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Randomized algorithms are in general:
I simpler;
I faster;
I avoid pathological cases;
I can give interesting deterministic informations;

But (hopefully, with small probability) can
I give wrong answers;
I take too long.
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1.1 Verifying polynomial identities

VERIFYING POLYNOMIALS

I Given polynomials F(x) and G(x) as:
I F(x) = (x + 1)(x − 2)(x + 3)(x − 4)(x + 5)(x − 6)
I G(x) = x6 − 7x3 + 25.
I How to verify if F(x) ≡ G(x).

I Natural solution in O(d2).
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1.1 Verifying polynomial identities

Consider the following randomized algorithm:

ALGORITHM VP

1. Choose r ∈ {1, . . . , 100d} randomly.

2. Verify if F(r) is equal to G(r), in time O(d).

3. If F(r) = G(r) then return YES;

4. otherwise, return NO.
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1.1 Verifying polynomial identities

The algorithm:
I Has time complexity O(d).
I Fails if r ∈ {1, . . . , 100d} is root of H(x) = 0, where

H(x) = F(x) − G(x).

As H(x) has maximum degree d,
I H(x) has at most d roots
I The probability that algorithm VP fail is at most

Pr(VP fail) ≤ d
100d

=
1

100

And how to decrease the probability to fail to 1
1000000 ?
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1.2 Axioms of Probability

AXIOMS OF PROBABILITY

Def.: A probability space has 3 components:
I A sample spaceΩ
I A family F of events, each E ∈ F is s.t. E ⊆ Ω.
I A probability function Pr : F → R+

E ∈ F is called simple or elementary if |E| = 1

Def.: A probability function is any function Pr : F → R+ s.t.
I ∀E ∈ F we have 0 ≤ Pr(E) ≤ 1
I Pr(Ω) = 1
I For any finite or enumerable sequence of events mutually disjoint

E1,E2, . . . , we have

Pr(E1 ∪ E2 . . .) = Pr(E1) + Pr(E2) + . . .
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1.2 Axioms of Probability

Example: In the polynomial verification
I Ω = {1, . . . , 100d}
I Each simple event Ei is an event of choosing r = i, for i = 1, . . . , 100d
I Ei is chosen uniformly at random⇒ Pr(Ei) = Pr(Ej), ∀i, j.
I Pr(Ω) = 1⇒ Pr(Ei) =

1
100d .

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 7 / 296



1.2 Axioms of Probability

Example: Consider tossing a die (of 6 sides).
I Ω = {1, . . . , 6}

Examples of events we may consider,
I E ′ = Event of having an even number.
I E ′′ = Event of having a number at most 3.
I E ′′′ = Event of having prime number.
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1.2 Axioms of Probability

Lemma: For events E1 and E2 we have

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2)

Proof.

Pr(E1) = Pr(E1 − (E1 ∩ E2)) + Pr(E1 ∩ E2)

Pr(E2) = Pr(E2 − (E1 ∩ E2)) + Pr(E1 ∩ E2)

Pr(E1 ∪ E2) = Pr(E1 − (E1 ∩ E2)) + Pr(E2 − (E1 ∩ E2)) + Pr(E1 ∩ E2)

= Pr(E1) − (E1 ∩ E2)) +

Pr(E2) − (E1 ∩ E2)) + Pr(E1 ∩ E2)

= Pr(E1) + Pr(E2) − Pr(E1 ∩ E2)
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1.2 Axioms of Probability

Corollary: For events E1 and E2 we have

Pr(E1 ∪ E2) ≤ Pr(E1) + Pr(E2)

Lemma: For events E1,E2, . . . we have

Pr(
⋃
i≥1

Ei) ≤
∑
i≥1

Pr(Ei)
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1.2 Axioms of Probability

Lemma: For events E1,E2, . . . we have

Pr(
⋃
i≥1

Ei) =
∑
i≥1

Pr(Ei)

−
∑
i<j

Pr(Ei ∩ Ej)

+
∑

i<j<k

Pr(Ei ∩ Ej ∩ Ek)

...

(−1)l+1
∑

i1<i2<...<il

Pr(Ei1 ∩ Ei2 ∩ . . . ∩ Eil)

Proof. Exercise.
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1.2 Axioms of Probability

Def.: Two events E and F are said to be independent iff

Pr(E ∩ F) = Pr(E) · Pr(F)

and events E1, . . . ,Ek are mutually independent iff ∀I ⊆ {1, . . . , k} we have

Pr(
⋂
i∈I

Ei) = Πi∈IPr(Ei).
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1.2 Axioms of Probability

Example: Strengthening algorithm VP with k ≥ 2 runnings
ALGORITHM VPk

1. Execute algorithm VP k times (possibly with repetitions).

2. Return NO if one of the k executions of VP returns NO;

3. otherwise, return YES.

I Let Ei be the event the algorithm choose a root of F(x) − G(x) = 0 in the
i-th execution of VP.

I The events Ei are mutually independent.
I The probability the algorithm fail is:

Pr(E1 ∩ E2 ∩ . . . ∩ Ek) = Π
k
i=1Pr(Ei) ≤ Πk

i=1
d

100d
≤
(

1
100

)k
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1.2 Axioms of Probability

Def.: The conditional probability of event E given that F occurred is given by

Pr(E|F) =
Pr(E ∩ F)

Pr(F)
,

given that Pr(F) > 0.

Proposition: If E and F are events, with Pr(F) > 0, then

Pr(E ∩ F) = Pr(E|F) · Pr(F) = Pr(F|E) · Pr(E).

Proposition: If E and F are independent events, with Pr(F) > 0, then

Pr(E|F) =
Pr(E ∩ F)

Pr(F)
=

Pr(E) · Pr(F)
Pr(F)

= Pr(E).
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1.2 Axioms of Probability

Lemma: If E1, . . . ,Ek are events, then

Pr(E1∩. . .∩Ek) = Pr(E1)·Pr(E2|E1)·Pr(E3|E1∩E2) · · · Pr(Ek|E1∩E2∩. . .∩Ek−1).

Proof.

Pr(E1 ∩ . . . ∩ Ek)

= Pr((E1 ∩ . . . ∩ Ek−1) ∩ Ek)

= Pr(E1 ∩ . . . ∩ Ek−1) · Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1)

= Pr(E1 ∩ . . . ∩ Ek−2) · Pr(Ek−1|E1 ∩ E2 ∩ . . . ∩ Ek−2)

· Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1)

...

= Pr(E1) · Pr(E2|E1) · Pr(E3|E1 ∩ E2) · · · Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1)
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1.2 Axioms of Probability

Example: Consider a modification of algorithm VPk:

ALGORITHM VP2k

1. For i← 1 to k do

2. Choose ri uniformly at random in {1, . . . , 100d} \ {r1, . . . , ri−1}.

3. If F(ri) 6= G(ri) return NO.

4. Return YES.

This algorithm can be implemented to run in O(k · d).

What is the probability that VP2k fails ?
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1.2 Axioms of Probability

I Let Ei be the event of choosing a root of F(x) − G(x) = 0 in the i-th
iteration of VP2.

I The probability the algorithm fail is:

As Pr(Ej|E1 ∩ . . . ∩ Ej − 1) is the probability to choose a root of
F(x) − G(x) = 0 considering we obtained j − 1 roots, j − 1 < d it remains
d − (j − 1) roots. That is,

Pr(Ej|E1 ∩ . . . ∩ Ej−1) ≤
d − (j − 1)

100d − (j − 1)
.

So,

Pr(E1 ∩ . . . ∩ Ek) ≤ Πk
j=1

d − (j − 1)
100d − (j − 1)

≤
(

1
100

)k

.

Note that VP2d+1 is an exact algorithm, but with time Θ(d2).
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1.3 Verifying Matrix Multiplication

VERIFYING MATRIX MULTIPLICATION

Example: Given matrices A, B and C verify if A · B = C.

By simplicity, consider matrices of order n and integers mod 2.

I Trivial Algorithm: Time complexity O(n3)

I Sofisticated Algorithm: Time complexity O(n2.37)

I We will see a randomized algorithm O(n2) that fails with probability ≤ 1
2 .
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1.3 Verifying Matrix Multiplication

Algorithm VMM(A,B,C)

1. Choose r ∈ {0, 1}n

2. If A · (B · r) = C · r return YES.

3. Otherwise, return NO.

Time Complexity: O(n2).
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1.3 Verifying Matrix Multiplication

Theorem: If A · B 6= C then Pr(A · B · r = C · r) ≤ 1
2 .

Proof. Supose that D = A · B − C 6= 0 and D · r = 0 (i.e., A · B · r = C · r).
If D = (dij) 6= 0 there exists ij such that dij 6= 0.

W.L.O.G., let d11 6= 0. As D · r = 0 we have

n∑
j=1

d1jrj = 0

and therefore

r1 =
−
∑n

j=2 d1jrj

d11
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1.3 Verifying Matrix Multiplication

Choosing a random vector r ∈ {0, 1}n is the same to
choose rn, then rn−1, . . ., and then choose r1.
Suppose that rn, . . . , r2 have already been chosen and r1 not.

At this point,
n∑

j=2

d1jrj is determined.

Consider the choose of r1. The probability that

r1 =
−
∑n

j=2 d1jrj

d11

is valid is at most 1
2 . So, Pr(A · B · r = C · r) ≤ 1

2 .

This technique is called Principle of Deferred Decisions: Consider some of
the variables defined and let others open (or deferred).
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1.3 Verifying Matrix Multiplication

Theorem: (Law of Total Probabilities)
Let E1, . . . ,En mutually disjoint events and ∪n

i=1Ei = Ω.
Then,

Pr(B) =
n∑

i=1

Pr(B ∩ Ei) =

n∑
i=1

Pr(B|Ei) · Pr(Ei).
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1.3 Verifying Matrix Multiplication

Example: Applying the law of total probabilities in the example of matrix
multiplication:

Pr(

Event B︷ ︸︸ ︷
ABr=Cr) =

∑
(x2,...,xn)∈{0,1}n−1

Pr
(
(

Event B︷ ︸︸ ︷
ABr=Cr) ∩ (

Event Ei︷ ︸︸ ︷
(r2, . . . , rn)=(x2, . . . , xn))

)
≤
∑

(x2,...,xn)∈{0,1}n−1

Pr((r1=
−
∑n

j=2 d1jrj

d11
∩ ((r2, . . . , rn)=(x2, . . . , xn)))

=
∑

(x2,...,xn)∈{0,1}n−1

Pr(r1=
−
∑n

j=2 d1jrj

d11
) · Pr((r2, . . . , rn)=(x2, . . . , xn))

≤
∑

(x2,...,xn)∈{0,1}n−1

1
2

Pr((r2, . . . , rn)=(x2, . . . , xn)) ≤
1
2

Repeating the algorithm k times, the probability it fails is ≤
(

1
2

)k
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1.3 Verifying Matrix Multiplication

Let us analyse the change as the algorithm returns YES in each execution.

Theorem: (Bayes Law) Given disjoint events E1, . . . ,En such that
∪n

i=1Ei = Ω and event B, we have

Pr(Ej|B) =
Pr(Ej ∩ B)

Pr(B)

=
Pr(Ej ∩ B)∑n
i=1 Pr(B ∩ Ei)

=
Pr(B|Ej)Pr(Ej)∑n
i=1 Pr(B|Ei)Pr(Ei)
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1.3 Verifying Matrix Multiplication

Example: Consider 3 coins, such that 2 are fair and 1 is biased, that show
up head, H, with probability 2

3 and tail, T, with probability 1
3 .

Suppose the coins are given in a random order. Call the coins as 1, 2 e 3.

Suppose we toss the 3 coins and we obtain (1 = H, 2 = H, 3 = T).
What is the probability that coin 1 is biased ?

Let B be the event that the tossing obtain (1 = H, 2 = H, 3 = T).
Let Ei be the event that coin i is biased.

We can calculate Pr(E1|B), as follows:

Pr(E1|B) =
Pr(B|E1) · Pr(E1)∑3
i=1 Pr(B|Ei) · Pr(Ei)

=
2
5
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1.3 Verifying Matrix Multiplication

Now, let’s see how the confidence of the algorithm Verify Matrix
Multiplication increases as the iterations returns YES.

Let E be the event that A · B = C is valid.

If we do not know anything about the identity A · B = C then it is reasonable
to suppose that Pr(E) = Pr(E) = 1

2
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1.3 Verifying Matrix Multiplication

Let E be the event that A · B = C is valid.
Let B be the event that algorithm return YES in the first call (that is,
A · B · r = C · r).
And how would Pr(E|B) be ?
We can calculate Pr(B|E) and Pr(B|E):

Pr(B|E) = 1

Pr(B|E) ≤ 1
2

Pr(E|B) =
Pr(B|E) · Pr(E)

Pr(B|E) · Pr(E) + Pr(B|E) · Pr(E)

≥
1 · 1

2

1 · 1
2 + 1

2 ·
1
2

=
2
3
= 0.66 . . .

We increased the confidence!!
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1.3 Verifying Matrix Multiplication

Suppose we execute VMM again and we obtain YES. What is the new
confidence ?

Updating the probabilities of the events, we have:

Pr(E) ≥ 2
3

Pr(E) ≤ 1
3

Pr(B|E) = 1

Pr(B|E) ≤ 1
2

So,

Pr(E|B) =
Pr(B|E) · Pr(E)

Pr(B|E) · Pr(E) + Pr(B|E) · Pr(E)

≥
1 · 2

3

1 · 2
3 + 1

2 ·
1
3

=
4
5
= 0.8
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1.3 Verifying Matrix Multiplication

Following the same reasoning for i iterations, we have

Pr(E) ≥ 2i

2i + 1

Pr(E) ≤ 1 −
2i

2i + 1
=

1
2i + 1

Pr(B|E) = 1

Pr(B|E) ≤ 1
2

So,

Pr(E|B) ≥
1 · 2i

2i+1

1 · 2i

2i+1 + 1
2 ·

1
2i+1

= 1 −
1

2i + 1

That is (a bit) better than 1 − 1
2i
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1.4 Minimum Cut Problem

MINIMUM CUT PROBLEM

Problem: Given a graph G = (V,E), non-oriented, find ∅ 6= S ⊂ V such that
the number of edges in (S, S) is minimum.
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1.4 Minimum Cut Problem

Def.: Given a graph G = (V,E) and an edge e = {u, v} ∈ E, we define by G|e
the graph obtained from G joining the nodes u and v into only one node and
maintaining parallel edges.

Obs.: Note that a cut in G|e is also a cut in G, with the same cardinality.
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1.4 Minimum Cut Problem

Algorithm RandMinCut(G), G = (V,E)

1. n← |V |.

2. G0 ← G.

3. For i← 1 to n − 2 do

4. choose edge e ∈ Gi−1

5. Gi ← Gi−1|e

6. Let CA be the set of edges in Gn−2.

7. Return CA.

Idea: In each iteration, the chance to choose an edge of the minimum cut is
“small”.
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1.4 Minimum Cut Problem

Execution of the algorithm RandMinCut
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1.4 Minimum Cut Problem

Lemma: Let Cmin be a minimum cut in G and CA the cut obtained by the
algorithm. Then Pr(Cmin = CA) ≥ 2

n(n−1) .

Proof. Let k be the number of edges in Cmin.

Then, |δ(v)| ≥ k for each v ∈ G, where δ(v) is the set of edges incidents to v.

So,

|E| =
∑

v∈V |δ(v)|
2

≥ n · k
2
.
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1.4 Minimum Cut Problem

Let Ei be the event that algorithm do not select e ∈ Cmin in iteration i.

Pr(E1) = 1 −
k
|E|

≥ 1 −
k
kn
2

=
n − 2

n

Pr(E2|E1) ≥ 1 −
k

k(n−1)
2

=
n − 3
n − 1

Pr(E3|E1 ∩ E2) ≥ 1 −
k

k(n−2)
2

=
n − 4
n − 2

...

Pr(En−2|

n−3⋂
i=1

Ei) ≥ 1 −
k

k(n−(n−3))
2

=
1
3
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1.4 Minimum Cut Problem

Pr(
n−2⋂
i=1

Ei) ≥
1
3
· 2

4
· 3

5
· 4

6
· · · n − 4

n − 2
· n − 3

n − 1
· n − 2

n

=
2

n(n − 1)

Let RandMinCutt be the strengthened algorithm that executes RandMinCut t
times and returns the smallest cut.

Proposition: Let CA and Cmin the smallest cut returned by algorithm
RandMinCutn

2
and a minimum cut, respectively. Then,

Pr(Cmin 6= CA) ≤
1
e2 ≈ 0.135.
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1.4 Minimum Cut Problem

Proof. We have

Pr(RandMinCut do not obtain Cmin) ≤ 1 −
2
n2

therefore,

Pr(RandMinCutn2
do not obtain Cmin) ≤ (1 −

2
n2 )

n2

It is valid that (1 + t
m)

m ≤ et, for m ≥ 1 and |t| ≤ m.

Setting t = −2 and m = n2, we have

Pr(RandMinCutn2
do not obtain Cmin) ≤

1
e2 .
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1.4 Minimum Cut Problem

Proposition: Let CA and Cmin the cut obtained by algorithm
RandMinCutn

2 ln(n) and a minimum cut, respectively. Then,

Pr(Cmin = CA) ≥ 1 −
1
n2 .

Proof.

Pr(RandMinCutn2 ln(n) do not obtain Cmin) ≤
(

1
e2

)ln(n)

=
1
n2

So,

Pr(Cmin = CA) ≥ 1 −
1
n2 .

