

UNIVERSIDADE DE CAMPINAS - UNICAMP INSTITUTO DE COMPUTAÇÃO - IC

Introdução a Teoria dos Jogos Algorítmica

Flávio Keidi Miyazawa

Campinas, 2010

Sumário

- Introdução
- 2 Jogos Clássicos
- Conceitos Básicos
- 4 Complexidade Computacional de se achar Equilíbrio
- Medidas do Equilíbrio
- Jogo de Balanceamento de Carga
- Jogo de Conexão Global e Jogos Potenciais
- Projeto de Mecanismos
- Oaminho Mínimo
- Leilões Combinatoriais

Algorithmic Game Theory
Eds. Nisan, Rougharden, Tardos, Vazirani'07
www.cambridge.org/journals/nisan/
downloads/Nisan_Non-printable.pdf

Teoria dos Jogos Algorítmica

- Teoria dos Jogos
- ▶ Complexidade de Algoritmos

Algorithmic Game Theory
Eds. Nisan, Rougharden, Tardos, Vazirani'07
www.cambridge.org/journals/nisan/
downloads/Nisan_Non-printable.pdf

Teoria dos Jogos Algorítmica

- Teoria dos Jogos
- Complexidade de Algoritmos

John von Neumann

- Computação (Arq. de Computadores, Projeto de Algoritmos,...)
- Teoria dos Jogos
- e muitas outras ...

Internet:

- Rede gigantesca com grande quantidade de usuários e complexa estrutura sócio-econômica
- Usuários podem ser competitivos, cooperativos,...
- Situações envolvendo Teoria dos Jogos e Computação
- Controle descentralizado

Dificuldades

- Quantidade de recursos e usuários envolvidos é em geral muito grande
- Modelos e soluções da Teoria dos Jogos tradicional nem sempre são adequados

Internet:

- ▶ Rede gigantesca com grande quantidade de usuários e complexa estrutura sócio-econômica
- Usuários podem ser competitivos, cooperativos,...
- Situações envolvendo Teoria dos Jogos e Computação
- Controle descentralizado

Dificuldades:

- Quantidade de recursos e usuários envolvidos é em geral muito grande
- Modelos e soluções da Teoria dos Jogos tradicional nem sempre são adequados

Internet:

- Rede gigantesca com grande quantidade de usuários e complexa estrutura sócio-econômica
- Usuários podem ser competitivos, cooperativos,...
- Situações envolvendo Teoria dos Jogos e Computação
- Controle descentralizado

Dificuldades:

- Quantidade de recursos e usuários envolvidos é em geral muito grande
- Modelos e soluções da Teoria dos Jogos tradicional nem sempre são adequados

Jogos Clássicos e Conceitos Básicos

Dilema dos Prisioneiros

- Dois prisioneiros estão sendo julgados por um crime
- Ambos são questionados separadamente
- Cada prisioneiro tem duas escolhas:
 - Confessar o crime
 - Ficar em Silêncio

Confessar/Silêncio?

Temos 4 possibilidades se A e/ou B confessam

A e B confessam

- ► É possível julgar todos os crimes
- ► A e B ficam 4 anos preso

A e B ficam em silêncio

- Não é possível julgar todos os crimes
- ▶ A e B ficam presos 2 anos, por crimes menores

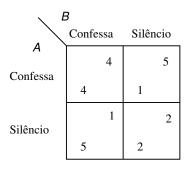
A confessa e B fica em silêncio

- A é usado como testemunha contra B
- ▶ A fica 1 ano preso por colaborar
- ▶ B fica 5 anos preso

A fica em silêncio e B confessa

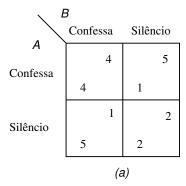
- B é usado como testemunha contra A
- ► A fica 5 anos preso
- ▶ B fica 1 ano preso por colaborar

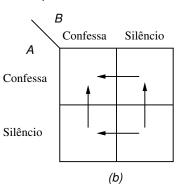
- Jogadores: Prisioneiros A e B
- Custo/Penalidade: Quantidade de anos preso



Escolha da estratégia (opções)

