's page-table state
 - Just as VCPU stores guest CPU state
 - When guest on CPU -> VMM makes that guest's NPTs the active system page tables
 - Guest tries to change page table -> VMM makes equivalent change to NPTs and its own page tables
 - Can cause many more TLB misses -> much slower performance

Building Blocks – Hardware Assistance

- All virtualization needs some HW support
- More support -> more feature rich, stable, better performance of guests
- Intel added new VT-x instructions in 2005 and AMD the AMD-V instructions in 2006
 - CPUs with these instructions remove need for binary translation
 - Generally define more CPU modes "guest" and "host"
 - VMM can enable host mode, define characteristics of each guest VM, switch to guest mode and guest(s) on CPU(s)
 - In guest mode, guest OS thinks it is running natively, sees devices (as defined by VMM for that guest)
 - Access to virtualized device, priv instructions cause trap to VMM
 - CPU maintains VCPU, context switches it as needed
- HW support for Nested Page Tables, DMA, interrupts as well over time


Virtualization and Operating-System Components

- Now look at operating system aspects of virtualization
 - CPU scheduling, memory management, I/O, storage, and unique VM migration feature
 - How do VMMs schedule CPU use when guests believe they have dedicated CPUs?
 - How can memory management work when many guests require large amounts of memory?

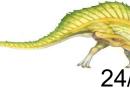
OS Component – CPU Scheduling

- Even single-CPU systems act like multiprocessor ones when virtualized
 - One or more virtual CPUs per guest
- Generally VMM has one or more physical CPUs and number of threads to run on them
 - Guests configured with certain number of VCPUs
 - Can be adjusted throughout life of VM
 - When enough CPUs for all guests -> VMM can allocate dedicated CPUs, each guest much like native operating system managing its CPUs
 - Usually not enough CPUs -> CPU overcommitment
 - VMM can use standard scheduling algorithms to put threads on CPUs
 - Some add fairness aspect

OS Component – CPU Scheduling (Cont.)

- Cycle stealing by VMM and oversubscription of CPUs means guests don't get CPU cycles they expect
 - Consider timesharing scheduler in a guest trying to schedule
 100ms time slices -> each may take 100ms, 1 second, or longer
 - Poor response times for users of guest
 - Time-of-day clocks incorrect
 - Some VMMs provide application to run in each guest to fix time-ofday and provide other integration features

OS Component – Memory Management


- Also suffers from oversubscription -> requires extra management efficiency from VMM
- For example, VMware ESX guests have a configured amount of physical memory, then ESX uses 3 methods of memory management
 - Double-paging, in which the guest page table indicates a page is in a physical frame but the VMM moves some of those pages to backing store
 - Install a pseudo-device driver in each guest (it looks like a device driver to the guest kernel but really just adds kernel-mode code to the guest)
 - Balloon memory manager communicates with VMM and is told to allocate or de-allocate memory to decrease or increase physical memory use of guest, causing guest OS to free or have more memory available
 - 3. De-duplication by VMM determining if same page loaded more than once, memory mapping the same page into multiple guests

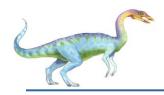
OS Component – I/O

- Easier for VMMs to integrate with guests because I/O has lots of variation
 - Already somewhat segregated / flexible via device drivers
 - VMM can provide new devices and device drivers
- But overall I/O is complicated for VMMs
 - Many short paths for I/O in standard OSes for improved performance
 - Less hypervisor needs to do for I/O for guests, the better
 - Possibilities include direct device access, DMA pass-through, direct interrupt delivery
 - Again, HW support needed for these
- Networking also complex as VMM and guests all need network access
 - VMM can bridge guest to network (allowing direct access)
 - And / or provide network address translation (NAT)
 - NAT address local to machine on which guest is running, VMM provides address translation to guest to hide its address

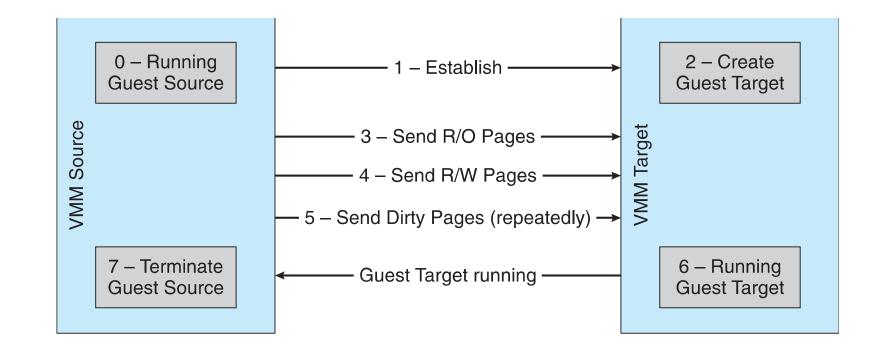
IC/UNICAMP – MC504 Sistemas Operacionais

OS Component – Storage Management

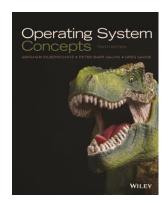
- Both boot disk and general data access need be provided by VMM
- Need to support potentially dozens of guests per VMM (so standard disk partitioning not sufficient)
- Type 1 storage guest root disks and config information within file system provided by VMM as a disk image
- Type 2 store as files in file system provided by host OS
- Duplicate file -> create new guest
- Move file to another system -> move guest
- Physical-to-virtual (P-to-V) convert native disk blocks into VMM format
- Virtual-to-physical (V-to-P) convert from virtual format to native or disk format
- VMM also needs to provide access to network attached storage (just networking) and other disk images, disk partitions, disks, etc.



OS Component – Live Migration


- Taking advantage of VMM features leads to new functionality not found on general operating systems such as live migration
- Running guest can be moved between systems, without interrupting user access to the guest or its apps
- Very useful for resource management, maintenance downtime windows, etc.
 - 1. The source VMM establishes a connection with the target VMM
 - 2. The target creates a new guest by creating a new VCPU, etc.
 - 3. The source sends all read-only guest memory pages to the target
 - 4. The source sends all read-write pages to the target, marking them as clean
 - 5. The source repeats step 4, as during that step some pages were probably modified by the guest and are now dirty
 - 6. When cycle of steps 4 and 5 becomes very short, source VMM freezes guest, sends VCPU's final state, sends other state details, sends final dirty pages, and tells target to start running the guest
 - Once target acknowledges that guest running, source terminates guest

IC/UNICAMP - MC504 Sistemas Operacionais



Live Migration of Guest Between Servers

Bibliografia

Capítulo 18.

Capítulo 7.