I.e., RandMinCutn
2 ln(n) obtain a minimum cut with high probability.
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2.1 Discrete Variables and Expectation

Def.: A random variable (r.v.) X on a random spaceΩ is a function
X : Ω→ R.

Def.: A r.v. X is said to be discrete if it takes finite or countably infinite
values.

We only consider discrete random variables, and we state when it is not the
case.

Given r.v. X and a real value a, the event “X = a” represents the set
{e ∈ Ω : X(e) = a}.

So,
Pr(X = a) =

∑
e∈Ω: X(e)=a

Pr(e).
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2.1 Discrete Variables and Expectation

Example: Let X be a r.v. that is the sum of two dice.

I X can have 11 possible values: X ∈ {2, 3, . . . , 12}

I There are 36 possibilities for the dice: {(1, 1), (1, 2), (2, 1) . . . , (6, 6)}

Event X = 4 has 3 basic events: {(1, 3), (2, 2), (3, 1)}

Therefore

Pr(X = 4) =
3
36

=
1
12
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2.1 Discrete Variables and Expectation

Def.: Two r.v. X and Y are independent if and only if

Pr( (X = x) ∩ (Y = y) ) = Pr(X = x) · Pr(Y = y) ∀x, y

Def.: The r.v. X1,X2, . . . ,Xk are mutually independent if and only if
∀I ⊆ {1, . . . , k} and all xi, i ∈ I,

Pr(
⋂
i∈I

Xi = xi) = Πi∈IPr(Xi = xi)
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2.1 Discrete Variables and Expectation

Def.: The expectation of a discrete random variable (d.r.v.) X is given by

E[X] =
∑

i

i · Pr(X = i),

where the summation is over all values in the range of X.

Def.: The expectation is finite if E[X] converges; otherwise is said to be
unbounded. In this case, we use the notation E[X] =∞.
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2.1 Discrete Variables and Expectation

Example: Let X be a r.v. that is the sum of two dice.

E[X] = 2
1
36

+ 3 · 2
36

+ · · ·+ 12 · 1
36

= 7

Obs.: In the above sum, we have to know the number of basic events for each
value of X.

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 43 / 296



2.1 Discrete Variables and Expectation

LINEARITY OF EXPECTATION

Theorem: For each finite collection of discrete r.v. X1, . . . ,Xn with finite
expectations

E

[
n∑

i=1

Xi

]
=
∑
i=1

E[Xi]

Obs.: Note that there is no restrictions on the independente of X1, . . . ,Xn.
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2.1 Discrete Variables and Expectation

Proof. We prove that E[X + Y] = E[X] + E[Y] for r.v. X and Y .

E[X + Y] =
∑

i

∑
j

(i + j)Pr( (X = i) ∩ (Y = j) )

=
∑

i

∑
j

i · Pr( (X = i) ∩ (Y = j) ) +

∑
j

∑
i

j · Pr( (X = i) ∩ (Y = j) )

=
∑

i

i ·
∑

j

Pr( (X = i) ∩ (Y = j) ) +

∑
j

j ·
∑

i

Pr( (X = i) ∩ (Y = j) )

=
∑

i

i · Pr(X = i) +
∑

j

j · Pr(Y = j) = E[X] + E[Y]

Exercise: Complete the proof for more r.v. (sug. by induction).
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2.1 Discrete Variables and Expectation

Lemma: Given a r.v. X and constant c, we have E[c · X] = c · E[X].
Proof. The lemma is straighforward for c = 0.

E[c · X] =
∑

i

i · Pr(c · X = i)

=
∑

i

i · Pr(X =
i
c
)

= c ·
∑

i

i
c
· Pr(X =

i
c
)

= c · E[X]
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2.1 Discrete Variables and Expectation

Example: Consider the example of two dice.

Let X1 be the r.v. of the value of the first die.
Let X2 be the r.v. of the value of the second die.
Let X be the r.v. of the sum of the values of the two dice.

Note that X = X1 + X2. So,

E[X] = E[X1 + X2]

= E[X1] + E[X2]

= 2 ·
6∑

i=1

i · 1
6

= 7
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2.1 Discrete Variables and Expectation

JENSEN’S INEQUALITY

Example: Let X be the length of a side of a square chosen uniformly at
random in [1, 99].

What is the expectation of E[X2] of the area of the square ?

It is tempting to thing that is equal to E[X]2 = 2500.

But, the true value is E[X2] = 9950
3 ≈ 3316.6 > 2500.
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2.1 Discrete Variables and Expectation

Lemma: Let X be a r.v., then E[X2] ≥ E[X]2.

Proof. Let Y be a r.v. such that Y = (X − E[X])2.

0 ≤ E[Y] = E[ (X − E[X])2 ]

= E[X2] − 2E[X · E[X]] + E[X]2

= E[X2] − 2E[X]2 + E[X]2

= E[X2] − E[X]2

So,
E[X2] ≥ E[X]2

This is valid for any convex function.
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2.1 Discrete Variables and Expectation

Def.: A function f : R→ R is said to be convex if ∀x1, x2 and 0 ≤ λ ≤ 1 we
have

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2).

Lemma: If f is a twice differentiable function, then f is convex if and only if
f ′′(x) ≥ 0

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 50 / 296



2.1 Discrete Variables and Expectation

Theorem: (Jensen’s Inequality) If f is a convex function, then

E[f (X)] ≥ f (E[X]).

Proof. We suppose that f has Taylor expansion and let µ = E[X]. By Taylor’s
Theorem, there exists c such that

f (X) = f (µ) + f ′(µ) · (X − µ) + f ′′(c) · (X − µ)2

2
≥ f (µ) + f ′(µ) · (X − µ)

Applying the expectation in both sides, we have

E[f (X)] ≥ E[f (µ) + f ′(µ)(X − µ)]

= E[f (µ)] + f ′(µ) · (E[X] − µ)
= f (µ)

= f (E[X])
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2.2 Bernoulli and Binomial Random Variables

BERNOULLI AND BINOMIAL RANDOM VARIABLES

Consider an experiment that has probability of success p and fail of 1 − p.

Let Y be a r.v. such that

Y =

{
1 if the experiment has success
0 otherwise

Then, Y is said to be a Bernoulli r.v. or an indicator r.v.

Lemma: If Y is a Bernoulli r.v. with Pr(Y = 1) = p, then E[Y] = p.
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2.2 Bernoulli and Binomial Random Variables

Consider a sequence of n independent experiments, each one with probability
of success equal to p.

If X is the number of success in the n experiments, we say that X has binomial
distribution.

Def.: A binomial r.v. X with parameters n and p, denoted by B(n, p) is
defined by the following probability distribution with j = 0, 1, . . . , n:

Pr(X = j) =

(
n
j

)
pj(1 − p)n−j

Exercise: Show that
∑n

j=0 Pr(X = j) = 1.
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2.2 Bernoulli and Binomial Random Variables

Lemma: If X is a binomial r.v. B(n, p), then E[X] = n · p.

Proof.

E[X] =

n∑
j=0

j ·
(

n
j

)
pj(1 − p)n−j

... (Exercise)

= n · p

Suggestion: use the fact that (x + y)n =
∑n

k=0

(n
k

)
xk · yn−k.
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2.2 Bernoulli and Binomial Random Variables

Another proof:

Lemma: If X is a binomial r.v. B(n, p), then E[X] = n · p.

Proof. Let Xi be a bernoulli r.v. of the i-th experiment.

Then, X =
∑n

i=1 Xi and therefore

E[X] =

n∑
i=1

E[Xi]

= n · p
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2.3 Conditional Expectation

CONDITIONAL EXPECTATION

Def.:
E[Y |Z = z] =

∑
y

y · Pr(Y = y|Z = z),

where the summation is over all values y that Y can assume.

Example: Consider the example of r.v. X that is the sum of two dice, where
X = X1 + X2.

E[X|X1 = 2] =
∑

x

x · Pr(X = x|X1 = 2) =

8∑
x=3

x · 1
6
=

11
2
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2.3 Conditional Expectation

Example: Consider the example of a r.v. X that is the sum of two dice, where
X = X1 + X2.

E[X1|X = 5] =

4∑
x=1

x · Pr(X1 = x|X = 5)

=

4∑
x=1

x · Pr(X1 = x ∩ X = 5)
Pr(X = 5)

=

4∑
x=1

x · 1/36
4/36

=
5
2
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2.3 Conditional Expectation

Lemma: For any r.v. X and Y,

E[X] =
∑

y

Pr(Y = y)E[X|Y = y],

where the summation is over all possible values of Y and suppose that all
expectations exist.

Proof.∑
y

Pr(Y = y)E[X|Y = y] =
∑

y

Pr(Y = y) ·
∑

x

x · Pr(X = x|Y = y)

=
∑

x

∑
y

x · Pr(X = x|Y = y) · Pr(Y = y)

=
∑

x

x ·
∑

y

Pr(X = x ∩ Y = y)

=
∑

x

x · Pr(X = x) = E[X]
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2.3 Conditional Expectation

The linearity of expectation also extend to conditional expectations.

Lemma: For any finite collection of r.v. X1, . . . ,Xn with finite expectations
and any r.v. Y,

E[
n∑

i=1

Xi|Y = y] =
n∑

i=1

E[Xi|Y = y]

Proof. Exercise.
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2.3 Conditional Expectation

Def.: The expression E[Y |Z] is a r.v. f (Z) with value E[Y |Z = z], when Z = z.

Example: Consider the example of the sum of two dice, with X = X1 + X2.

E[X|X1] =
∑

x

x · Pr(X = x|X1)

=

X1+6∑
x=X1+1

x · 1
6

= X1 +
7
2
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2.3 Conditional Expectation

As E[X|X1] is a r.v., it makes sense to calculate E[E[X|X1]].

Example: In the previous example:

E[E[X|X1]] = E[X1 +
7
2
] =

1
6
(1 + 6)6

2
+

7
2
= 7 = E[X]

Theorem: If Y and Z are r.v. then, E[Y] = E[E[Y |Z]].

Proof. Let E[Y |Z] be a function f (Z) that has value E[Y |Z = z] when Z = z,

E[E[Y |Z]] =
∑

z

E[Y |Z = z] · Pr(Z = z)

= E[Y]
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2.3 Conditional Expectation

Example: Consider the following probabilistic recursive algorithm:

Algorithm R(n, p)

1. Repeat n times

2. with probability p call R(n, p).

Generations of calls of R(n, p)
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2.3 Conditional Expectation

What is the number of recursive calls ?

Let Yi be the total number of generations i.
Suppose that we know the number of calls yi−1 in generation i − 1.
Let Zk, for k = 1, . . . , yi−1, the number of calls given in the k-th call of
generation i − 1.
Each Zk is a binomial r.v.
We show that

E[Yi|Yi−1 = yi−1] = yi−1 · n · p

If yi−1 = 0 the equality is trivially valid.
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2.3 Conditional Expectation

Now we show that E[Yi|Yi−1 = yi−1] = yi−1 · n · p when yi−1 > 0.

E[Yi|Yi−1 = yi−1] = E[
yi−1∑
k=1

Zk|Yi−1 = yi−1]

=

yi−1∑
k=1

E[Zk|Yi−1 = yi−1]

=

yi−1∑
k=1

∑
j≥0

j · Pr(Zk = j|Yi−1 = yi−1)

=

yi−1∑
k=1

∑
j≥0

j · Pr(Zk = j)

=

yi−1∑
k=1

E[Zk] =

yi−1∑
k=1

n · p = yi−1 · n · p
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2.3 Conditional Expectation

So,

E[Yi] = E[E[Yi|Yi−1]]

=
∑

yi−1≥0

E[Yi|Yi−1 = yi−1] · Pr(Yi−1 = yi−1)

=
∑

yi−1≥0

yi−1 · n · p · Pr(Yi−1 = yi−1)

= n · p ·
∑

yi−1≥0

yi−1 · Pr(Yi−1 = yi−1)

= n · p · E[Yi−1]

= (n · p)i
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2.3 Conditional Expectation

and therefore

E[
∑
i≥0

Yi] =
∑
i≥0

E[Yi]

=
∑
i≥0

(n · p)i

=

{ ∞ if n · p ≥ 1
1

1−n·p if n · p < 1

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 66 / 296



2.4 Geometric Distribution

GEOMETRIC DISTRIBUTION

Def.: A r.v. X is said to be geometric with parameter p if has distribution

Pr(X = n) = (1 − p)n−1 · p.

I.e., the probability to toss a coin n − 1 times with tail (or fail) and in the n-th
obtain head (success).
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2.4 Geometric Distribution

Geometric random variables are said to be memoryless.
Lemma:

Pr(X = n + k|X > k) = Pr(X = n).

Proof.

Pr(X = n + k|X > k) =
Pr((X = n + k) ∩ (X > k))

Pr(X > k)

=
Pr(X = n + k)

Pr(X > k)

=
(1 − p)n+k−1 · p∑∞

i=k(1 − p)i · p

=
(1 − p)n+k−1 · p

(1 − p)k

= (1 − p)n−1 · p = Pr(X = n)
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2.4 Geometric Distribution

Lemma: Let X be a d.r.v. that have only non-negative integers. Then

E[X] =
∞∑
i=1

Pr(X ≥ i).

Proof.

∞∑
i=1

Pr(X ≥ i) =

∞∑
i=1

∞∑
j=i

Pr(X = j)

=

∞∑
j=1

j∑
i=1

Pr(X = j)

=

∞∑
j=1

j · Pr(X = j)

= E[X]
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2.4 Geometric Distribution

Corollary: If X is a geometric r.v. with parameter p, then

E[X] =
1
p
.

Proof. Note that if X is a geometric r.v. then

Pr(X ≥ i) =
∞∑
n=i

(1 − p)n−1p = (1 − p)i−1.

Therefore,

E[X] =

∞∑
i=1

Pr(X ≥ i) =

∞∑
i=1

(1 − p)i−1

=
1

1 − (1 − p)
=

1
p
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2.4 Geometric Distribution

Example: In a cereal box, there is one coupon of a total of n different
coupons. How many boxes of cereal we need to by to have at least one
different coupon of each type?

Let X be the number of boxes that you have to buy.

Let Xi be the number of boxes you bought while you have i − 1 different
coupons.

X =

n∑
i=1

Xi
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2.4 Geometric Distribution

If we have i − 1 different coupons, the probability to obtain a new different
coupon is 1 − i−1

n = n−i+1
n .

As Xi is a geometric r.v., we have

E[Xi] =
1
p
=

1
(n − i + 1)/n

=
n

n − i + 1
.

So,

E[X] =

n∑
i=1

E[Xi]

=

n∑
i=1

n
n − i + 1

= n ·
(

1
n
+

1
n − 1

+ · · ·+ 1
1

)
= n · Hn = n ln n +Θ(1)
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2.5 Expected Time of QuickSort

EXPECTED TIME OF QUICKSORT

Aplication: Algorithm QuickSort(S),
where S = (x1, . . . , xn) distinct elements

1. If n = 1 or n = 0 return S.

2. else

3. Choose a pivo x ∈ S uniformly

4. S1 ← (y ∈ S : y < x).

5. S2 ← (y ∈ S : y > x).

6. Sort S1 using QuickSort(S1).

7. Sort S2 using QuickSort(S2).

8. Return (S1‖x‖S2).
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2.5 Expected Time of QuickSort

Theorem: The expected number of comparisons made by QuickSort is
2n ln n + O(n).

Proof. Let (y1 < y2 < . . . < yn) be the sorted elements of S.

For i < j let Xij r.v. that indicate that yi was compared with yj.

So, the number of comparisons X is

X =

n−1∑
i=1

n∑
j=i+1

Xij.
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2.5 Expected Time of QuickSort

We have

E[Xij] = 0 · Pr(yi is not compared to yj) +

1 · Pr(yi is compared to yj)

= Pr(yi ser comparado com yj)

Consider the choice of the pivot and comparison between yi and yj:

y1, y2, . . . , yi−1︸ ︷︷ ︸
postpone

, yi, yi+1, . . . , yj−1︸ ︷︷ ︸
not comp.

, yj, yj+1, . . . , yn︸ ︷︷ ︸
postpone

So,

Pr(yi is compared with yj) =
2

j − i + 1
.
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2.5 Expected Time of QuickSort

So,

E[X] =

n−1∑
i=1

n∑
j=i+1

E[Xij] =

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

=

n∑
k=2

n+1−k∑
i=1

2
k

=

n∑
k=2

(n + 1 − k)
2
k

= 2 · (n + 1) ·
n∑

k=1

1
k
− 2 · (n − 1) − 2 · (n + 1)

= 2 · (n + 1) · Hn − 4n

= 2 · n · ln n +Θ(n)
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2.5 Expected Time of QuickSort

Theorem: Consider the deterministic QuickSort that uses the first element as
pivot. So, the expected number of comparisons for a uniformly chosen input
between all possible permutations is 2n ln n + O(n).

Proof. The proof is basically the same as done for probabilistic QuickSort.
Exercise.
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3.1 Markov Inequality

MOMENTS AND DEVIATIONS

Techniques to bound the tail distribution — probability that a r.v. obtain a
value distant from the expectation.
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3.1 Markov Inequality

MARKOV INEQUALITY

Theorem: Let X be a r.v. that have non-negative values. Then,

Pr(X ≥ a) ≤ E[X]
a

∀a > 0.

Proof. For a > 0, let I r.v.

I =
{

1 if X ≥ a,
0 otherwise,

As X ≥ 0 we have I ≤ X
a and as I is Indicator r.v.,

E[I] = Pr(I = 1) = Pr(X ≥ a)

That is,

Pr(X ≥ a) = E[I] ≤ E[
X
a
] =

E[X]
a
.
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3.1 Markov Inequality

Corollary: Let X be a r.v. that have positive values. Then,

Pr(X ≥ λE[X]) ≤ 1
λ

∀λ > 0.