- Jogadores: Prisioneiros A e B
- Custo/Penalidade: Quantidade de anos preso

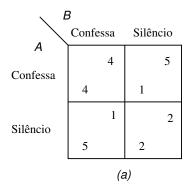


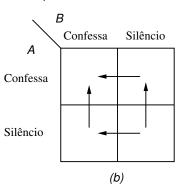


- ► Existe uma configuração em equilíbrio: Ambos confessam
- ▶ Duas vezes pior que a configuração com ambos em Silêncio

Escolha da estratégia (opções)

- Jogadores: Prisioneiros A e B
- Custo/Penalidade: Quantidade de anos preso

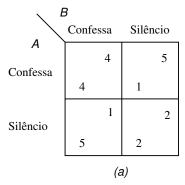


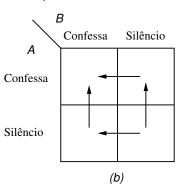


- Existe uma configuração em equilíbrio: Ambos confessam
- ▶ Duas vezes pior que a configuração com ambos em Silêncio

Escolha da estratégia (opções)

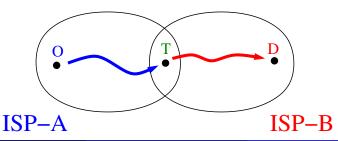
- Jogadores: Prisioneiros A e B
- Custo/Penalidade: Quantidade de anos preso





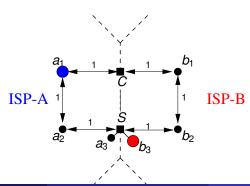
- Existe uma configuração em equilíbrio: Ambos confessam
- Duas vezes pior que a configuração com ambos em Silêncio

- Provedor de serviço de Internet (ISP) controle a transmissão dentro de sua rede.
- Transmissão dentro da mesma rede é feita só pelo ISP correspondente
- Há pontos de troca, pertencentes a redes adjacentes
- Comportamento racional: Provedor envia para o ponto de troca mais próximo



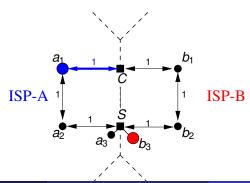
Uma transmissão: $a1 \longrightarrow b_3$

- ▶ ISP-A controla transmissão entre *C*, *a*₁, *a*₂, *a*₃ e *S*
- ► ISP-B controla transmissão entre C, b₁, b₂, b₃ e S
- ▶ Pontos de Troca: C e S
- ▶ ISP-A é racional: Escolhe rota por *C*



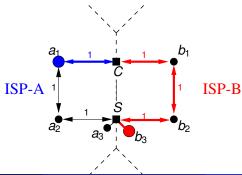
Uma transmissão: $a1 \longrightarrow b_3$

- ► ISP-A controla transmissão entre C, a₁, a₂, a₃ e S
- ▶ ISP-B controla transmissão entre *C*, *b*₁, *b*₂, *b*₃ e *S*
- Pontos de Troca: C e S
- ► ISP-A é racional: Escolhe rota por C
 - Custo para ISP-A: 1
 - Custo para ISP-B: 3



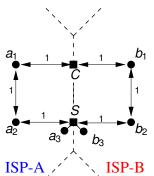
Uma transmissão: $a1 \longrightarrow b_3$

- ▶ ISP-A controla transmissão entre *C*, *a*₁, *a*₂, *a*₃ e *S*
- ▶ ISP-B controla transmissão entre *C*, *b*₁, *b*₂, *b*₃ e *S*
- Pontos de Troca: C e S
- ► ISP-A é racional: Escolhe rota por C
 - Custo para ISP-A: 1
 - Custo para ISP-B: 3



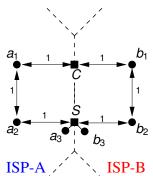
Duas transmissões: $a_1 \longrightarrow b_3$ e $b_1 \longrightarrow a_3$

- ▶ Se ISP-A e ISP-B são racionais, ambos enviam por C
- ► Custo para ISP-A: 1+3=41 do envio de $a_1 \rightarrow b_3 + 3$ do envio de $b_1 \rightarrow a_3$
- ► Custo para ISP-B: 3+1=43 do envio de $a_1 \rightarrow b_3 + 1$ do envio de $b_1 \rightarrow a_3$



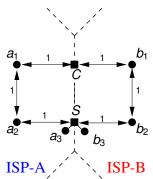
Duas transmissões: $a_1 \longrightarrow b_3$ e $b_1 \longrightarrow a_3$