Proof. Let a = λE[X].

Pr(X ≥ λE[X]) = Pr(X ≥ a) ≤ E[X]
a

=
E[X]
λE[X]

=
1
λ
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3.1 Markov Inequality

Example: Suppose we toss n fair coins and let X be the number of heads.
Use the Markov Inequality to bound the probability to obtain at least 3n

4
heads.

Let Xi =

{
1 if i-th coin is head.,
0 otherwise.

We have X =
∑n

i=1 Xi. We have that E[X] = n
2 . So,

Pr(X ≥ 3n
4
) = Pr(X ≥ 3

2
· n

2
)

= Pr(X ≥ 3
2
· E[X])

≤ 1
3/2

=
2
3
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3.2 Variance and Moments of a Random Variable

VARIANCE AND MOMENTS OF A RANDOM VARIABLE

I Markov Inequality is the best we can do when we know only the
expectation.

I But we can obtain better results if we have more information about the
distribution of the r.v.
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3.2 Variance and Moments of a Random Variable

Def.: The k-th moment of r.v. X is E[Xk].
So, E[X] is the first moment.

Def.: The variance of a r.v. X is defined as:

var[X] = E[(X − E[X])2] = E[X2] − E[X]2

Def.: The Standard Deviation of r.v. X is defined as

σ(X) =
√

var[X].
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3.2 Variance and Moments of a Random Variable

Example:
I If X is constant:

var(X) = E[(X − E[X])2] = 0

and
σ(X) = 0.
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3.2 Variance and Moments of a Random Variable

Example:

I Let X be a r.v. such that X =

{
k · E[X] with probability 1

k
0 with probability 1 − 1

k

Calculate the variance and standard deviation

var(X) = E[(X − E[X])2]

=
1
k
(k · E[X] − E[X])2 + (1 −

1
k
) · (0 − E[X])2

=
(k − 1)2 · E[X]2

k
+

(k − 1)
k

· E[X]2

= (
(k − 1)2 + (k − 1)

k
) · E[X]2

= (k − 1) · E[X]2

and
σ(X) =

√
(k − 1) · E[X]2 =

√
k − 1 · E[X].
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3.2 Variance and Moments of a Random Variable

Def.: The covariance of two variables X and Y is

cov(X,Y) = E[(X − E[X]) · (Y − E[Y])].

Theorem: For r.v. X and Y we have

var[X + Y] = var[X] + var[Y] + 2 · cov(X,Y).

Proof.

var[X+Y] = E[((X+Y)−E[X+Y])2]

= E[((X+Y−E[X]−E[Y])2]

= E[(X−E[X])2+(Y−E[Y])2+2(X−E[X])(Y−E[Y])]

= E[(X−E[X])2]+E[(Y−E[Y])2]+2E[(X−E[X])(Y−E[Y])]

= var(X)+var(Y)+2cov(X,Y)
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3.2 Variance and Moments of a Random Variable

Exercise: Suppose X,Y,W,V,Xi are random variables and a, b, c and d
constants, prove that

I cov(X, a) = 0

I cov(X,X) = var(X)

I cov(X,Y) = cov(Y,X)

I cov(aX, bY) = a b cov(X,Y)

I cov(X + a,Y + b) = cov(X,Y)

I cov(aX + bY, cW + dV) =

a c cov(X,W) + a d cov(X,V) + b c cov(Y,W) + b d cov(Y,V)

I var[
∑n

i=1 Xi] =
∑n

i=1 var(Xi) + 2 ·
∑n

i=1
∑

j>i cov(Xi,Yj).
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3.2 Variance and Moments of a Random Variable

Theorem: If X and Y are independent r.v. then

E[X · Y] = E[X] · E[Y].

Proof.

E[X · Y] =
∑

i

∑
j

(i · j) · Pr(X = i ∩ Y = j)

=
∑

i

∑
j

(i · j) · Pr(X = i) · Pr(Y = j)

=

(∑
i

i · Pr(X = i)

)
·

∑
j

j · Pr(Y = j)


= E[X] · E[Y]
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3.2 Variance and Moments of a Random Variable

Corollary: If X and Y are independent r.v. then

cov(X,Y) = 0

and
var[X + Y] = var[X] + var[Y]

Proof.

cov(X,Y) = E[(X − E[X]) · (Y − E[Y])]

= E[X − E[X]] · E[Y − E[Y]]

= (E[X] − E[X]) · (E[Y] − E[Y])]

= 0
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3.2 Variance and Moments of a Random Variable

Example: If X and Y are non-independent r.v. then the expectation of the
product can be different from the product of expectations.

Suppose that X and Y are coins with value 1 for head and 0 for tail, and
suppose that X and Y are tossed and they show the same value (they are
welded).
I.e.,

E[X] = E[Y] =
1
2

and
E[X · Y] = 1 · 1

2
+ 0 · 1

2
=

1
2
.

So,
E[X · Y] 6= E[X] · E[Y]
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3.2 Variance and Moments of a Random Variable

Example: Variance of a Bernoulli variable.
Let X be a Bernoulli r.v. with parameter p.
Then,

var[X] = E[(X − E[X])2]

= E[(X − p)2]

= (1 − p)2 · p + (0 − p)2 · (1 − p)

= p − p2

= p · (1 − p)
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3.2 Variance and Moments of a Random Variable

Example: Variance of a Binomial variable.

Let X be a Binomial r.v. with parameters n and p.
Then, X can be considered as X =

∑n
i=1 Xi, where Xi is a Bernoulli r.v. with

parameter p.
Note that X1, . . . ,Xn are independent.
So,

var[X] =

n∑
i=1

var[Xi]

=

n∑
i=1

p · (1 − p)

= n · p · (1 − p)
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3.2 Variance and Moments of a Random Variable

The variance of a Binomial r.v. can also be calculated obtaining E[X2].

Example: If X is a Binomial r.v.,

E[X2] =

n∑
j=0

j2
(

n
j

)
pj(1 − p)n−j

... (exercise)

= n(n − 1)p2 + np
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3.3 Chebyshev’s Inequality

CHEBYSHEV’S INEQUALITY

Using the variance, we can obtain a better bound than using only Markov
Inequality.
Theorem: For any a > 0

Pr(|X − E[X]| ≥ a) ≤ var[X]
a2

Proof. Note that

Pr(|X − E[X]| ≥ a) = Pr(|X − E[X]|2 ≥ a2)

From Markov Inequality,

Pr(|X − E[X]| ≥ a) = Pr(|X − E[X]|2 ≥ a2)

≤ E[|X − E[X]|2]
a2

=
var[X]

a2
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3.3 Chebyshev’s Inequality

Corollary: For any t > 0

Pr(|X − E[X]| ≥ t · σ[X]) ≤ 1
t2

and

Pr(|X − E[X]| ≥ t · E[X]) ≤ var[X]
t2 · E[X]2

Proof. We only need to replace a in the previous theorem.
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3.3 Chebyshev’s Inequality

Example: Consider the example of tossing n coins and bound the probability
to obtain at least 3n

4 heads.
Applying the Chebyshev’s Inequality:

Pr(X ≥ 3n
4
) ≤ Pr(|X −

n
2
| ≥ n

4
)

= Pr(|X − E[X]| ≥ n
4
)

≤ var[X]
(n/4)2

=
n · 1

2(1 − 1
2)

(n/4)2

=
4
n

This bound can be improved to 2
n . Why ?

Better than the bound of 2
3 obtained using only Markov Inequality.
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3.3 Chebyshev’s Inequality

Lemma: The variance of a geometric r.v. Y with parameter p is 1−p
p2 .

Proof. As var[Y] = E[Y2] − E[Y]2, we can calculate E[Y2].
Let Y1 be the r.v. of the first toss.

E[Y2] =

1∑
i=0

Pr(Y1 = i) · E[Y2|Y1 = i]

= (1 − p) · E[Y2|Y1 = 0] + p · E[Y2|Y1 = 1]

= (1 − p) · E[(Z + 1)2] + p · 1, where Z is a geom.r.v. with param. p.

= (1 − p) · (E[Z2] + 2 · E[Z] + 1) + p · 1.

Using the fact that a geometric r.v. is memoryless, we have

E[Y2] = (1 − p) · (E[Y2] + 2 · E[Y] + 1) + p
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3.3 Chebyshev’s Inequality

E[Y2] = (1 − p) · (E[Y2] + 2 · E[Y] + 1) + p

I.e.,
(1 − (1 − p))E[Y2] = 2 · (1 − p) · E[Y] + (1 − p) + p

Isolating E[Y2] we have

E[Y2] =
2 − 2 · p

p2 +
p
p2 =

2 − p
p2

Therefore,

var[Y] = E[Y2] − (E[Y])2

=
2 − p

p2 −
1
p2

=
1 − p

p2
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3.3 Chebyshev’s Inequality

Example: Consider the coupon collector problem.

Let X be the number of boxes to obtain the n coupons.
By the Markov Inequality, we have

Pr(X ≥ 2 · n · Hn) ≤
1
2
.

Now, we use the Chebyshev’s Inequality.
Let Xi be the number of boxes bought to obtain the i-th different coupon,
having i − 1 different coupons.
Let X =

∑n
i=1 Xi. Note that Xi is a geometric r.v. with parameter n−(i−1)

n .
The variables Xi are independent. So,

var[X] =
n∑

i=1

var[Xi].
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3.3 Chebyshev’s Inequality

var[X] =

n∑
i=1

var[Xi].

=

n∑
i=1

1 − pi

(pi)2 , where pi =
n − i + 1

n

≤
n∑

i=1

1
(pi)2 =

n∑
i=1

(
n

n − i + 1

)2

= n2 ·
n∑

i=1

1
i2

≤ n2 · π
2

6
, because

∞∑
i=1

1
i2

=
π2

6
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3.3 Chebyshev’s Inequality

Using Chebyshev’s Inequality:

Pr(X ≥ 2 · n · Hn) ≤ Pr(|X − n · Hn| ≥ n · Hn)

≤
n2·π2

6
(n · Hn)2

=
π2

6 · (Hn)2

= Θ(
1

ln2 n
).

Better than the bound 1
2 obtained with Markov Inequality.
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3.3 Chebyshev’s Inequality

Example: It is possible to obtain a better bound than the one obtained with
Chebyshev’s Inequality for the coupon collector problem.

Consider the different coupons as the set {1, 2, . . . , n}.
Let Ei be the event to not obtain the i-th coupon after n ln n + αn boxes. So,
the event E = ∪n

i=1Ei is the event to not obtain some different coupon after
n ln n + αn boxes.

Pr(Ei) =

(
1 −

1
n

)n ln n+αn

=

[(
1 −

1
n

)n]ln n+α

≤ e−(ln n+α)

≤ 1
n · eα
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3.3 Chebyshev’s Inequality

Therefore,

Pr(E) = Pr(∪n
i=1Ei)

≤
n∑

i=1

Pr(Ei)

≤
n∑

i=1

1
n · eα

=
1
eα

Placing α = ln n, we have Pr(E) ≤ 1
n . That is better then the bound obtained

with Chebyshev’s Inequality.
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3.4 Application: Computing the Median

ALGORITHM TO COMPUTE THE MEDIAN

Problem: Given a set S with n elements and total order, find m ∈ S such that
bn/2c elements are smaller than or equal to m and bn/2c+ 1 are larger than
or equal to m.

I Trivial algorithm: Sort and pick the median: O(n lg n).
I There exists a linear time algorithm, but complicated.
I We will se a randomized linear time algorithm that is correct with high

probability.
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3.4 Application: Computing the Median

Idea:
Given set S with n distinct elements, n odd.

1. Find d, u ∈ S such that d ≤ m ≤ u

2. Let C = {s ∈ S : d ≤ s ≤ u}, where |C| = o(n/ lg n).

3. Sort C and return the median m of S.
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3.4 Application: Computing the Median

Algorithm RMedian(S), where |S| = n.
1. Let R be a multi-set with bn3/4c elements of S chosen uniformly at

random, with replacement.

2. Sort R.

3. Let d the ( 1
2 n3/4 −

√
n)-th element of R.

4. Let u the ( 1
2 n3/4 +

√
n)-th element of R.

5. Let C− = {s ∈ S : s < d}
C = {s ∈ S : d ≤ s ≤ u}
C+ = {s ∈ S : s > d}

6. If |C−| > n
2 or |C+| > n

2 then return FAIL.

7. If |C| > 4 · n3/4 then return FAIL.

8. Sort C

9. Return the (b n
2c− |C−|+ 1)-th element of C.
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3.4 Application: Computing the Median

Idea:
Let
Y1 = |{r ∈ R : r ≤ m}| (number of elements in the sample ≤ median)
Y2 = |{r ∈ R : r ≥ m}| (number of elements in the sample ≥ median)

As R has n3/4 elements, we have

E[Y1] ≈ 1
2 n3/4 and E[Y2] ≈ 1

2 n3/4

When we insert a gap of
√

n, we expect that

Pr(Y1 < E[Y1] −
√

n) is small and

Pr(Y2 < E[Y2] −
√

n) is small.
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3.4 Application: Computing the Median

Analysis of the Algorithm: For convenience, we consider that
√

n and n3/4

are integers.

Theorem: The algorithm RMedian has linear time complexity and if it does
not fail, it returns the correct answer.

Proof. Exercise.

Now we show that the probability that the algorithm fail is smaller than 1
n1/4 .
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3.4 Application: Computing the Median

Consider the events E1, E2 and E3 as follows:

E1 = Event
(

Y1 = |{r ∈ R : r ≤ m}| <
1
2

n3/4 −
√

n
)

E2 = Event
(

Y2 = |{r ∈ R : r ≥ m}| <
1
2

n3/4 −
√

n
)

E3 = Event
(
|C| > 4n3/4

)

Lemma: The algorithm RMedian fail if and only if one of the events E1, E2

or E3 occur.

Proof.
I There is a direct correspondence between event E3 and stopping case.

We analyse other cases.
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3.4 Application: Computing the Median

Suppose that RMedian fail because |C−| > n
2 .

In this case, m < d and as d is the (b 1
2 n3/4 −

√
nc)-th element of R we have

Y1 = |{r ∈ R : r ≤ m}|

≤ |{r ∈ R : r < d}|

=

⌊
1
2

n3/4 −
√

n
⌋
− 1

<
1
2

n3/4 −
√

n

So, |C−| > n
2 ⇒ event E1 occur.
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3.4 Application: Computing the Median

And, if event E1 occur then

Y1 = |{r ∈ R : r ≤ m}| <
1
2

n3/4 −
√

n = position of d

This implies that m < d. Therefore, |C−| > n
2 (fail case in E1).

The corresponding proof for event E2 when RMedian fail with |C+| > n
2 is

analogous.
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3.4 Application: Computing the Median

Lemma:
Pr(E1) ≤

1
4 · n1/4 .

Proof. Let Xi be a Bernoulli r.v. such that

Xi =

{
1 if i-th chosen element in C is less than or equal to m
0 otherwise

As, there are n−1
2 + 1 = n+1

2 elements smaller than or equal to m,

Pr(Xi = 1) =
n+1

2
n

=
1
2
+

1
2n
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3.4 Application: Computing the Median

With this, the event E1 is equivalent toY1 =

n3/4∑
i=1

Xi <
1
2

n3/4 −
√

n

 .
Note that Y1 is a Binomial r.v. with parameters n3/4 and 1

2 + 1
2n .

Let us calculate E[Y1] and var[Y1].

E[Y1] =
(

n3/4
)
·
(

1
2
+

1
2n

)
=

1
2

n3/4 +
1

2 · n1/4
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3.4 Application: Computing the Median

var[Y1] =
(

n3/4
)
·
(

1
2
+

1
2n

)
·
(

1 −

(
1
2
+

1
2n

))
= n3/4(

1
2
+

1
2n

)(
1
2
−

1
2n

)

=
1
4

n3/4 −
1

4 · n5/4

<
1
4

n3/4
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3.4 Application: Computing the Median

Applying Chebyshev’s Inequality

Pr(E1) = Pr(Y1 <
1
2

n3/4 −
√

n)

= Pr(
1
2

n3/4 − Y1 >
√

n)

≤ Pr(
(

1
2

n3/4 +
1

2 · n1/4

)
− Y1 >

√
n)

= Pr(E[Y1] − Y1 >
√

n)

≤ Pr(|Y1 − E[Y1]| >
√

n)

≤ var[Y1]

(
√

n)2

=
1
4 n3/4

n
=

1
4 · n1/4
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3.4 Application: Computing the Median

Lemma:
Pr(E3) ≤

1
2 · n1/4 .

Proof. If E3 occur, then |C| > 4 · n3/4.
Then, one of the events occur:

Event E ′3: at least 2 · n3/4 elements of C are larger than m.

Event E ′′3 : at least 2 · n3/4 elements of C are smaller than m.

So,
E3 ⊆ E ′3 ∪ E ′′3

and
Pr(E3) ≤ Pr(E ′3 ∪ E ′′3 ).
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3.4 Application: Computing the Median

We will bound Pr(E ′3).
If there are 2 · n3/4 elements of C larger than m the position of u in S is
≥ n

2 + 2 · n3/4.

I.e.,
|C+| ≤ n − (

n
2
+ 2 · n3/4) =

n
2
− 2 · n3/4.

The n3/4

2 −
√

n large elements from R were taken from C+.
R

n3/4

2 −
√

nn3/4

2 −
√

n 2
√

n
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3.4 Application: Computing the Median

Let X be the number of choices R in C+. Then,

X =

n3/4∑
i=1

Xi, where Xi =


1 if i-th choice is in the

n
2 − 2n3/4 largest elements of S

0 otherwise

As X is a Binomial r.v. with parameters n3/4 and p, where

p =

(
n
2 − 2 · n3/4

n

)
=

1
2
− 2 · n−1/4.

So,

E[X] = n3/4 · p

= n3/4 · (1
2
− 2 · n−1/4)

=
n3/4

2
− 2 ·

√
n,
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3.4 Application: Computing the Median

var[X] = n3/4 · p · (1 − p)

= n3/4 · (1
2
− 2 · n−1/4) · (1

2
+ 2 · n−1/4)

= n3/4(
1
4
− 4 · n−1/2)

<
n3/4

4
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3.4 Application: Computing the Median

Applying Chebyshev’s inequality,

Pr(E ′3) = Pr(X ≥ 1
2

n3/4 −
√

n)

= Pr(X − (
1
2

n3/4 − 2
√

n) ≥
√

n)

≤ Pr(|X − E[X]| ≥
√

n)

≤ var[X]
(
√

n)2

=
n3/4

4 · n
=

1
4 · n1/4

Analogously,

Pr(E ′′3 ) ≤
1

4 · n1/4
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3.4 Application: Computing the Median

So,

Pr(E3) = Pr(E ′3 ∪ E ′′3 ) ≤ Pr(E ′3) + Pr(E ′′3 ) =
1

2 · n1/4

Theorem: The probability the algorithm fail is smaller than 1
n1/4 .

Proof.

Pr(E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + Pr(E3)

≤ n−1/4

4
+

n−1/4

4
+

n−1/4

2

=
1

n1/4
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4.1

CHERNOFF BOUNDS

I Exponentially decreasing bounds
I Derived by using Markov’s Inequality on
I Moment Generating Functions that captures all the moments
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4.1

Def.: A moment generating function (m.g.f.) of a r.v. X is

MX(t) = E[etX].

The function MX(t) captures all moments of X.
Theorem: Let X be a r.v. with m.g.f. MX(t). Under the assumption that
exchanging expectation and differentiation is valid, for all n > 1 we have

E[Xn] = M(n)
X (0),

where M(n)
X (0) is the n-th derivative of MX(t) in t = 0.

Proof. Deriving, we have

M(n)
X (t) = E[Xn · etX].

Calculating at t = 0 we have

M(n)
X (0) = E[Xn].
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4.1

Lemma: Given a geometric r.v. X with parameter p, we have

E[X] =
1
p

e E[X2] =
2 − p

p2 .

Proof. Proof with m.g.f. We first obtain MX(t) and then its derivatives.

MX(t) = E[etX] =

∞∑
k=1

Pr(X = k) · etk

=

∞∑
k=1

(1 − p)k−1 · p · etk

=
p

1 − p

∞∑
k=1

((1 − p) · et)
k

=
p

1 − p
· (1 − p) · et

1 − (1 − p) · et when (1 − p) · et < 1
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4.1

MX(t) =
p

1 − p
· (1 − p) · et

1 − (1 − p) · et

=
p

1 − p
·
(

1
1 − (1 − p)et − 1

)
=

p
1 − p

·
(
(1 − (1 − p)et)−1 − 1

)

Obtaining the first and second derivatives, we have

M(1)
X (t) =

p
1 − p

(−1)(1 − (1 − p)et)−2 · (−(1 − p)et)

= p(1 − (1 − p)et)−2 · et.

and

M(2)
X (t) = 2p(1 − p)(1 − (1 − p)et)−3e2t + p(1 − (1 − p)et)−2et.
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4.1

So,

E[X] = M(1)
X (0)

= p(1 − (1 − p)e0)−2 · e0

= p(1 − 1 − p)−2

=
1
p

and

E[X2] = M(2)
X (0)

= 2p(1 − p)(1 − (1 − p)e0)−3e0 + p(1 − (1 − p)e0)−2 · e0

=
2 − p

p2
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4.1

Theorem: If X and Y are r.v. such that MX(t) = MY(t), for any t ∈ (−δ, δ)

and some δ > 0, then X and Y has the same distribution.

Proof outside of the scope of the course.

Theorem: If X and Y are independent r.v. then

MX+Y(t) = MX(t) ·MY(t).

Proof.
MX+Y(t) = E[et(X+Y)]

= E[etX · etY ]

= E[etX] · E[etY ]

= MX(t) ·MY(t)

Generalization for sum of several independent r.v. is straightforward.
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4.1

DERIVING CHERNOFF BOUNDS

Theorem: If X is a r.v. and t > 0, then

Pr(X ≥ a) ≤ min
t>0

E[etX]

eta .

Proof.

Pr(X ≥ a) = Pr(tX ≥ ta)

= Pr(etX ≥ eta)

≤ E[etX]

eta applying Markov Inequality

As the above inequality is valid for any t > 0, we have

Pr(X ≥ a) ≤ min
t>0

E[etX]

eta .
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4.2

DERIVING CHERNOFF BOUNDS

Theorem: If X is a r.v. and t < 0, then

Pr(X ≤ a) ≤ min
t<0

E[etX]

eta .

Proof. Let X be a r.v. and t < 0

Pr(X ≤ a) = Pr(tX ≥ ta)

= Pr(etX ≥ eta)

≤ E[etX]

eta applying Markov

As the above inequality is valid for any t < 0, we have

Pr(X ≤ a) ≤ min
t<0

E[etX]

eta .

Bounds obtained from this approach are called Chernoff Bounds.
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4.2

CHERNOFF BOUNDS FOR SUM OF POISSON TRIALS

Def.: Poisson Trials: Sequence of independent binary r.v.
non-necessarily with the same probability.

Let X1, . . . ,Xn be a sequence of poisson trials, with Pr(Xi = 1) = pi.

Let X =
∑n

i=1 Xi.

We use Chernoff Bounds to calculate the probability of X to deviate by more
than (1± δ)E[X].

Note that

µ = E[X] =
n∑

i=1

E[Xi] =

n∑
i=1

pi.
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4.2

Fact: For the binary r.v. Xi, we have

MXi(t) ≤ epi(et−1).

Proof.

MXi = E[etXi ]

= pi · et + (1 − pi) · e0

= 1 + pi(et − 1)

≤ epi(et−1).

The last inequality is valid because 1 + y ≤ ey for any y.
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4.2

Fact: For the r.v. X, it is valid that

MX(t) ≤ e(e
t−1)µ

Proof.

MX(t) = MX1+···+Xn(t)

= Πn
i=1MXi(t)

≤ Πn
i=1epi(et−1)

= e
∑n

i=1 pi(et−1)

= e(e
t−1)µ
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4.2

Theorem: Let X1, . . . ,Xn be a sequence of poisson trials such that
Pr(Xi = 1) = pi. If X =

∑n
i=1 Xi, then,

a) For any δ > 0: Pr(X ≥ (1 + δ)µ) <

[
eδ

(1 + δ)(1+δ)

]µ
.

b) For any 0 < δ ≤ 1: Pr(X ≥ (1 + δ)µ) ≤ e−
µδ2

3 .

c) For any R ≥ 6µ: Pr(X ≥ R) ≤ 1
2R .
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4.2

Proof. The item a) is stronger. The items b) and c) derive from a).

a) For any δ > 0: Pr(X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)(1+δ)

)µ
.

Applying Markov Inequality for t > 0:

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ)

≤ E[etX]

et(1+δ)µ =
MX(t)

et(1+δ)µ

≤ e(e
t−1)µ

et(1+δ)µ (∗)

For δ > 0 and using t = ln(1 + δ) > 0 in (∗) we have

Pr(X ≥ (1 + δ)µ) ≤ e(e
ln(1+δ)−1)µ

eln(1+δ)(1+δ)µ =

(
eδ

(1 + δ)(1+δ)

)µ
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4.2

Proof of b). For 0 < δ ≤ 1 we will prove that

eδ

(1 + δ)(1+δ)
≤ e

−δ2
3

Applying ln(·) in both sides, the above inequality is equivalent to

f (δ) = δ− (1 + δ) ln(1 + δ) +
δ2

3
≤ 0

Deriving f (δ) we have

f ′(δ) = 1 −

[
1 · ln(1 + δ) + (1 + δ) · 1

1 + δ
· 1
]
+

2δ
3

= − ln(1 + δ) +
2δ
3
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4.2

So, f ′(δ) = − ln(1 + δ) +
2δ
3

Deriving again, we obtain

f ′′(δ) = −
1

1 + δ
+

2
3

Note that f ′′(δ) < 0 for δ ∈ [0, 1
2 ] and f ′′(δ) > 0 for δ ∈ [ 1

2 , 1].

I.e., f ′(δ) decrease from 0→ 1
2 and increase from 1

2 → 1.

As f ′(0) = 0 e f ′(1) = − ln(2) + 2
3 < 0, then f ′(δ) < 0 for any 0 < δ ≤ 1

and so, f (δ) is decreasing in this interval.

As f (0) = 0, we finish the proof of b).
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4.2

Proof of c). Let R = (1 + δ)µ. Isolating δ, we have δ = R
µ − 1.

For R ≥ 6µ we have

δ =
R
µ
− 1 ≥ 6µ

µ
− 1 = 5

So,

Pr(X ≥ R) = Pr(X ≥ (1 + δ)µ)

≤
(

eδ

(1 + δ)(1+δ)

)µ
≤

(
e1+δ

(1 + δ)(1+δ)

)µ
≤

(
e

1 + δ

)(1+δ)µ

≤
(

3
1 + 5

)R

=
1
2R
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4.2

Theorem: Let X1, . . . ,Xn be a sequence of poisson trials such that
Pr(Xi = 1) = pi. If X =

∑n
i=1 Xi and U ≥ µ, then ,

a) For any δ > 0: Pr(X ≥ (1 + δ)U) <

[
eδ

(1 + δ)(1+δ)

]U

.

b) For any 0 < δ ≤ 1: Pr(X ≥ (1 + δ)U) ≤ e−
Uδ2

3 .

Proof. Exercise (follows from the previous theorem with U in the place of µ).
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4.2

Theorem: Let X1, . . . ,Xn be a sequence of poisson trials such that
Pr(Xi = 1) = pi. If X =

∑n
i=1 Xi, then for 0 < δ < 1 we have

a) Pr(X ≤ (1 − δ)µ) ≤
(

e−δ

(1 − δ)(1−δ)

)µ
.

b) Pr(X ≤ (1 − δ)µ) ≤ e−
µδ2

2 .

Proof. The proof is analogous (exercise).
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4.2

Corollary: Let X1, . . . ,Xn be a sequence of r.v. of poisson trials such that
Pr(Xi = 1) = pi and X =

∑n
i=1 Xi. If 0 < δ < 1 then,

Pr(|X − µ| ≥ δµ) ≤ 2
eµδ2/3

Proof.

Pr(|X − µ| ≥ δµ) ≤ Pr((X − µ) ≥ δµ) + Pr((µ− X) ≥ δµ)
= Pr(X ≥ (1 + δ)µ) + Pr(X ≤ (1 − δ)µ)

≤ e−
δ2µ

3 + e−
δ2µ

2

≤ 2e−
δ2µ

3
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4.2

Example: Let X be the number of heads in a sequence of n fair coin flips.
Applying the previous corollary, we have

Pr(|X − E[X]| ≥ 1
2

√
6n ln n) = Pr(|X − E[X]| ≥

√
6n ln n

n
· n

2
)

≤ 2 · e−
n
2 ·
(√

6n ln n
n

)2/
3

= 2 · e−
n
2 ·

6n ln n
n2

/
3

= 2 · e− ln n

=
2
n
.

Note that
√

6n ln n is assintotically smaller than n.

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 141 / 296



4.2

Let us compare the corollary with one obtained with Chebyshev Inequality.

Pr(|X − E[X]| ≥ n
4
) ≤ var[X]

(n/4)2

=
n · 1

2 · (1 − 1
2)

n2/16

=
16
4n

=
4
n

From Chernoff, we have

Pr(|X − E[X]| ≥ n
4
) ≤ 2 · e−

n
2 ·(

1
2)

2
/

3

=
2

en/24

I.e., the bound obtained using Chernoff is asymptotically better.
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4.2

APPLICATION: ESTIMATING A PARAMETER

Consider a gene mutation that occurs in the population with probability p.

But we only know p if we analyse all the population and unfortunately the test
to verify the mutation is expensive...

So, we can choose randomly (only) n individuals to do the exam and obtain an
estimation p̃ of p.

We would like to know

Pr(p ∈ [p̃ − δ, p̃ + δ]) ≥ 1 − γ, for small values of δ and γ.
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4.2

Let X = n · p̃ be the number of mutations found in n experiments. We can
calculate the probability that p stay outside the interval [p̃ − δ, p̃ + δ]:

Pr(p /∈ [p̃ − δ, p̃ + δ]) ≤ Pr(p < p̃ − δ) + Pr(p > p̃ + δ).

Pr(p < p̃ − δ) = Pr(p̃ > p + δ)

= Pr(np̃ > n(p + δ))

= Pr(np̃ > (1 +
δ

p
)np)

= Pr(X > (1 +
δ

p
)E[X])

≤ e−np(δ/p)2
/

2

= e−
nδ2
2p
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4.2

Pr(p > p̃ + δ) = Pr(p̃ < p − δ)

= Pr(np̃ < n(p − δ))

= Pr(np̃ < (1 −
δ

p
)np)

= Pr(X < (1 −
δ

p
)E[X])

≤ e−np(δ/p)2
/

3

= e−
nδ2
3p
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4.2

Therefore

Pr(p /∈ [p̃ − δ, p̃ + δ]) ≤ Pr(p < p̃ − δ) + Pr(p > p̃ + δ)

≤ e−
nδ2
2p + e−

nδ2
3p

For example, using the fact that p ≤ 1,
n = 13000 and δ = 2% we have

Pr(p /∈ [p̃ − δ, p̃ + δ]) ≤ 2.32%.

and for n = 1000 and δ = 10% we have

Pr(p /∈ [p̃ − δ, p̃ + δ]) ≤ 4.25%.
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4.3

BETTER BOUNDS FOR SOME SPECIAL CASES

Theorem: Let r.v. X = X1 + · · ·+ Xn such that Xi’s assume value 1 or −1,
with probability 1

2 , independently. Then

Pr(X ≥ a) ≤ e
−a2
2n , for any a > 0.

Proof.
Note that E[X] = 0 and therefore Chernoff give us a bound of 1.

For any t > 0,

E[etXi ] =
1
2

et +
1
2

e−t.

The Taylor expansion of ex is

ex = 1 + x +
x2

2!
+ · · ·+ xi

i!
+ · · ·

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 147 / 296



4.3

E[etXi ] =
1
2

et +
1
2

e−t

=
1
2

∑
i≥0

(
ti

i!
+

(−t)i

i!

)
=
∑
i≥0

t2i

(2i)!

=
∑
i≥0

t2i

2i · (2i − 1) · (2i − 2) · . . . · (i + 1) · i!

≤
∑
i≥0

t2i

2 · 2 · . . . · 2︸ ︷︷ ︸
i times

·i!

=
∑
i≥0

(t2/2)i

i!

= et2/2
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4.3

Using this bound, we have

E[etX] = E[et(X1+···+Xn)]

= Πn
i=1E[etXi ]

≤ (et2/2)n

= et2n/2

So,

Pr(X ≥ a) = Pr(etX ≥ eta)

≤ E[etX]

eta

≤ e
t2n
2

eta

= e
t2n
2 −ta
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4.3

Setting t = a
n we have

Pr(X ≥ a) ≤ e
t2n
2 −ta

= e
a2

n2
n
2−

a
n a

= e
−a2
2n
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4.3

By symmetry, we can also prove that
Theorem: Let r.v. X = X1 + · · ·+ Xn such that each Xi assume value 1 or
−1, with probability 1

2 , independently. Then

Pr(X ≤ −a) ≤ e
−a2
2n , for any a > 0.

Corollary: Let r.v. X = X1 + · · ·+ Xn such that each Xi assume value 1 or
−1, with probability 1

2 , independently. Then

Pr(|X| ≥ a) ≤ 2e
−a2
2n , for any a > 0.
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4.3

Corollary: Let r.v. Y = Y1 + · · ·+ Yn be a sum of independent r.v.
such that each Yi assume value 0 or 1, with probability 1

2 . Then

1) For any a > 0 we have Pr(Y ≥ µ+ a) ≤ e
−2a2

n .
2) For any δ > 0 we have Pr(Y ≥ (1 + δ)µ) ≤ e−δ

2µ.

Proof. Proof of item 1).

Let Xi be such that Yi =
Xi+1

2 and X =
∑n

i=1 Xi (i.e. Xi ∈ {−1, 1}).

So, Y =

n∑
i=1

Yi =
1
2

n∑
i=1

Xi +
n
2
=

X
2
+ µ

Therefore

Pr(Y ≥ µ+ a) = Pr(
X
2
+ µ ≥ µ+ a)

= Pr(X ≥ 2a)

≤ e
−4a2

2n
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4.3

Proof of item 2)

2) For any δ > 0 we have Pr(Y ≥ (1 + δ)µ) ≤ e−δ
2µ.

This follows from setting a = δµ = δ n
2 in the bound of item 1).