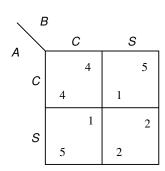
- Se ISP-A e ISP-B são racionais, ambos enviam por C
- ► Custo para ISP-A: 1+3=4 1 do envio de $a_1 \rightarrow b_3 + 3$ do envio de $b_1 \rightarrow a_3$
- ► Custo para ISP-B: 3+1=43 do envio de $a_1 \rightarrow b_3 + 1$ do envio de $b_1 \rightarrow a_3$



Duas transmissões: $a_1 \longrightarrow b_3$ e $b_1 \longrightarrow a_3$

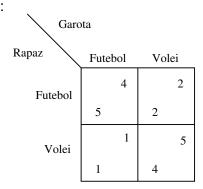
- Se ISP-A e ISP-B são racionais, ambos enviam por C
- ► Custo para ISP-A: 1+3=4 1 do envio de $a_1 \rightarrow b_3 + 3$ do envio de $b_1 \rightarrow a_3$
- ► Custo para ISP-B: 3+1=43 do envio de $a_1 \rightarrow b_3 + 1$ do envio de $b_1 \rightarrow a_3$





Batalha dos Sexos

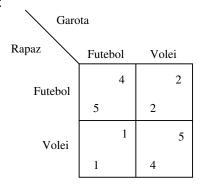
- Rapaz e Garota querem assistir uma partida de Vôlei ou Futebol
- Rapaz tem preferência por Futebol
- Garota tem preferência por Vôlei
- Ambos preferem ficar juntos que separados
- Matriz de benefício:



Há duas configurações em equilíbrio, com benefícios médios iguais

Batalha dos Sexos

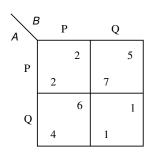
- Rapaz e Garota querem assistir uma partida de Vôlei ou Futebol
- Rapaz tem preferência por Futebol
- Garota tem preferência por Vôlei
- Ambos preferem ficar juntos que separados
- Matriz de benefício:



▶ Há duas configurações em equilíbrio, com benefícios médios iguais

Jogo de Congestionamento

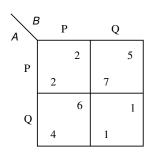
- Há 2 pontos de transmissão: P e Q
- Ponto de transmissão P é um pouco mais rápido que Q
- Há 2 usuários querendo transmitir seus pacotes: A e B
- Usuário A tem mais urgência que B
- Matriz de benefício:



▶ Duas configurações em equilíbrio, com benefícios médios diferentes

Jogo de Congestionamento

- Há 2 pontos de transmissão: P e Q
- Ponto de transmissão P é um pouco mais rápido que Q
- Há 2 usuários querendo transmitir seus pacotes: A e B
- Usuário A tem mais urgência que B
- Matriz de benefício:



Duas configurações em equilíbrio, com benefícios médios diferentes

Cara ou Coroa

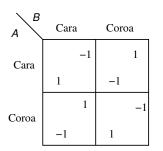
- Dois jogadores, A e B, cada um com uma moeda
- Cada jogador escolhe um dos lados da moeda para mostrar
- A ganha se as moedas tem a mesma face
- B ganha se as moedas tem a faces diferentes
- Matriz de benefício (1 = ganho, -1 = derrota)

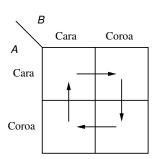
Cara ou Coroa

- Dois jogadores, A e B, cada um com uma moeda
- Cada jogador escolhe um dos lados da moeda para mostrar
- A ganha se as moedas tem a mesma face
- B ganha se as moedas tem a faces diferentes
- Matriz de benefício (1 = ganho. -1 = derrota

Cara ou Coroa

- ▶ Dois jogadores, A e B, cada um com uma moeda
- Cada jogador escolhe um dos lados da moeda para mostrar
- A ganha se as moedas tem a mesma face
- ▶ B ganha se as moedas tem a faces diferentes
- ► Matriz de benefício (1 = ganho, -1 = derrota)

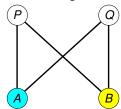




Não há configuração (determinística) em equilíbrio

Jogos de Congestionamento

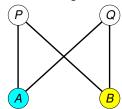
- Há 2 pontos de transmissão: P e Q
- Dois usuários, A e B, querem transmitir dados
- Ponto de transmissão P é mais rápido que Q
- ► Se ambos usuários transmitem pelo mesmo ponto, temos demora na transmissão (congestionamento) e o serviço não é cobrado.
- Usuário A é rico e tem urgência
- ▶ Usuário **B** é pobre e não tem urgência



Não há configuração (determinística) em equilíbrio:
 A foge de B e B persegue A

Jogos de Congestionamento

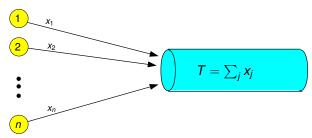
- Há 2 pontos de transmissão: P e Q
- Dois usuários, A e B, querem transmitir dados
- Ponto de transmissão P é mais rápido que Q
- ► Se ambos usuários transmitem pelo mesmo ponto, temos demora na transmissão (congestionamento) e o serviço não é cobrado.
- Usuário A é rico e tem urgência
- ▶ Usuário **B** é pobre e não tem urgência



Não há configuração (determinística) em equilíbrio:
 A foge de B e B persegue A

Tragédia dos Comuns - Compartilhamento de Banda

- n jogadores querem transmitir dados por um cabo
- Capacidade de transmissão do cabo = 1
- x_i é a quantidade de banda requisitada pelo jogador i
- ▶ Total requisitado: $T = \sum_i x_i$



Tragédia dos Comuns - Compartilhamento de Banda

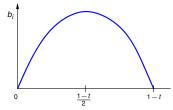
- Qualidade da transmissão piora a medida que se aproxima da capacidade do cabo (diminui o benefício dos jogadores).
- ► Total requisitado: $T = \sum_i x_i$
- ▶ Se $T = \sum_{i=1}^{n} x_i > 1$ benefício de cada jogador é 0
- ▶ Caso contrário, benefício do jogador i é $b_i = x_i(1 \sum_{i=1}^n x_i)$.

Tragédia dos Comuns - Compartilhamento de Banda

- Qualidade da transmissão piora a medida que se aproxima da capacidade do cabo (diminui o benefício dos jogadores).
- ▶ Total requisitado: $T = \sum_i x_i$
- ► Se $T = \sum_{i=1}^{n} x_i > 1$ benefício de cada jogador é 0
- ► Caso contrário, benefício do jogador i é $b_i = x_i(1 \sum_{i=1}^n x_i)$

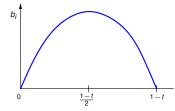
- Qualidade da transmissão piora a medida que se aproxima da capacidade do cabo (diminui o benefício dos jogadores).
- ▶ Total requisitado: $T = \sum_i x_i$
- ► Se $T = \sum_{i=1}^{n} x_i > 1$ benefício de cada jogador é 0
- ► Caso contrário, benefício do jogador $i \notin b_i = x_i(1 \sum_{i=1}^n x_i)$.

- ▶ O jogador i é racional: Quer maximizar b_i.
- Se t é a requisição total dos outros jogadores $t = \sum_{j \neq i} x_i$ então $b_i = x_i (1 \sum_{j=1}^n x_j) = x_i (1 t x_i)$ é máximo quando $x_i = \frac{1-t}{2}$.



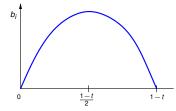
- ▶ Jogadores racionais $\Rightarrow x_i = \frac{1}{n+1}$ para todo *i*
- ▶ Benefício individual: $b_i = \frac{1}{n+1}(1 n\frac{1}{n+1}) = \frac{1}{(n+1)^2}$
- ▶ Benefício total: $B = \sum_{j} b_{j} = n \frac{1}{(n+1)^{2}} \approx \frac{1}{n}$

- ▶ O jogador i é racional: Quer maximizar b_i.
- ▶ Se t é a requisição total dos outros jogadores $t = \sum_{j \neq i} x_i$ então $b_i = x_i (1 \sum_{j=1}^n x_j) = x_i (1 t x_i)$ é máximo quando $x_i = \frac{1-t}{2}$.