That is,

Pr(Y ≥ (1 + δ)µ) = Pr(
X
2
+ µ ≥ (1 + δ)µ)

= Pr(X ≥ 2δµ)

≤ e
−(2δµ)2

2n

= e
−4δ2µ n

2
2n

= e−δ
2µ
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4.3

Corollary: Let Y1, . . . ,Yn independent r.v. with
Pr(Yi = 0) = Pr(Yi = 1) = 1

2 , Y =
∑n

i=1 Yi and µ = E[Y] = n
2 . Then

1) For any 0 < a < µ we have Pr(Y ≤ µ− a) ≤ e
−2a2

n .
2) For any 0 < δ < 1 we have Pr(Y ≤ (1 − δ)µ) ≤ e−δ

2µ.

Proof. Exercise (similar to the previous corollary).
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4.4

APPLICATION: SET BALANCING

Given a matrix A with inputs in {0, 1} find vector b such that bi ∈ {−1, 1}
c1

c2
...

cn

←−


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 ·


b1

b2
...

bm


and ‖A · b‖∞ = max

i=1,...,m
|ci| is minimized.

Application: Consider a matrix A where the lines are features and the columns
are individuals. Each element represents the presence or absence of the
feature in the individual. The vector b divides the set of individuals in two
balanced parts, considering each feature.
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4.4

Theorem: For any n, there exists matrix A ∈ Rn×n of the Set Balancing
problem such that ‖A · b‖∞ isΩ(

√
n).

Algorithm: SetBalancing(A),

1. For i← 1 to n do

2. Let bi ∈ {−1, 1} be chosen with probability 1
2 .

3. Return b

Theorem: If b is obtained by algorithm SetBalancing then

Pr(‖A · b‖∞ ≥ √4m ln n) ≤ 2
n
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4.4

Theorem: If b is obtained by algorithm SetBalancing then

Pr(‖A · b‖∞ ≥ √4m ln n) ≤ 2
n

Proof.
Let Ai∗ the i-th line of A, ci ← Ai∗ · b and k the number of 1’s in Ai∗.

If k ≤
√

4m ln n then |ci| ≤
√

4m ln n.

If k >
√

4m ln n then the k non-null terms in the sum ci ←∑m
i=1 Aijbj are like

independent variables with probability 1
2 to have value −1 or 1.
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4.4

By Chernoff, we have

Pr(|ci| >
√

4m ln n) ≤ 2e−
(
√

4m ln n)2

2k

= 2
(
eln n)−4m/2k

= 2n−2m/k

≤ 2
n2 . because m ≥ k

By the union bound, the probability that exists i such that |ci| >
√

4m ln n is

Pr(exists i s.t. |ci| >
√

4m ln n)) ≤ n · 2
n2 =

2
n
.
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4.5

APPLICATION: PACKET ROUTING IN SPARSE NETWORKS

Communication problem in Parallel Computing:
I Each node (or processor) is a routing switch.
I An edge is a communication channel.
I We consider a synchronous model in which:

I Each edge can transmit at most one packet in one unit of time.
I A packet can traverse no more than one edge per unit of time.

I Each node has a destination package to some other node.

Based in the Motwani and Raghavan book.
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4.5

I A route is a sequence of edges a packet traverse to go from an origin to
its destination.

I A packet can wait in a node until an edge become free. Each node has a
buffer/queue to store packets waiting to be transmitted.

I A routing algorithm have to specify a queuing policy to solve conflicts
between packets that want to follow to the same edge from a node.

I In one step, several packets can traverse distinct edges in parallel.
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4.5

Def.: A routing algorithm is said to be oblivious if the packet routing
consider only its origin and destination nodes and the network topology (but
not the other packets).

Theorem: For any deterministic oblivious algorithm in a networks of N
nodes, each node with output degree d, there is a routing distance that require
Ω(
√

N/d) steps.
Proof. Not in the scope of the course.

We will see a probabilistic algorithm for the hypercube that transmit packets
in O(log2 N) steps, with high probability.

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 161 / 296



4.5

We consider that:
I A (sparse) hypercube network with N = 2n nodes has O(N log2 N)

edges.
I The nodes cannot compare the origins and destinations of the packets in

the queue.
I The set of N nodes is given by N = {i : 0 ≤ i ≤ N − 1}.
I Permutation routing: Each node is the origin of exactly one packet and

the destination of exactly one packet.

Def.: Given x ∈ N , denote by x the binary representation of x using exactly n
bits.

Def.: A n-dimensional hypercube is a network with N = 2n nodes, and two
nodes are connected by an edge {x, y} if and only if x and y differ by exactly
one bit.
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4.5

HYPERCUBE

Example of hypercubes:

0

1

10

1101

00

111101

011001

100 110

010000

n=1 n=2 n=3

n=4

10101000

1100 1110

10111001

1111110101110101

0001

0100 0110

00100000

0011
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4.5

Packet route, given origin and destination in the hypercube:

Algorithm: BitFixing(a, b)
where a and b are the origin and destination nodes.

1. Consider a = (a1, . . . , an) and b = (b1, . . . , bn).

2. For i← 1 to n do

3. If ai 6= bi traverse the edge

4. (b1, . . . , bi−1, ai, ai+1 . . . , an)→ (b1, . . . , bi−1, bi, ai+1, . . . , an)

Proposition: The BitFixing algorithm can takeΩ(
√

N) steps.
Proof. Exercise 4.21.
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4.5

Probabilistic algorithm:
Algorithm: TwoPhaseBitFixing(a, b)
where a and b are the origin and destination nodes.

1. Let r be a randomly chosen node in N
2. Phase 1: Execute BitFixing(a, r)

3. Phase 2: Execute BitFixing(r, b)

Theorem: With probability 1 − 1
N , TwoPhaseBitFixing do O(log2 N) steps.

We analyse Phase 1. The analysis of Phase 2 is analogous.
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4.5

Given origen node i, denote by
I ri the random destination node in Phase 1
I ρi the route generated from i to ri

I i (same name of the origin node) the packet that goes from i to ri

I di the number of delays of packet i
I |ρi| the number of edges in ρi

Fact: The number of time steps needed by packet i in Phase 1 is |ρi|+ di.
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4.5

Fact: Two routes intersects in at most one node.
Proof. Note that bits are corrected from the left to the right. So, when two
routes separate, the separation bit will not be changed again and the routes
will never intersect again.

Lemma: Consider route ρi = (e1, . . . , ek) from i to ri. Let S be the set of
packets, including i, that use at least one edge of ρi. Then, di ≤ |S|.
Proof. Exercise.
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4.5

Let

Hij =

{
1 if ρi and ρj intersect in at least one edge
0 otherwise.

Let H =
∑N

j=1 Hij. Then

di ≤
N∑

j=1

Hij = H for any i ∈ N

Fact: Given i ∈ N , the r.v.’s Hij are Poisson Trials (independent binary r.v.).

Fact: The size of any route ρi is at most n and E[|ρi|] =
n
2 .
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4.5

Lemma: For any i ∈ N we have

E

 N∑
j=1

Hij

 ≤ n.

Proof. Compute Pr(Hij = 1) is hard. We use another bound.
Let T(e) (or Te) the number of routes that traverse edge e and let
ρi = (e1, . . . , ek).

Note that
N∑

j=1

Hij ≤
k∑

l=1

T(el)

and therefore

E

 N∑
j=1

Hij

 ≤ E

[
k∑

l=1

T(el)

]
=

k∑
l=1

E [T(el)]
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4.5

Fact: If e and f are any two edges, then

E[T(e)] = E[T(f )].

Proof. Exercise (follows from symmetry).

Fact: If e is an edge, then E[Te] ≤ 1.
Proof. As E[|ρi|] =

n
2 , we have

E

∑
edge f

Tf

 = E

[
N∑

i=1

|ρi|

]
≤ N · n

2
.

As we have N · n
2 edges in the hypercube, and E[Te] = E[Tf ] for edges e and f ,

then
E[Te] ≤ 1 for any edge e
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4.5

To complete the proof of the lemma (that E
[∑N

j=1 Hij

]
≤ n), we have

E

 N∑
j=1

Hij

 ≤ k∑
l=1

E [T(el)] ≤ k ≤ n

Fact: If H =
∑N

j=1 Hij then

Pr(H ≥ 6n) ≤ 1
26n .

Proof. From the previous lemma, we have that

E [H] ≤ n.

As H is the sum of a sequence of Poisson Trials, we can use Chernoff bound:

Pr(H ≥ 6n) ≤ 1
26n because 6n ≥ 6 E[H]
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4.5

Lemma: The probability that there exists route i ∈ N such that
|ρi|+ di > 7n is at most 1

25n .
Proof. Given node i, we know that

I |ρi| ≤ n
I di ≤ H, onde H =

∑N
j=1 Hij

And therefore

Pr(|ρi|+ di > 7n) ≤ Pr(di > 6n)

≤ Pr(H > 6n)

≤ 1
26n

So, the probability that there exists i such that |ρi|+ di > 7n is (bounded by
the probability of sum) is at most

N · 1
26n = 2n 1

26n =
1

25n .
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4.5

So, we conclude that
Lemma: The probability that there exists i ∈ N such that packet i uses more
than 7n steps to go from i to ri in Phase 1 is at most 1

25n .

We suppose that the algorithm wait the Phase 1 finish for all packets, before to
start Phase 2.

We can prove similar result for Phase 2.

Lemma: The probability that there exist i ∈ N such that packet i uses more
than 7n steps to go from ri to its destination in Phase 2 is at most 1

25n .
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4.5

Theorem: The probability that there exists i ∈ N such that packet i use more
than 14 log N steps is at most 1

N .
Proof. The probability that there exists a packet i that uses more than 7n steps
in Phase 1 or Phase 2 is at most

2
1

25n ≤
1

24n =
1

N4 ≤
1
N
.

See also the packet routing in the ButterFly topology, in the book of Upfal and
Mitzenmacher.
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BALLS, BINS AND RANDOM GRAPHS

In several problems we have situations like balls randomly thrown into bins.

Some questions:
I How many of the bins are empty ?
I How many bins have at least two balls ?
I How many balls are in the fullest bin ?
I etc.
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5.1

EXAMPLE: THE BIRTHDAY PARADOX

Let E30 the event that two people in 30 share the same birthday.

What is Pr(E30) ?

Let us consider that
I It is not a leap year
I We ignore the possibility of twins
I A person’s birthday is equally likely to be any day of the year
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5.1

Let us calculate Pr(E30).

Pr(E30) =

(
1 −

1
365

)
·
(

1 −
2

365

)
· . . . ·

(
1 −

29
365

)
= 0.2937

So, Pr(E30) ≈ 70.63%.

Doing the same calculation for 22 people, we have
Pr(E22) ≈ 47.57%

I.e., the probability that 22 people born in distinct days of the same year is
approximately 52.43%.
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5.1

GENERALIZING FOR m PEOPLE (BALLS) AND n DAYS

(BINS)

Consider that m is small, compared to n.

Let E be the event that m balls are thrown randomly in distinct bins

Using the fact that e−j/n = 1 − (j/n) + (j/n)2

2! − (j/n)3

3! + · · · we can
approximate Pr(E) as

Pr(E) = Πm−1
j=1

(
1 −

j
n

)
≈ Πm−1

j=1 e−j/n

= exp

−

m−1∑
j=1

j
n


= e

m(m−1)
2n ≈ e

−m2
2n
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5.1

Fact: Consider m balls are thrown into n bins, with m small compared to n.
To have probability p that m balls fall in distinct bins, we must have
m ≈

√
−2n ln p.

Example: In the Birthday Paradox, to have probability 0.5 that all people
born in distinct days, we need to approximately have

m =
√
−2 · 365 ln(0.5) = 22.49 people.

That is consistent with the previous probability obtained for 22 people.

Corollary: If m =
√

2n ln n the probability that all m balls are thrown in
distinct bins is approximately 1

n (small probability).
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5.1

Example: We will do another analysis to bound m and have probability at
least 0.5 that all birthdays are distinct.
Let Ei the event that the i-th person do not match the same birthday with the
previous i − 1 people.

Pr(have two birthdays in k people) = Pr(E1 ∪ E2 ∪ . . . ∪ Ek)

≤
k∑

i=1

Pr(Ei)

≤
k∑

i=1

i − 1
n

)

=
k(k − 1)

2n

I.e., If k <
√

n then Pr(have two birthdays) < 0.5.
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5.1

Suppose we have d
√

ne distinct birthdays. The probability that each person
match its birthday with one of the previous is ≥

√
n

n = 1√
n .

So,

Pr(next d
√

ne do not match birthdays) ≤
(

1 −
1√
n

)d√ne

≤ 1
e

Fact: If we have m = (ln(n) + 1)d
√

ne the probability that all birthdays are
distinct (all balls are thrown into distinct bins) is ≤ (1/e)ln n = 1

n (i.e., with
small probability)
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5.2

BALLS INTO BINS

Now we bound (with high probability) the maximum number of balls in a bin

Lemma: When n balls are thrown uniformly at random into n bins, the
probability that there exists a bin with at least M balls (M ≤ n) is at most
n ·
( e

M

)M.
Proof.

Pr(Bin i receives ≥ M balls) ≤
(

n
M

)(
1
n

)M

=
n · (n − 1) · . . . · (n − M + 1)

M!
· 1

nM

≤ 1
M!
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5.2

Using the inequality
kk

k!
<

∞∑
i=0

ki

i!
= ek

we have that
1
k!
<

ek

kk . So,

Pr(Bin i receives ≥ M balls) ≤ 1
M!

<
( e

M

)M

Using the union bound, we have

Pr(there exists a bin with ≥ M balls) ≤
n∑

i=1

Pr(bin i receives ≥ M balls)

< n ·
( e

M

)M
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5.2

Lemma: When n balls are thrown uniformly at random into n bins, the
probability that there exists bin with at least 3 ln n/ ln ln n balls is at most 1

n .
Proof. If M ≥ 3 ln n/ ln ln n, the probability to have a bin with at least M balls
is bounded by

n ·
( e

M

)M
≤ n

(
e ln ln n
3 ln n

)3 ln n/ ln ln n

≤ n
(

ln ln n
ln n

)3 ln n/ ln ln n

= eln n · (eln ln ln n−ln ln n)3 ln n/ ln ln n

= e−2 ln n+3(ln n)(ln ln ln n)/ ln ln n

≤ 1
n

(for sufficiently large n)
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5.2

APPLICATION: BUCKETSORT

Algorithm: BucketSort(S)
where S has n = 2m integers in {0, . . . , 2k − 1}, with k ≥ m

1. Consider all integers in S represented with k bits

2. For each t ∈ {0, . . . , 2m − 1} do B[t]← ∅
3. For each x ∈ S do

4. Let x the integer obtained with the m more significant bits of de x

5. Put x in the bucket B[x]

6. For each t ∈ {0, . . . , 2m − 1} sort B[t] with InsertionSort

7. Return (B[0] ‖B[1] ‖ . . . ‖B[2m − 1])

Lemma: The BucketSort algorithm sort S correctly.
Proof. Exercise.
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5.2

Lemma: If S contains n = 2m integers uniformly distributed in
{0, . . . , 2k − 1}, with k ≥ m, then the expected time of algorithm BucketSort is
O(n).
Proof. Clearly, all steps, with the exception the sorting step (step 6) can be
performed in time O(n).

Let Xj the number of elements in bucket B[j]. Each bucket B[j] is sorted in at
most c · (Xj)

2 (time of InsertionSort).

E

2m−1∑
j=0

c · (Xj)
2

 = c · n · E[(X1)
2]

(as Xj is a binomial r.v. B(n, p = 1
n))

= c · n · (n · (n − 1) · p2 + n · p)

= c · n ·
(

n · (n − 1)
n2 + 1

)
< 2 · c · n
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5.3

THE POISSON DISTRIBUTION

Lemma: If m balls are thrown into n bins, then the number of expected
empty bins is ≈ n · e−m/n.

Proof. Let Vi the event that bin i is empty.
For a bin i, we have

Pr(Vi) =

(
1 −

1
n

)m

=

[(
1 −

1
n

)n]m
n

≈ (e−1)m/n

Let Xi a binary r.v. with value 1 if and only if Vi happens.

Let X =

n∑
i=1

Xi. Then E[X] =
n∑

i=1

E[Xi] = n · e−m/n
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5.3

Lemma: Consider m balls randomly thrown into n bins. The number of bins
with exactly r balls is approximately n e−m/n(m/n)r

r! , when r is small compared to
m and n.
Proof.
Let Er the event that bin j has exactly r balls.

Pr(Er) =

(
m
r

)
·
(

1
n

)r

·
(

1 −
1
n

)m−r

=
1
r!
· m · (m − 1) · . . . · (m − r + 1)

nr ·
(

1 −
1
n

)m−r

(when r is small compared to m and n)

≈ 1
r!
· mr

nr ·
(

1 −
1
n

)m

≈ e−m/n(m/n)r

r!
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5.3

Let Xj a binary r.v. with value 1 if and only if bin j has exactly r balls.

Let X =
∑n

j=1 Xj. Then

E[X] =

n∑
i=1

E[Xj]

=

n∑
i=1

Pr(Er)

≈ n
e−m/n(m/n)r

r!
.

Note that the number of expected balls in a bin is µ = m/n.
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5.3

The probability Pr(Er) leads to the following distribution:

Def.: A discrete Poisson r.v. with parameter µ is given by

Pr(X = j) =
e−µ · µj

j!
.

Exercise: Use the Taylor expansion ex =
∑∞

j=0
xj

j! to show that the above
function is in fact a probability function.
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5.3

Fact: If X is a discrete Poisson r.v., then E[X] = µ.
Proof.

E[X] =

∞∑
j=1

j · Pr(X = j)

=

∞∑
j=1

j · e−µ · µj

j!