- ▶ Jogadores racionais $\Rightarrow x_i = \frac{1}{n+1}$ para todo *i*
- ▶ Benefício individual: $b_i = \frac{1}{n+1}(1 n\frac{1}{n+1}) = \frac{1}{(n+1)^2}$
- ▶ Benefício total: $B = \sum_{j} b_{j} = n \frac{1}{(n+1)^{2}} \approx \frac{1}{n}$

- ▶ O jogador i é racional: Quer maximizar b_i.
- Se t é a requisição total dos outros jogadores $t = \sum_{j \neq i} x_i$ então $b_i = x_i (1 \sum_{j=1}^n x_j) = x_i (1 t x_i)$ é máximo quando $x_i = \frac{1-t}{2}$.



- ▶ Jogadores racionais $\Rightarrow x_i = \frac{1}{n+1}$ para todo *i*
- ▶ Benefício individual: $b_i = \frac{1}{n+1}(1 n\frac{1}{n+1}) = \frac{1}{(n+1)^2}$
- ▶ Benefício total: $B = \sum_{j} b_{j} = n \frac{1}{(n+1)^{2}} \approx \frac{1}{n}$

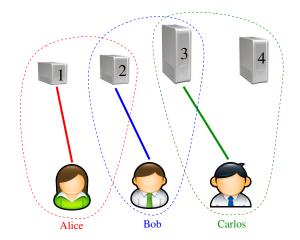
- ► Se tivermos $x_i = \frac{1}{2n}$ então
- ► Temos uma solução viável: $T = n \frac{1}{2n} = \frac{1}{2} < 1$
- ▶ benefício individual: $b_i = \frac{1}{2n}(1 T) = \frac{1}{4n}$
- ► Benefício total: $B = \sum_{j} b_{j} = \frac{1}{4}$
- ▶ Aprox. $\frac{n}{4}$ vezes melhor que solução em equilíbrio (com $B \approx \frac{1}{n}$)

- ▶ Se tivermos $x_i = \frac{1}{2n}$ então
- ► Temos uma solução viável: $T = n \frac{1}{2n} = \frac{1}{2} < 1$
- ▶ benefício individual: $b_i = \frac{1}{2n}(1 T) = \frac{1}{4n}$
- ► Benefício total: $B = \sum_{j} b_{j} = \frac{1}{4}$
- ► Aprox. $\frac{n}{4}$ vezes melhor que solução em equilíbrio (com $B \approx \frac{1}{n}$).

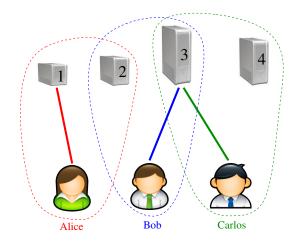
Jogos Sequenciais

Exemplo: Compartilhamento de Banda

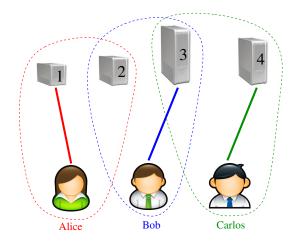
- Jogadores se alternam nas suas escolhas
- Suponha que é inviável um usuário saber as requisições dos outros jogadores.
- Mas conhece a capacidade total requisitada no canal
- Numero de passos infinito
- ▶ Converge para a solução em equilíbrio de benefício total $B \approx \frac{1}{n}$



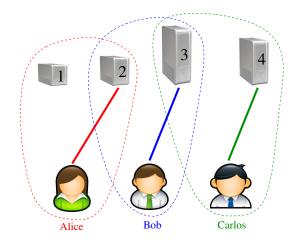
Bob está transferindo a partir do servidor 2 e percebe que migrar para o 3 é melhor, mesmo compartilhando com Carlos



Após Bob migrar, o servidor 3 fica mais carregado e Carlos percebe que é melhor migrar para o 4



Após Bob migrar, o servidor 2 fica livre e Alice percebe que é melhor migrar para o 2 (antes não era interessante)



Configuração final em equilíbrio

Jogos Repetidos

- Um jogo é repetido entre os jogadores várias vezes
- Podemos manter um histórico das partidas anteriores
- Custo total é o custo total obtido em todas as partidas

Numero finito de partidas

- A última partida sempre vale a pena confessar
- Sabendo disso, vale a pena confessar na penúltima partida...
- ▶ Única solução em equilíbrio: Confessar sempre

Numero infinito ou desconhecido de partidas

- Pode valer a pena ficar em silêncio e formar uma reputação
- Idéia: A traição de um prisioneiro será retaliada pelo outro nas próximas partidas.
- ► Regra do "Olho por Olho"
- Na primeira partida, escolha Silêncio
- Nas próximas partidas use a mesma escolha do outro prisioneiro na partida anterior

Numero infinito ou desconhecido de partidas

- Pode valer a pena ficar em silêncio e formar uma reputação
- Idéia: A traição de um prisioneiro será retaliada pelo outro nas próximas partidas.
- Regra do "Olho por Olho"
- Na primeira partida, escolha Silêncio
- Nas próximas partidas use a mesma escolha do outro prisioneiro na partida anterior

Numero infinito ou desconhecido de partidas

- Pode valer a pena ficar em silêncio e formar uma reputação
- Idéia: A traição de um prisioneiro será retaliada pelo outro nas próximas partidas.
- Regra do "Olho por Olho"
- Na primeira partida, escolha Silêncio
- Nas próximas partidas use a mesma escolha do outro prisioneiro na partida anterior

- Um usuário pode transferir arquivos da Internet
- Mas tem incentivo a disponibilizá-lo a partir de seu computador minimizando o trafego no geral, sendo mais uma alternativa
- Para incentivar que usuários também disponibilizem, o sistema mantém a reputação de um usuário
- Quando número de usuários chega ao máximo e há requisição de novo usuário com reputação melhor, o sistema interromperá a transmissão de um usuário com reputação pior
- Usuários tentarão cooperar, para não serem retaliados no futuro

- Um usuário pode transferir arquivos da Internet
- Mas tem incentivo a disponibilizá-lo a partir de seu computador minimizando o trafego no geral, sendo mais uma alternativa
- Para incentivar que usuários também disponibilizem, o sistema mantém a reputação de um usuário
- Quando número de usuários chega ao máximo e há requisição de novo usuário com reputação melhor, o sistema interromperá a transmissão de um usuário com reputação pior
- Usuários tentarão cooperar, para não serem retaliados no futuro

- Um usuário pode transferir arquivos da Internet
- Mas tem incentivo a disponibilizá-lo a partir de seu computador minimizando o trafego no geral, sendo mais uma alternativa
- Para incentivar que usuários também disponibilizem, o sistema mantém a reputação de um usuário
- Quando número de usuários chega ao máximo e há requisição de novo usuário com reputação melhor, o sistema interromperá a transmissão de um usuário com reputação pior
- Usuários tentarão cooperar, para não serem retaliados no futuro

- Um usuário pode transferir arquivos da Internet
- Mas tem incentivo a disponibilizá-lo a partir de seu computador minimizando o trafego no geral, sendo mais uma alternativa
- Para incentivar que usuários também disponibilizem, o sistema mantém a reputação de um usuário
- Quando número de usuários chega ao máximo e há requisição de novo usuário com reputação melhor, o sistema interromperá a transmissão de um usuário com reputação pior
- ▶ Usuários tentarão cooperar, para não serem retaliados no futuro

- Um usuário pode transferir arquivos da Internet
- Mas tem incentivo a disponibilizá-lo a partir de seu computador minimizando o trafego no geral, sendo mais uma alternativa
- Para incentivar que usuários também disponibilizem, o sistema mantém a reputação de um usuário
- Quando número de usuários chega ao máximo e há requisição de novo usuário com reputação melhor, o sistema interromperá a transmissão de um usuário com reputação pior
- Usuários tentarão cooperar, para não serem retaliados no futuro

- ▶ jogadores: Dado por conjunto N = {1,...,n}
- estratégia: Escolha de um jogador
 Cada jogador i tem conjunto de estratégias S
- vetor de estratégia ou resultado do jogo: Uma configuração do jogo, onde cada jogador escolheu uma estratégia
- ▶ conjunto de resultados: $S = S_1 \times S_2 \times ... \times S_n$

- ▶ jogadores: Dado por conjunto N = {1,...,n}
- estratégia: Escolha de um jogador
 Cada jogador i tem conjunto de estratégias Si
- vetor de estratégia ou resultado do jogo: Uma configuração do jogo, onde cada jogador escolheu uma estratégia
- ightharpoonup conjunto de resultados: $S = S_1 \times S_2 \times \ldots \times S_n$