= µ · e−µ
∞∑
j=1

· µ
j−1

(j − 1)!

= µ · e−µ
∞∑
j=0

·µ
j

j!

= µ · e−µeµ = µ
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5.3

Lemma: The sum of independent discrete Poisson r.v. is also a discrete
Poisson r.v.
Proof. Proof for two variables. Let X and Y discrete Poisson r.v.

Pr(X + Y = j) =

j∑
k=0

Pr((X = k) ∩ (Y = j − k))

=

j∑
k=0

e−µ1 · µk
1

k!
·

e−µ2 · µj−k
2

(j − k)!

=
e−(µ1+µ2)

j!

j∑
k=0

j!
k!(j − k)!

· µk
1 · µ

(j−k)
2

=
e−(µ1+µ2)

j!

j∑
k=0

(
j
k

)
· µk

1 · µ
(j−k)
2

=
e−(µ1+µ2)(µ1 + µ2)

j

j!
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5.3

Same result using moment generating function (m.g.f.)
Lemma: The m.g.f. of a Poisson r.v. with parameter µ is

Mx(t) = eµ(e
t−1).

Proof. For any t we have

E[etX] =

∞∑
k=0

etk · Pr(X = k) =

∞∑
k=0

etk · e−µ · µk

k!

=

∞∑
k=0

etk · e−µ · µk

k!
· eµet · e−µet

= eµ(e
t−1)

∞∑
k=0

e−µet · (µ · et)k

k!
= eµ(e

t−1)
∞∑

k=0

e−µY · (µY)
k

k!

= eµ(e
t−1)

∞∑
k=0

Pr(Y = k) where Y is discrete Poisson r.v.

= eµ(e
t−1)
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5.3

Corollary: The sum of independent discrete Poisson r.v. is discrete Poisson
r.v.
Proof. For two independent r.v. X and Y with expectations µ1 and µ2, resp.
Note that E[X + Y] = µ1 + µ2.
If X and Y are independent, then

MX+Y(t) = MX(t) ·MY(t)

Then

MX+Y(t) = MX(t) ·MY(t)

= eµ1(et−1) · eµ2(et−1)

= e(µ1+µ2)(et−1)

As the moment of a variable (in the case, X + Y) define its distribution in a
unique way, we have that X + Y is a Poisson r.v. with expectation µ1 + µ2.
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5.3

Chernoff bounds for Poisson r.v.
Theorem: Let X be a Poisson r.v. with parameter µ.

1. If x > µ then
Pr(X ≥ x) ≤ e−µ(e·µ)x

xx

2. If x < µ then
Pr(X ≤ x) ≤ e−µ(e·µ)x

xx

Proof. For any t > 0 and x > µ then

Pr(X ≥ x) = Pr(etX ≥ etx)

≤ E[etX]

etx

=
eµ(e

t−1)

etx ∀t > 0.
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5.3

So, Pr(X ≥ x) ≤ eµ(e
t−1)

etx ∀t > 0.

Let t = ln(x/µ) > 0. Then

Pr(X ≥ x) ≤ eµ(e
ln(x/µ)−1)

eln(x/µ)·x

=
eµ(x/µ−1)

(x/µ)x

=
ex · e−µ

xx · µx

=
e−µ · (e · µ)x

xx

The proof of item 2 is similar (exercise).
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5.3

Limit of the binomial distribution
In general, the Poisson distribution is bounded by the binomial distribution
with parameter n and p, when n is large and p small.
Theorem: Let Xn be a binomial r.v. with parameters n and p, where p is
function of n and limn→∞ n · p = λ is a constant independent of n. Then, for
each fixed k,

lim
n→∞ Pr(Xn = k) =

e−λλk

k!

First, let’s see an application.
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5.3

Example: Consider m balls and n bins where m is a function of n and
limn→∞ m

n = λ. Then, if Xn is the number of balls in a specific bin, then

lim
n→∞ Pr(Xn = r) =

e−m/n(m/n)r

r!
,

that is the approximation obtained before.
To see this, consider the bin 1 (w.l.o.g.).
Each of the m balls enters into the bin 1 with probability p = 1

n . As Xn is a
binomial r.v. with parameters n and p, the number of balls in the bin 1 tends to

lim
n→∞ m · p = lim

n→∞ m · 1
n
= λ

and therefore, from the previous theorem

lim
n→∞ Pr(Xn = r) = lim

n→∞ e−λλr

r!
=

e−m/n(m/n)r

r!
.
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5.3

Example: Gramatical errors in a text: Each word of a text can be typed
wrongly. The number of errors is a binomial r.v. with n large and p small that
can be consider a Poisson r.v.
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5.3

Proof. (of the Theorem): We can write

Pr(Xn = k) =
(

n
k

)
· pk · (1 − p)n−k

For |x| ≤ 1 and k ≥ 0 it is valid that (exercise: use Taylor expansion)

ex(1 − x2) ≤ 1 + x ≤ ex e (1 − p)k ≥ 1 − p · k

Then,

Pr(Xn = k) =
n!

k!(n − k)!
· pk · (1 − p)n

(1 − p)k

≤ n · (n − 1) · . . . · (n − k + 1)
k!

· pk · (e−p)n

(1 − p)k

≤ nk

k!
· pk · (e

−pn)

1 − pk

=
e−pn

k!
· (np)k

1 − pk
(∗)
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5.3

On the other hand, we have:

Pr(Xn = k) =
n!

k!(n − k)!
· pk · (1 − p)n−k

≥ n · (n − 1) · . . . · (n − k + 1)
k!

· pk · (1 − p)n

≥ (n − k + 1)k

k!
· pk · (e−p(1 − p2))n

≥ e−pn((n − k + 1) · p)k

k!
· (1 − p2n) (∗∗)
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5.3

Combining (∗) with (∗∗):

Pr(Xn = k) ≤ e−pn

k!
· (np)k

1 − pk
(∗)

Pr(Xn = k) ≥ e−pn((n − k + 1) · p)k

k!
· (1 − p2n) (∗∗)

we have

e−pn

k!
· (np)k

1 − pk
≥ Pr(Xn = k) ≥ e−pn((n − k + 1) · p)k

k!
· (1 − p2n)

Dividing both parts by
e−pn(pn)k

k!
, we have

1
1 − pk

≥ Pr(Xn = k)
e−pn(pn)k

k!

≥ (n − k + 1)k

nk · (1 − p2n) (∗ ∗ ∗)
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5.3

1
1 − pk

≥ Pr(Xn = k)
e−pn(pn)k

k!

≥ (n − k + 1)k

nk · (1 − p2n) (∗ ∗ ∗)

When n→∞, p→ 0 and pn→ λ we have

1
1 − pk

→ 1, 1 − p2n→ 1 and
(n − k + 1)k

nk → 1

and therefore

1 ≥ lim
n→∞ Pr(Xn = k)

e−pn(pn)k

k!

≥ 1
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5.4

Poisson Approximation

One of the difficulties to analyse problems with balls and bins is to consider
dependencies.

I If bin 1 is empty, it is less probably that bin 2 is empty.

I If the number of balls in the first n − 1 bins is known, then the number of
balls in the n-th bin is totally determined.
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5.4

Suppose that m balls are thrown uniformly at random into n bins.

I Let X(m)
i a r.v. that gives the number of balls in the i-th bin (note that the

r.vs. X(m)
1 , . . . ,X(m)

n are not independent).

I We can approximate these variables by independent Poisson r.vs. Y(m)
i

with average m/n. I.e., each bin receives independently a random
quantity of balls.

I Note that with variables Y(m)
i we can obtain a total number of balls that is

different from m.
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5.4

Theorem: The distribution (Y(m)
1 , . . . ,Y(m)

n ) conditioned to
∑

i Y(m)
i = k is

the same as (X(k)
1 , . . . ,X(k)

n ), independently from m.
Proof. We will show that

Pr

(
(Y(m)

1 , . . . ,Y(m)
n ) = (k1, . . . , kn)|

∑
i

Y(m)
i = k

)

and
Pr
(
(X(k)

1 , . . . ,X(k)
n ) = (k1, . . . , kn)

)
attain the same value.
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5.4

•When we throw k balls into n bins, the probability that
(X(k)

1 , . . . ,X(k)
n ) = (k1, . . . , kn) is given by

Pr
(
(X(m)

1 , . . . ,X(m)
n ) = (k1, . . . , kn) = k

)

=

( k
k1;k2;...;kn

)
nk

=
k!

k1! · k2! · . . . · kn! · nk
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5.4

• Let k1, . . . , kn such that
∑

i ki = k.

Pr

(
(Y(m)

1 , . . . ,Y(m)
n ) = (k1, . . . , kn)|

∑
i

Y(m)
i = k

)

=
Pr(Y(m)

1 = k1) ∩ Pr(Y(m)
2 = k2) ∩ . . . Pr(Y(m)

n = kn)

Pr(
∑

i Y(m)
i = k)

=
Πn

i=1
e−

m
n (m

n )
ki

ki!

e−mmk

k!

=
(e−

m
n )n · (m

n )
k1+···+kn

k1! · . . . · kn!
· k!

e−m · mk

=
k!

k1! · . . . · kn! · nk
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5.4

Using the previous result, we can prove stronger results for any non-negative
function on the number of ball into bins.

Theorem: Let f (x1, . . . , xn) a non-negative function. Then,

E[f (X(m)
1 , . . . ,X(m)

n )] ≤ e
√

m · E[f (Y(m)
1 , . . . ,Y(m)

n )]

Proof.
E[f (Y(m)

1 , . . . ,Y(m)
n )]

=

∞∑
k=0

E[f (Y(m)
1 , . . . ,Y(m)

n )|
∑

i

Y(m)
i = k] · Pr(

∑
i

Y(m)
i = k)

≥ E[f (Y(m)
1 , . . . ,Y(m)

n )|
∑

i

Y(m)
i = m] · Pr(

∑
i

Y(m)
i = m)

= E[f (X(m)
1 , . . . ,X(m)

n )] · e−m · mn

m!
(∗∗)
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5.4

E[f (Y(m)
1 , . . . ,Y(m)

n )]

≥ E[f (X(m)
1 , . . . ,X(m)

n )] · e−m · mn

m!
(∗∗)

(using the inequality m! < e
√

m ·
(m

e

)m (exercise))

≥ E[f (X(m)
1 , . . . ,X(m)

n )] · e−m · mn

e
√

m · mn · e−m

=
E[f (X(m)

1 , . . . ,X(m)
n )]

e
√

m
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5.4

The previous theorem is valid for any non-negative function, inclusively for
indicator functions (0 or 1) of the occurrence of an event.

We call the scenario
• with m balls and n bins as Exact Case
• approximated by independent r.vs. with average m

n as Poisson Case

Corollary: Any event that occur with probability p in the Poisson case, occur
with probability at most p · e ·

√
m in the exact case.

Proof. Let f an event indicator function. So, E[f (·)] is exactly the probability
of the event occur. The result follows from the previous theorem.

The corollary above is very useful, mainly when p is small.
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5.4

A particular case with better approximation:

Theorem: If f (x1, . . . , xn) is a non-negative function such that
E[f (X(m)

1 , . . . ,X(m)
n )] is monotonically increasing, or monotonically

decreasing in m, then

E[f (X(m)
1 , . . . ,X(m)

n )] ≤ 2 · E[f (Y(m)
1 , . . . ,Y(m)

n )]

Proof. Exercise.

The proof of the next corollary is straightforward.
Corollary: Let E an event with probability that is monotonically increasing
or monotonically decreasing in the number of balls. If E has probability p in
the Poisson case, then E has probability at most 2 · p in the exact case.
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5.4

Example: Maximum number of balls in a bin: Consider n balls uniformly
thrown into n bins and Xmax the maximum number of balls in a bin.
We prove that Pr(Xmax ≥ 3 ln n/ ln ln n) ≤ 1

n . Now, we use the previous result
and prove that Pr(Xmax ≤ ln n/ ln ln n) ≤ 1

n . I.e., with high probability, the
maximum number of balls is Θ(ln n/ ln ln n).

Lemma: When n balls are thrown into n bins we have
Pr(Xmax ≥ ln n/ ln ln n) ≥ 1 − 1

n for n sufficiently large.

Proof. Let M = ln n
ln ln n and consider the Poisson case:

Pr(Bin i has ≥ M balls in the Poisson case)

≥ Pr(Bin i has exactly M balls in the Poisson case)

=
e−n/n(n/n)M

M!
=

1
e ·M!
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5.4

I.e.,

Pr(Bin i do not have M balls in the Poisson case) ≤ 1 −
1

e ·M!

and therfore

Pr(No bin have M balls in the Poisson case) ≤
(

1 −
1

e ·M!

)n

≤
(

e−
1

eM!

)n

= e−
n

eM!
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5.4

Now, we show that e−
n

eM! ≤ 1
n2 . Because, proving this inequality, we can use

the Poisson approximation to bound the probability in the exact case.

Pr(No bin have M balls in the exact case)

≤ e
√

n Pr(No bin have M balls in the Poisson case)

≤ e
√

n
1
n2

≤ 1
n
, for sufficiently large n.
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5.4

So, we show that e−
n

eM! ≤ n−2:

Applying ln(·) in both sides, it is equivalent to prove that

n
eM!

≥ 2 ln n

Isolating M!, we have to prove that

M! ≤ n
2 · e · ln n

Using the fact that M! ≤ e
√

M
(M

e

)M ≤ M
(M

e

)M, it is sufficient to prove that

M
(

M
e

)M

≤ n
2 · e · ln n

(∗)
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5.4

M
(

M
e

)M

≤ n
2 · e · ln n

(∗)

Applying ln(·) in both sides, it is sufficient to prove that

ln M + M ln M − M ≤ ln n − ln ln n − ln(2e)

Replacing M = ln n
ln ln n and developing only the left side:

ln M + M ln M − M

= (ln ln n − ln ln ln n) +
ln n

ln ln n
(ln ln n − ln ln ln n) −

ln n
ln ln n

≤ ln n −
ln n

ln ln n
≤ ln n − ln ln n − ln(2e) (for sufficiently large n)

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 217 / 296



5.5

Application: Hashing

Problem: Password Verification: Given the set of words in a Dictionary
(unacceptable passwords) P, verify if a given word x belongs to P.

Suppose we have a hashing function h : U → {0, . . . , n − 1} such that
I h(x) = j with probability 1

n ∀j ∈ {0, . . . , n − 1}
I h(x) is independent for different values of x.

We consider that words are stored in a Chain Hashing.
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5.5

Chain Hashing of n position:
I Each position of the hashing stores words with linked list.
I Insert each x ∈ P in the list of index h[x].

Observations:
I Expected number of words in each position: m

n

I Expected number of comparisons to search x /∈ P is ≤ m
n

I Expected number of comparisons to search x ∈ P is ≤ 1 + m−1
n

I If n = m, maximum number of comparisons is Θ( ln n
ln ln n) with high

probability
I Several positions may stay empty
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5.5

Hashing Bit Strings: Consider the application of unacceptable passwords
I Suppose that h(x)→ {0, 1}b, where b is a number of bits.
I The function h(x) works as a fingerprint of x.
I Instead of storing the word x, we only store the b bits of h(x).
I Let H = {h(x) : x ∈ P}.
I To verify if x ∈ P, we ask if h(x) ∈ H.
I Although we can save space, we may have false positives (word y /∈ P

such that h(y) ∈ H).
I As b increases, the chance to obtain false positives decreases.

How large does b have to be so that Pr(word is false positive) ≤ 1
m ?
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5.5

How large does b have to be so that Pr(word is false positive) ≤ 1
m ?

Let P be a set of m unaccepted passwords, x /∈ P.

Then
Pr(h(x) = h(y)) =

1
2b for any word y ∈ P

⇒ Pr(h(x) 6= h(y)) = 1 −
1
2b for any word y ∈ P

⇒ Pr(h(x) 6= h(z) : ∀z ∈ P) =
(

1 −
1
2b

)m

⇒ Pr(h(x) = h(z) : for some z ∈ P) = 1 −

(
1 −

1
2b

)m

⇒ Pr(x is false positive) = 1 −

(
1 −

1
2b

)m

⇒ Pr(x is false positive) ≈ 1 − e−
m
2b
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5.5

Pr(x is false positive) ≈ 1 − e−
m
2b

Given constant probability p, to have Pr(x is false positive) ≤ p we must have
1 − e−

m
2b ≤ p

⇒ e−
m
2b ≥ 1 − p⇒ b ≥ lg2(

m
ln(1/(1 − p))

)

I.e., b = Ω(ln(m)).
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5.5

On the other hand, if we use b = 2 lg2(m) and x /∈ P, we have

Pr(x is false positive) = 1 −

(
1 −

1
2b

)m

= 1 −

(
1 −

1
22 lg2 m

)m

= 1 −

(
1 −

1
m2

)m

≤ 1
m

(exercise)

So, if we have 65000 words,

Pr(x is false positive) ≤ 1
65000
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5.5

Bloom Filters

I is a generalization of the previous model.
I Using k hashing functions hi : U → {0, . . . , n − 1}, for i = 1, . . . , k.

Initialization of bit vector:
I For i← 0 to n − 1 do A[i]← 0
I For each x ∈ P do

For i← 1 to k do
A[hi(x)]← 1

Query of a word y:
I Return (A[h1(y)]

∧
A[h2(y)])

∧
. . .
∧

A[hk(y)])

Can also leads to false positives.
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5.5

Let y /∈ P. What is Pr(y is false positive) ?

Let i ∈ {1, . . . , k}.