- ▶ jogadores: Dado por conjunto N = {1,...,n}
- estratégia: Escolha de um jogador
 Cada jogador i tem conjunto de estratégias Si
- vetor de estratégia ou resultado do jogo: Uma configuração do jogo, onde cada jogador escolheu uma estratégia
- ightharpoonup conjunto de resultados: $S = S_1 \times S_2 \times \ldots \times S_n$

- ▶ jogadores: Dado por conjunto N = {1,...,n}
- estratégia: Escolha de um jogador
 Cada jogador i tem conjunto de estratégias Si
- vetor de estratégia ou resultado do jogo: Uma configuração do jogo, onde cada jogador escolheu uma estratégia
- ▶ conjunto de resultados: $S = S_1 \times S_2 \times ... \times S_n$

- Jogador deve ter uma ordem de preferência dos resultados
- Em geral dado por uma função de utilidade/benefício ou custo
- função de utilidade do jogador $i: u_i: S \to \mathbb{R}$ jogador quer maximizar sua utilidade/benefício
- ▶ Se $u_i(s) > u_i(s')$ então jogador i prefere resultado s a s'.
- ▶ pode ser dada por função de custo do jogador i: $c_i(s) = -u_i(s)$ jogador quer minimizar seu custo

- Jogador deve ter uma ordem de preferência dos resultados
- Em geral dado por uma função de utilidade/benefício ou custo
- ▶ função de utilidade do jogador $i: u_i: S \to \mathbb{R}$ jogador quer maximizar sua utilidade/benefícid
- ► Se $u_i(s) > u_i(s')$ então jogador i prefere resultado s a s'.
- ▶ pode ser dada por função de custo do jogador i: $c_i(s) = -u_i(s)$ jogador quer minimizar seu custo

- Jogador deve ter uma ordem de preferência dos resultados
- Em geral dado por uma função de utilidade/benefício ou custo
- ▶ função de utilidade do jogador $i: u_i: S \to \mathbb{R}$ jogador quer maximizar sua utilidade/benefício
- ▶ Se $u_i(s) > u_i(s')$ então jogador i prefere resultado s a s'.
- ▶ pode ser dada por função de custo do jogador i: $c_i(s) = -u_i(s)$ jogador quer minimizar seu custo

- Jogador deve ter uma ordem de preferência dos resultados
- Em geral dado por uma função de utilidade/benefício ou custo
- ▶ função de utilidade do jogador $i: u_i: S \to \mathbb{R}$ jogador quer maximizar sua utilidade/benefício
- ▶ Se $u_i(s) > u_i(s')$ então jogador i prefere resultado s a s'.
- ▶ pode ser dada por função de custo do jogador i: $c_i(s) = -u_i(s)$ jogador quer minimizar seu custo

- Jogador deve ter uma ordem de preferência dos resultados
- Em geral dado por uma função de utilidade/benefício ou custo
- ▶ função de utilidade do jogador $i: u_i: S \to \mathbb{R}$ jogador quer maximizar sua utilidade/benefício
- ▶ Se $u_i(s) > u_i(s')$ então jogador i prefere resultado s a s'.
- ▶ pode ser dada por função de custo do jogador i: $c_i(s) = -u_i(s)$ jogador quer minimizar seu custo

Def.: Um jogo J consiste de

- um conjunto N de jogadores
- conjunto de estratégias S_i, para cada jogador
- função de utilidade u_i sobre o conjunto de resultados, para cada jogador

- Se s e r são indexados nos jogadores l.e., $s = (s_1, \ldots, s_n)$ e $r = (r_1, \ldots, r_n)$ então
- $\triangleright s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$
- \triangleright $(s_{-i}, r_i) = (s_1, \ldots, s_{i-1}, r_i, s_{i+1}, \ldots, s_n)$

Def.: Um jogo J consiste de

- um conjunto N de jogadores
- conjunto de estratégias S_i, para cada jogador
- função de utilidade u_i sobre o conjunto de resultados, para cada jogador

- Se s e r são indexados nos jogadores l.e., $s = (s_1, ..., s_n)$ e $r = (r_1, ..., r_n)$
 - então
- $ightharpoonup s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$
- \triangleright $(s_{-i}, r_i) = (s_1, \ldots, s_{i-1}, r_i, s_{i+1}, \ldots, s_n)$