Pr(A[hi(y)] = 0) =
(
1 − 1

n

)km

⇒ Pr(A[hi(y)] = 1) = 1 −

(
1 −

1
n

)km

⇒ Pr(y is false positive) = Pr(1=A[h1(y)]= . . .=A[hk(y)])

≈

(
1 −

(
1 −

1
n

)km
)k

≈
(

1 − e−km/n
)k

Note that
I If k is large the chance to have false positives is small, as more bits are

tested.
I On the other hand, if k is large, more bits of A will be set to 1.

Given m and n, what is the best value for k ?
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5.5

We know that if y /∈ P,

Pr(y is false positive) ≈
(

1 − e−km/n
)k
.

Let f =
(
1 − e−km/n

)k
and g = k ln(1 − e−km/n).

The minimum value of f can pode obtained deriving f :

df
dk

= eg dg
dk

= eg

[
(ln(1 − e−

km
n )) +

k · m
n

(
e−

km
n

1 − e−
km
n

)]
= 0, when k = (ln 2) · n

m .
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5.5

So, the smallest value for

Pr(y is false positive)

is obtained when k = (ln 2) · n
m . I.e.,

Pr(y is false positive when k = (ln 2) · n
m) ≈

(
1 − e− ln 2·mn ·

n
m

)(ln 2)· n
m

=

(
1 −

1
2

)(ln 2)· n
m

≈ 0.6185n/m

Example: In many applications, as the password example, it is sufficient to
have Pr(y is false positive) ≈ 2%.
To have this, we set n← 8 · m and k← 6:

f =
(

1 − e−km/n
)k

=
(

1 − e−6· 18
)6

= 0.0215 . . .
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5.5

Breaking Symmetry
We can also consider the hashing functions h(·) in the set S, of n elements to

I Choose a leader S
We may choose the largest h(x) for x ∈ S.

I Choose a permutation of S
We may sort S using h(x)

The problem are the collisions/ties!
What is the probability of collisions/ties occur ?
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5.5

Given x ∈ S, what is the probability that h(x) = h(y) for some other y ∈ S ?

Pr(h(x) = h(y), for fixed y ∈ S, x 6= y) = 1
2b

⇒ Pr(h(x) 6= h(y), for fixed y ∈ S, x 6= y) = 1 −
1
2b

⇒ Pr(h(x) 6= h(y), for any y ∈ S, x 6= y) =
(

1 −
1
2b

)n−1

⇒ Pr(h(x) = h(y), for some y ∈ S, x 6= y) = 1 −

(
1 −

1
2b

)n−1

≤ n − 1
2b (exercise)
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5.5

What is the probability to exists x, y ∈ S such that h(x) = h(y) ?

Let S = {x1, . . . , xn}.

Pr(∃x, y ∈ S : h(x) = h(y))

= Pr((∃y ∈ S : h(x1) = h(y)) ∪ . . . ∪ (∃y ∈ S : h(xn) = h(y))

≤ n
n − 1

2b

≤ n2

2b

So, setting b = 3 log2 n we have

Pr(∃x, y ∈ S : h(x) = h(y)) ≤ n2

23 log2 n

=
n2

n3 =
1
n
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5.6

Random Graphs

We will consider the random graph models Gn,p e Gn,N .

Notation:
I V set of vertices
I n number of vertices in V .
I Kn set of edges in a complete graph of n vertices

Some problems can be
I modeled/investigated using random graphs
I and have good properties with high probability
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5.6

Model Gn,p: Graph with n vertices and each pair {i, j} for i, j ∈ V is an edge
with probability p.

I Each graph with m edges has probability pm(1 − p)(
n
2)−m to be in the

graph.
I Expected number of edges is

(n
2

)
· p.

I Expected degree of a node is (n − 1) · p.
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5.6

Model Gn,N: Graph with n vertices and exactly N edges.

To generate a graph in Gn,N :

1. E ← ∅
2. Repeat N times

3. Choose e ∈ Kn \ E uniformly at random

4. E ← E + e

5. Return G(V,E).

I There is
((n

2)
N

)
distinct graphs, each one equally probable.
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5.6

There are similarities with the Balls and Bins model:
Throwing edges into the graph (to generate Gn,N) is like throwing balls into
bins. Each edge can be seen as two balls in two distinct bins.

Theorem: Let N = 1
2(n ln n + cn). Then, the probability that there exists an

isolated vertex (degree 0) in Gn,N converges to e−e−c
.

Proof.
Exercise. Idea: In the coupon collector problem, after n ln n + cn balls, the
probability to have empty bins converges to e−e−c

.
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5.6

Hamiltonian Circle in Random Graphs

Find a Hamiltonian Circle (H.C.) in a graph is an NP-hard problem.
We describe an algorithm to find a H.C. in a random graph with high
probability.
The algorithm do the following:
Rotation(P, i, k)

1. Let P = (v1, . . . , vi−1, vi, vi+1, . . . , vk−1, vk)

2. Return P ′ = (v1, . . . , vi−1, vi, vk, vk−1, . . . , vi+1)

viv2v1 v3 v4 vi+1 vi+2 vkvk−1

viv2v1 v3 v4 vi+1 vi+2 vkvk−1

P

P ′
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5.6

Notation:
I Head(P): last node in P, also called head of P.

Ex.: If P = (v1, . . . , vk) then Head(P) = vk.

I Used(v): incident edges to v already considered by the algorithm.
Initially empty.

I NonUsed(v): non-used edges of v. Initially is the set of edges incidents
to v.

We will see
I An Algorithm 1, that is natural, but hard to analyse.
I An Algorithm 2, that is less efficient but find H.C. with high probability

for certain graphs (used/non-used edges model).
I An Algorithm 3, that uses Algorithm 2 and obatin H.C. with high

probability in a graph Gn,p, for p ≥ 40 ln n
n .
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5.6

Algorithm 1(G = (V,E)), where |V | = n.
1. NonUsed(v)← {e ∈ E : e is edge incident to v}

2. choose v ∈ V uniformly at random

3. let P← (v) and v the head of P

4. while NonUsed(Head(P)) 6= ∅
5. let P = (v1, . . . , vk) where vk is the head

6. let {vk, u} the first edge in NonUsed(Head(P))

7. remove (vk, u) from NonUsed(vk) and from NonUsed(u).

8. if u /∈ P then P← P‖u (and u becomes head)

9. else

10. let u = vi, where vi ∈ P

11. if i = 1 and k = n then return the obtained H.C.

12. else let P← Rotation(P, i, k) (and vi+1 becomes the head)

13. return fail.
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5.6

It is difficult to analyse Algorithm 1, as each step is dependent with the
previous.

About Algorithm 2

I At each iteration, the current path is either increased, inverted or rotated.

I The algorithm consider that there are lists of Used and NonUsed edges
for each head of a path.

I Initially the set Used(v) is empty for each vertex v.

I Initially the set NonUsed(v) is obtained choosing independently each one
of the n − 1 possible edges with probability q, for each vertex v. I.e., if
e = {u, v} it can also occur that e ∈ NonUsed(v) and e /∈ NonUsed(u).
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About Algorithm 2

I When the edge e = {u, v} is removed from NonUsed(v) do not remove
the edge from NonUsed(u) (in case it belongs to this set).

I Just after the list NonUsed(v) is generated, it is shuffled, for each v.

Algorithm 2(G = (V,E))
where |V | = n, NonUsed(v) and Used(v) are part of the input, under the
previous conditions.

1. choose v uniformly at random from V

2. let P← (v) and the head of P as vertex v
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5.6

3. while NonUsed(Head(P)) 6= ∅ and has no H.C.

4. let P = (v1, . . . , vk) where vk is head

5. execute i) or ii) or iii) (exactly one of them) with probability

6. 1
n , |Used(vk)|

n and 1 − 1
n − |Used(vk)|

n , respectively

7. i) revert the path P making v1 as head

8. ii) choose a random edge {vk, vi} ∈ Used(vk)

9. rotate and make vi+1 the new head

10. iii) let {vk, u} the first edge of NonUsed(vk).

11. if u /∈ P then let u = vk+1 and vk+1 the new head

12. else if u = vi, rotate with {vk, vi} and make vi+1 head

13. (the loop finish if edge {vn, v1} is chosen).

14. update Used(vk) and NonUsed(vk)

15. return H.C. if found, or fail otherwise.
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5.6

Lemma: Consider Algorithm 2. Let xt the head after the t-th step. Then, for
all nodes u, whenever there exists a non-used edge in the head vertex,

Pr(xt+1 = u| xt = ut, xt−1 = ut−1, . . . , x0 = u0) =
1
n

I.e., We can consider that the head is chosen randomly between all vertices in
each step, independently from the previous steps.
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Proof. Let P = (v1, . . . , vk). We can consider the possible cases, for the
vertices in P and outside P.

• The unique manner that v1 becomes head is reverting the list. In this case,
the applied probability is 1

n .

• If u is a vertex of the path and {vk, u} is edge in Used(vk) then the
probability that xt+1 = u is

|Used(vk)|

n
· 1
|Used(vk)|

=
1
n

The first fraction is the probability to enter the case. The second fraction is the
probability to choose a specific vertex by one a used edge.
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• Now, suppose that we pick the edge e ∈ NonUsed(vk), where e = (vk, u)

Although the edges have been chosen/generated with probability q, the
probability that e is incident to one of the n − 1 − |Used(vk)| possible vertices
is the same (given that we have e). So, the probability that xt+1 = u is(

1 −
1
n
−

|Used(vk)|

n

)
·
(

1
n − 1 − |Used(vk)|

)
=

1
n
.

The first term is the probability to enter this case. The second is the
probability to chose a specific vertex using a non-used edge.
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5.6

Generate a random graph in the model of Used/NonUsed edges

Let H a graph, in the model of Used and NonUsed edges, where each
(possible) edge of a vertex v is inserted in NonUsed(v) with probability
q = 20 ln n

n .

We show that Algorithm 2 obtain a H.C. in H
I in O(n ln n) steps,
I with high probability: 1 − O( 1

n).
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5.6

Lemma: If Algorithm 2 make at least 3n ln n iterations of step 3, then the
probability to not find a H.C. is at most 2

n .
Proof.
Note that in this case, we suppose that the algorithm do not fail before this
number of iterations.

First, we prove that with 2n ln n iterations of step 3, we obtain all vertices of
H with probability 1

n .

The proof is basically the same of the Coupon Collector problem, where we
want n different vertices (cupons) in the path.

In each iteration, the chance to take a vertex as head is the same: 1
n .
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The probability that a specific vertex is not chosed after 2n ln n iterations is:(
1 −

1
n

)2n ln n

≤ e−2 ln n =
1
n2 .

So, the probability that some vertex is not chosed after 2n ln n iterations is
(bounded by the probability of the sum) n · 1

n2 = 1
n

Now, we can show that with more n ln n iterations, the last vertex close with
the first vertex. The probability to not close is:(

1 −
1
n

)n ln n

≤ e− ln n =
1
n
.

Therefore, the probability that Algorithm 2 do not find a H.C. is at most 2 · 1
n .
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Lemma: The probability that there exists a vertex v of H with less than
10 ln n edges in NonUsed(v) is at most 1

n .
Proof.
Let Ye

v a binary variable to indicate if an edge e is chosen in NonUsed(v) and
Yv =

∑
e Ye

v the number of edges in NonUsed(v).

We have that E[Yv] = (n − 1) · q = (n − 1) · 20 ln n
n ≥ 19 ln n, for n sufficiently

large. So,

Pr(Y ≤ 10 ln n) = Pr(Y ≤ (1 −
9
19

)19 ln n)

≤ e−(19 ln n)(9/19)2/2

≤ 1
n2

Therefore, the probability that one of the vertices do not have 10 ln n non used
edges (by the prob. of the sum) is at most n · 1

n2 .
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5.6

Lemma: The probability that Algorithm 2 remove at least 9 ln n edges from
NonUsed(v) for some vertex v of H in 3n ln n iterations is at most 1

n .
Proof.
Let v ∈ V . The number of edges removed from NonUsed(v) is bounded by
the number of times v was head.

The probability that v becomes head in an iteration is 1
n . Let X the number of

times vertex v was head.

E[X] = (3n ln n) · 1
n
= 3 ln n.
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So,

Pr(X ≥ 9 ln n) = Pr(X ≥ (1 + 2)3 ln n)

<

(
e2

(1 + 2)(1+2)

)3 ln n

<

(
e2

e3

)3 ln n

≤ 1
n2

Therefore, the probability that one of the vertices have at least 9 ln n removed
non-used edges (by the prob. of the sum) is at most n · 1

n2 .

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 249 / 296



5.6

Theorem: Algorithm 2 obtain a H.C. of H in 3n ln n iterations with
probability 1 − O( 1

n) (in the used/non-used model).
Proof.

I The probability that there exists a vertex v in H with
|NonUsed(v)| ≤ 10 ln n is at most 1

n .
I The probability the algorithm remove from a vertex v at least 9 ln n edges

from NonUsed(v) in 3n ln n iterations, is at most 1
n .

• So, the probability that algorithm fail in 3n ln n iterations for having set
NonUsed(v) empty is (by the sum) at most 2

n .

• The probability the algorithm do not find a H.C. of H in 3n ln n iterations is
at most 2

n .

Therefore, the probability of fail in 3n ln n iterations is at most 4
n .

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 250 / 296



5.6

Algorithm 3(Gn,p), where p ≥ 40 ln n
n .

1. Construct a graph H as follows:

2. Let q ∈ [0, 1] be such that p = 2q − q2.

3. For each edge e = {u, v} in Gn,p execute

4. i) or ii) or iii) (exactly one of them) with probability

5. pu = q(1−q)
2q−q2 , pv =

q(1−q)
2q−q2 and puv =

q2

2q−q2 , respectively

6. i) Put e in the set of non-used edges of u.

7. ii) Put e in the set of non-used edges of v.

8. iii) Put e in the set of non-used edges of u and v

9. Execute the Algorithm 2 in H.

10. If obtained H.C. then return the circuit.

11. Else return fail.
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First, note that the probabilities of step 5 are well defined, as
pu + pv + puv = 1.

Fact: If q is obtained from p, as made in Algorithm 3, then q ≥ 20 ln n
n .

Proof.

q ≥ q −
q2

2

=
2q − q2

2
=

p
2

≥ 40 ln n
2n

=
20 ln n

n
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Lemma: An edge e = {u, v} is inserted in NonUsed(u) with probability q and
NonUsed(v) with probability q. Furthermore, both insertions are made in an
independent way.
Proof.
The edge e will belong to NonUsed(u) if e belongs to Gn,p and if e is inserted
in i) or iii). So,

Pr(e ∈ NonUsed(u)) = p · (pu + puv)

= (2q − q2) ·
(

q(1 − q)
2q − q2 +

q2

2q − q2

)
= q

The proof that Pr(e ∈ NonUsed(v)) = q is analogous.
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Now, we prove that the insertions of e = {u, v} in NonUsed(u)) and in
NonUsed(v)) are independent.

Pr(e ∈ NonUsed(u) ∩ e ∈ NonUsed(v))

= p · puv

= (2q − q2) · q2

2q − q2

= q2

= Pr(e ∈ NonUsed(u)) · Pr(e ∈ NonUsed(v))
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As the graph H generated by Algorithm 3 satisfy all required conditions by
Algorithm 2, this obtain a H.C. from H, and consequently from G, with high
probability.

Theorem: The Algorithm 3 obtain a H.C. for the graph Gn,p, where
p ≥ 40 ln n

n , with probability 1 − O( 1
n).

Corollary: A graph in Gn,p, for p ≥ 40 ln n
n , has a H.C. with high probability.
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THE PROBABILISTIC METHOD

Method to prove existence of an object.

Idea: To prove the existence of an object with certain properties, it is
sufficient to prove that the probability of its existence is positive.
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6.1

THE BASIC COUNTING ARGUMENT

Theorem: If
(n

k

)
2−(

k
2)+1 < 1 then it is possible to color the edges of a graph

Kn with two colors such that there is no subgraph monochromatic Kk.
Proof.

I Consider a random coloring, each edge of Kn colored with probability 1
2 .

I Consider all the
(n

k

)
different cliques with k vertices in an order

i = 1, . . . ,
(n

k

)
.

I Let Ai the event that clique i is monochromatic. Then,

Pr(Ai) =
2

2(
k
2)

= 2−(
k
2)+1
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6.1

The probability that one subgraph Kk is monochromatic is less than 1:

Pr
(
∪(

n
k)

i=1Ai

)
≤

(n
k)∑

i=1

Pr(Ai)

=

(
n
k

)
2−(

k
2)+1

< 1

So, the probability that there is no monochromatic Kk is

Pr
(
∩(

n
k)

i=1Ai

)
= 1 − Pr

(
∪(

n
k)

i=1Ai

)
> 0

As such probability is not null, there must exists such coloring.
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6.1

Example: It is possible to color a K1000 without monochromatic K20.
For n ≤ 2k/2 and k ≥ 3, we have(

n
k

)
2−(

k
2)+1 ≤ nk

k!
· 2−

k(k−1)
2 +1

≤ (2
k
2 )k · 2−

k(k−1)
2 +1

k!

=
2

k
2+1

k!
< 1

From the previous theorem, there exists a coloring of K1000 without
monochromatic K20.

How do we can find such a coloring ?
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6.1

Now, we will find a coloring of K1000 without monochromatic K20.

From the previous theorem, the probability to have a random coloring with
monochromatic Kk is at most(

n
k

)
2−(

k
2)+1 ≤ 2

k
2+1

k!
=

2
20
2 +1

20!
< 8.5× 10−16

Then, a random coloring already leads to a coloring without monochromatic
K20 with good probability (Monte Carlo Algorithm).

If we need a Las Vegas algorithm, for constant k, it is sufficient to repeat the
Monte Carlo algorithm and stop when we obtain a coloring without
monochromatic Kk.
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6.2

THE EXPECTATION ARGUMENT

This argument is based in the following lemma:
Lemma: Suppose that we have a sample space S and r.v. X defined in S
such that E[X] = µ. Then

Pr(X ≥ µ) > 0 and Pr(X ≤ µ) > 0.

Proof. Suppose that Pr(X ≥ µ) = 0. Then,

µ =
∑

x

x · Pr(X = x) =
∑
x<µ

x · Pr(X = x)

<
∑
x<µ

µ · Pr(X = x)

= µ Contradiction!

The proof that Pr(X ≤ µ) = 0 is analogous.
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6.2

Application: MaxCut

Problem: MaxCut: Given a non-oriented graph G = (V,E), find a partition
(A,B) of V such that the number of edges in (A,B) is maximum.

Theorem: The MaxCut problem is NP-hard.
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6.2

Theorem: Given a non-oriented graph G = (V,E) with n vertices and m
edges, there exists a partition of V into sets A and B such that there exists at
least m

2 edges in the cut (A,B) (set of edges connecting vertices from A and
B).
Proof. Start A and B as empty sets and add each vertex of V to A or B with
probability 1

2 .

Let E = {e1, . . . , em}. Let Xi a binary variable with value 1 if and only if
ei ∈ (A,B) and X =

∑m
i=1 Xi (X is the size of the cut ).

Clearly, E[X] = m
2 . Therefore, from the previous lemma, there must exists a

cut with at least m
2 edges.
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6.2

Now, consider obtaining a Las Vegas algorithm to find a cut with at least m
2

edges.

First, obtain a bound to p = Pr(|C| ≥ m
2 )

m
2

= E[Y]

=
∑

i≤m
2 −1

i · Pr(Y = i) +
∑
i≥m

2

i · Pr(Y = i)

≤
∑

i≤m
2 −1

(m
2
− 1
)
· Pr(Y = i) +

∑
i≥m

2

m · Pr(Y = i)

=
(m

2
− 1
)
· Pr(Y <

m
2
) + m · Pr(Y ≥ m

2
)

=
(m

2
− 1
)
· (1 − p) + m · p.
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I.e.,

m
2
≤
(m

2
− 1
)
· (1 − p) + m · p.

Isolating p, we have

p ≥ 1
m
2 + 1

.

Therefore, the expected number of steps of the Las Vegas algorithm to obtain
a cut of size m

2 is at most m
2 + 1.
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6.2

Application: MaxSat

Def.: A formula is in Conjunctive Normal Form (CNF) if it is a conjunction
of clauses (by logic ∧’s), each one is a disjunction of literals (by logic ∨’s).

Problem: MaxSat: Given a boolean formula in CNF, find an assignment to
the variables in such a way to maximize the number of true clauses.

Example: Does the formula below is satisfiable ?

φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ (x4 ∨ x3)∧ (x4 ∨ x1)

Theorem: The MaxSat problem is NP-hard.
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Theorem: Given a set of clauses, C = {C1, . . . ,Cm}, let ki the number of
literals in the clause Ci and k = mini∈[m] ki. Then, there exists an assignment
that satisfy at least

m∑
i=1

(
1 −

1
2ki

)
≥ m

(
1 −

1
2k

)
clauses.

Proof.
Assign each variable xj with true or false with probability 1

2 .

Let Y =
∑m

i=1 Xi the number of satisfied clauses and let Xi a r.v. that indicates
if clause Ci is satisfied.

E[Y] =
m∑

i=1

E[Xi] =

m∑
i=1

(
1 −

1
2ki

)
≥ m

(
1 −

1
2k

)
The result follows from the previous lemma.
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6.3

DERANDOMIZATION USING CONDITIONAL

EXPECTATIONS

If we can compute conditional expectations in the choices made by the
algorithm efficiently, we can derandomize the algorithm, obtaining a
deterministic algorithm.

Consider the MaxCut problem. The algorithm considered assign each vertex
to one of the parts with probability 1

2 and finds a cut with expected size
E[Y] ≥ m

2 , where Y is the expected number of edges in the cut and m is the
number of edges in the graph.
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6.3

The derandomized algorithm is such that
I it considers an arbitrary order of the vertices v1, . . . , vn and a

deterministic assignment of them
I to chose an assignment of a vertex, consider the calculation of

conditional expectations

Idea: let xi the indication of assignment of vi to A or B in the i-th iteration of
the algorithm, then the algorithm chose xi such that

m
2
≤ E[Y] ≤ E[Y |x1] ≤ E[Y |x1, x2] ≤ . . . ≤ E[Y |x1, x2, . . . , xn]

The decision xi is based in the calculation of conditional expectations.
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6.3

Suppose that x1, . . . , xk were already decided such that

m
2
≤ E[Y] ≤ E[Y |x1] ≤ . . . ≤ E[Y |x1, . . . , xk]

Let Yk+1 r.v. that indicate the assignment of vk+1 to one of the parts with
probability 1

2 :

E[Y |x1, . . . , xk] =
1
2

E[Y |x1, . . . , xk,Yk+1 = A] +

1
2

E[Y |x1, . . . , xk,Yk+1 = B]

Once we know how to calculate conditional expectations efficiently we verify
which one is larger

E[Y |x1, . . . , xk,Yk+1 = A] or E[Y |x1, . . . , xk,Yk+1 = B]
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6.3

If we have

E[Y |x1, . . . , xk,Yk+1 = A] ≤ E[Y |x1, . . . , xk,Yk+1 = B]

then we make xk+1 as the assignment of vk+1 to B, else to A.

So, E[Y |x1, . . . , xk] =
1
2

E[Y |x1, . . . , xk,Yk+1 = A] +

1
2

E[Y |x1, . . . , xk,Yk+1 = B]

≤ 1
2

E[Y |x1, . . . , xk, xk+1] +

1
2

E[Y |x1, . . . , xk, xk+1]

= E[Y |x1, . . . , xk, xk+1]

Repeating this process, we obtain a deterministic algorithm that guarantee at
least m

2 edges.
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6.3

Simplification: Consider an assignment of vk+1.
I Let (A ′,B ′) the cut defined by vertices v1, . . . , vk.
I Each edge that connect vk+1 to the vertices of A ′ ∪ B ′ have probability 1

2
to enter in the cut.

I Let N ′A and N ′B the number of edges that connect vk+1 to A ′ and B ′, resp.
I In the probabilistic algorithm, the contribution of vk+1 give us an

expected number of N ′
A+N ′

B
2 more edges in the cut.

I The conditional expectation indicate that the set will give us more
number of edges that will be added to the cut.

Therefore, the derandomized algorithm is basically a greedy algorithm that
assign the vertex to the part which leads to a larger number of edges in the cut.

Theorem: The MaxCut greedy algorithm guarantee at least m
2 edges in the

cut.
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6.4

SAMPLE AND MODIFY

Idea: Break the argument in two stages.
I In the first stage, build a random structure which may not have the

desired properties.
I In the second stage, modify the structure to obtain the desired propertity.
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6.4

Application: Independent Set

Def.: Given a graph G = (V,E), a set S ⊆ V is said independent if there are
no edges in E connecting two edges in S.

Problem: Maximum Independent Set: Given a graph G, find an independent
set of G of maximum size.

Theorem: The Independent Set Problem is NP-Hard.

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 274 / 296



6.4

Theorem: Let G = (V,E) a graph with n vertices and m edges. Then, G has
an independent set with at least n2

4m vertices.
Proof.
Let d = 2m

n the average degree of the vertices in G.

Algorithm: Algorithm Ind(G)

1. Remove each vertex of G and its edge with probability 1 − 1
d .

2. For each remaining edge erase one of the extremes.

3. Return the obtained independent set.
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6.4

Let X and Y the number of remaining vertices and edges, after step 1, resp.
Each vertex survive with probability 1

d , so

E[X] =
n
d
.

As we have m edges, we have

E[Y] = m ·
(

1
d

)2

=
nd
2
· 1

d2 =
n

2d

As each edge of Y is removed in step 2, removing one of the extremes, the
number of vertices Z of the independent set is such that

E[Z] = E[X − Y] =
n
d
−

n
2d

=
n

2d
=

n2

4m
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6.4

Application: Graphs with large girth

Def.: Given a graph G, its girth is the size of the smallest cycle.

Theorem: For each k ≥ 3, there is a graph with n vertices and at least n1+ 1
k

4
edges and girth at least k.
Proof.
Consider a random graph Gn,p with p = n

1
k −1.

Let X be the number of edges in the graph. Then,

E[X] = p ·
(

n
2

)
= n

1
k −1 · n(n − 1)

2
=

(
1 −

1
n

)
n

1
k +1

2
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6.4

Let Y the number of cycles of size smaller than or equal to k − 1.
Each cycle of size i, for 3 ≤ i ≤ k − 1 has probability pi to occur.
Furthermore, there are Ni possible cycle of size i,

Ni =

(
n
i

)
(i − 1)!

2

So,

E[Y] =

k−1∑
i=3

Ni · pi =

k−1∑
i=3

(
n
i

)
(i − 1)!

2
· pi

≤
k−1∑
i=3

ni

i!
(i − 1)!

2
· pi

≤
k−1∑
i=3

ni · pi
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6.4

E[Y] ≤
k−1∑
i=3

ni · pi =

k−1∑
i=3

ni · n(
1
k −1)i

=

k−1∑
i=3

ni/k

< k · n(k−1)/k

Now, remove one edge from each of these small cycles. Now, the resulting
graph has girth at least k.
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Let Z the number of remaining edges:

E[Z] ≥ E[X − Y]

≥
(

1 −
1
n

)
n

1
k +1

2
− k · n(k−1)/k

=
n

1
k +1

2
−

n
1
k

2
− k · n1− 1

k

≥ n
1
k +1

4
, for sufficiently large n.
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6.5

METHOD OF THE SECOND MOMENT

Method based in the following theorem:
Theorem: If X is an integer r.v. then

Pr(X = 0) ≤ var[X]
(E[X])2 .

Proof.

Pr(X = 0) ≤ Pr(|X − E[X]| ≥ E[X]) ≤ var[X]
(E[X])2
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6.5

Application: Threshold in Random Graphs

Consider the Gn,p model and the property Π. It is frequent to have a function
f (n) such that

I When p is a bit smaller than f (n) then almost all graphs do not satisfy Π.
I When p is a bit larger than f (n) then almost all graphs satisfy Π.
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6.5

Given property Π over certain structure, we denote by Π(S) the event that S
has the property Π.

Theorem: Consider the graph Gn,p, with p = f (n) and property Π that
indicate if a graph has a clique of size 4 or more.

a) If f (n) = o
(

1
n2/3

)
then for ε > 0 and n sufficiently large, Pr(Π(G)) ≤ ε.

b) If f (n) = ω
(

1
n2/3

)
then for ε > 0 and n sufficiently large, Pr(Π(G)) ≤ ε.
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6.5

Proof.
Let C1, . . . ,C(n

4)
all sets with exactly 4 vertices.

Let Xi r.v. that indicates if Ci is a clique in G and X =
∑

i Xi.

Consider the case a) and p = f (n) = o
(

1
n2/3

)
.

So,

E[X] =

(
n
4

)
p6

≤ n4

4!
p6

= o(1)

So, for sufficiently large n, E[X] < ε.
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6.5

Therefore, as X is non-negative r.v.,

Pr(X ≥ 1) = Pr(X = 1) + Pr(X = 2) + · · ·
≤ 1 · Pr(X = 1) + 2 · Pr(X = 2) + · · ·
= E[X]

< ε

So, the probability that the graph has Π is smaller than ε.
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6.5

Consider the case b) and p = f (n) = ω
(

1
n2/3

)
.

Analogously, we show that

E[X]→∞ when n→∞.

This is not sufficient to prove that Gn,p has K4 with high probability.

We will use the theorem of the second moment. It is sufficient to prove that
var[X] = o((E[X])2). With this, we prove that

Pr(X = 0) ≤ var[X]
(E[X])2 = o(1).
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Lemma: Let Yi, for i = 1, . . . ,m, binary r.v.s and Y =
∑

i Yi. Then
var[Y] ≤ E[Y] +

∑
i 6=j cov(Yi,Yj).

Proof.
For any sequence of r.v.s Y1, . . . ,Ym we have

var[Y] = var[
∑

i

Yi] =
∑

i

var[Yi] +
∑
i 6=j

cov(Yi,Yj).

When Yi is binary r.v. we have E[Y2
i ] = E[Yi].

Therefore
var[Yi] = E[Y2

i ] − (E[Yi])
2 ≤ E[Y2

i ] = E[Yi]

So, ∑
i

var[Yi] ≤
∑

i

E[Yi] = E[Y].
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6.5

Now, we calculate the cov(Xi,Xj).
Note that
cov(Xi,Xj) = E[(Xi − E[Xi]) · (Xj − E[Xj])] = E[Xi · Xj] − E[Xi] · E[Xj].

I If |Ci ∩ Cj| = 0 or |Ci ∩ Cj| = 1 are disjoint cliques then Xi and Xj are
independent and cov(Xi,Xj) = 0.

I If |Ci ∩ Cj| = 2

cov(Xi,Xj) = E[Xi · Xj] − E[Xi] · E[Xj] ≤ E[Xi · Xj] = p11,

and there are
(n

6

)
sets fo 6 vertices, each one of these with

( 6
2;2;2

)
possibilities.

I If |Ci ∩ Cj| = 3, in the same manner, we have

cov(Xi,Xj) ≤ p9,

and there are
(n

5

)
sets of 5 vertices and each one of these with

( 5
3;1;1

)
possibilities.
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var[X] ≤ E[X] +
∑
i6=j

cov(Xi,Xj)

≤
(

n
4

)
· p6 +

(
n
6

)(
6

2; 2; 2

)
p11 +

(
n
5

)(
5

3; 1; 1

)
p9 + 0

= o(n8p12)

As (E[X])2 = (
(n

4

)
· p6)2 = Θ(n8p12), we have that

Pr(X = 0) ≤ var[X]
(E[X])2 = o(1).

Flávio Keidi Miyazawa (Unicamp) Randomized Algorithms Campinas, 2018 289 / 296



6.6

THE CONDITIONAL EXPECTATION INEQUALITY

I For sum of Bernoulli r.v.
I Easier to apply than the Second Moment Method.
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Theorem: Let X =
∑n

i=1 Xi, where Xi is binary r.v. Then

Pr(X > 0) ≥
n∑

i=1

Pr(Xi = 1)
E[X|Xi = 1]

.

Obs.: r.v.s Xi’s do not need to be independent.
Proof.
Let Y = 1

X if X > 0 and Y = 0 otherwise. Then

Pr(X > 0) = E[X · Y] =
n∑

i=1

E[Xi · Y]

=

n∑
i=1

(E[Xi · Y |Xi = 1] · Pr(Xi = 1) + E[Xi · Y |Xi = 0] · Pr(Xi = 0))

=

n∑
i=1

E[Y |Xi = 1] · Pr(Xi = 1)
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So,

Pr(X > 0) =

n∑
i=1

E[Y |Xi = 1] · Pr(Xi = 1)

=

n∑
i=1

E[
1
X
|Xi = 1] · Pr(Xi = 1)

≥
n∑

i=1

1
E[X|Xi = 1]

· Pr(Xi = 1)

where the last inequality follows from the Jensen Inequality and the fact that
f (x) = 1

x is convex.
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6.6

An alternative proof for part b) of the theorem:

Theorem: Consider a graph Gn,p, with p = f (n) and a property Π that
indicates if the graph has a clique of size at least 4.

a) If f (n) = o
(

1
n2/3

)
then for ε > 0 and sufficiently large n, Pr(Π(G)) ≤ ε.

b) If f (n) = ω
(

1
n2/3

)
then for ε > 0 and sufficiently large n, Pr(Π(G)) ≤ ε.
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I Let C1, . . . ,C(n
4)

all set of 4 vertices.

I Let Xi r.v. that indicates if Ci is a clique in G and let X =
∑

i Xi.

I In case b), we have p = f (n) = ω
(

1
n2/3

)
.

I To use the previous theorem, we calculate Pr(Xi = 1) and E[X|Xi = 1].
I For a set Ci, we have

Pr(Xi = 1) = p6
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We calculate E[X|Xj = 1]. To this end, we consider each Pr(Xi = 1|Xj = 1),
when Ci intersects or not set Cj.

I There are
(n−4

4

)
sets Ci that do not intersect Cj. Each one with

probability p6.
I There are

(4
1

)(n−3
3

)
sets Ci that intersect Cj in exactly 1 vertex. Each one

with probability p6.
I There are

(4
2

)(n−4
2

)
sets Ci that intersect Cj in exactly 2 vertices. Each

one with probability p5.
I There are

(4
3

)(n−4
1

)
sets Ci that intersect Cj in exactly 3 vertices. Each

one with probability p3.
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Summing up, we have

E[X|Xj = 1] =
(n

4)∑
i=1

E[Xi|Xj = 1]

= 1+
(

n−4
4

)
p6+4

(
n−4

3

)
p6+6

(
n−4

2

)
p5+4

(
n−4

1

)
p3.

Applying the theorem, we have

Pr(X > 0) ≥
(n

4

)
p6

1 +
(n−4

4

)
p6 + 4

(n−4
3

)
p6 + 6

(n−4
2

)
p5 + 4

(n−4
1

)
p3
.

That tends to 1 as n→∞
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