Def.: Um jogo J consiste de

- um conjunto N de jogadores
- conjunto de estratégias S_i, para cada jogador
- função de utilidade u_i sobre o conjunto de resultados, para cada jogador

- Se s e r são indexados nos jogadores l.e., $s = (s_1, \ldots, s_n)$ e $r = (r_1, \ldots, r_n)$ então
- $ightharpoonup s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$

Def.: Um jogo J consiste de

- um conjunto N de jogadores
- conjunto de estratégias S_i, para cada jogador
- função de utilidade u_i sobre o conjunto de resultados, para cada jogador

- Se s e r são indexados nos jogadores l.e., $s = (s_1, \ldots, s_n)$ e $r = (r_1, \ldots, r_n)$ então
- $ightharpoonup s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$
- $(s_{-i}, r_i) = (s_1, \ldots, s_{i-1}, r_i, s_{i+1}, \ldots, s_n)$

Exemplo: Dilema dos Prisioneiros

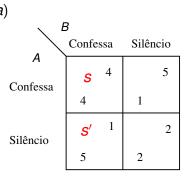
- ▶ Conjunto de jogadores N = {A, B}
- Conjuntos de estratégias para cada jogador:
 S_A = {Confessa, Silêncio} e S_B = {Confessa, Silêncio}
- Preferências: função de custo da quantidade de anos preso
- Suponha que temos a ordem

s =
$$(s_A, s_B)$$
 = (Confessa, Confessa) e

s' = (s'_A, s'_B) = (Silêncio, Confessa) então

 $c_A(s) = 4, c_B(s) = 4$
 $c_A(s') = 5, c_B(s') = 1,$

A prefere s a s' , pois $c_A(s) < c_A(s')$.



- estratégia dominante: Estratégia que é sempre preferível para um jogador.
- estratégia dominante

Dilema dos Prisioneiros: Confessa

Jogos com estratégias puras

- Cada jogador escolhe (a cada momento) apenas uma estratégia
- Cada estratégia é uma estratégia pura

Exemplo: Dilema dos Prisioneiros

Confessa ou Silêncio

Jogos com estratégias puras

- Cada jogador escolhe (a cada momento) apenas uma estratégia
- Cada estratégia é uma estratégia pura

Exemplo: Dilema dos Prisioneiros

Confessa ou Silêncio

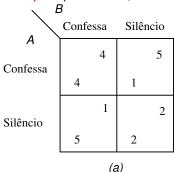
Em relação a um vetor de estratégia s, dizemos que o jogador i está

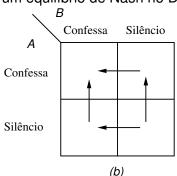
- ▶ satisfeito: se não há outra estratégia melhor para ele Formalmente: $u_i(s'_i, s_{-i}) \le u_i(s)$, para todo $s'_i \in S_i$
- insatisfeito: caso contrário

Em relação a um vetor de estratégia s, dizemos que o jogador i está

- ▶ satisfeito: se não há outra estratégia melhor para ele Formalmente: $u_i(s'_i, s_{-i}) \le u_i(s)$, para todo $s'_i \in S_i$
- ▶ insatisfeito: caso contrário

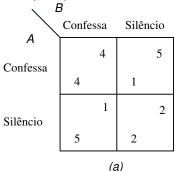
- Equilíbrio de Nash: Resultado onde todos os jogadores estão satisfeitos
- Exemplo: (Confessa, Confessa) é um equilíbrio de Nash no D.P.

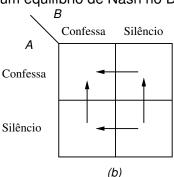




▶ Formalmente: s está em equilíbrio de Nash se $u_i(s) \ge u_i(s'_i, s_{-i})$ para todo jogador i e toda estratégia $s'_i \in S_i$

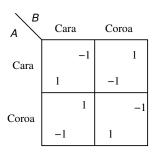
- Equilíbrio de Nash: Resultado onde todos os jogadores estão satisfeitos
- Exemplo: (Confessa, Confessa) é um equilíbrio de Nash no D.P.

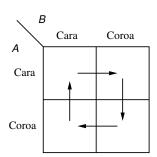




► Formalmente: s está em equilíbrio de Nash se $u_i(s) \ge u_i(s'_i, s_{-i})$ para todo jogador i e toda estratégia $s'_i \in S_i$

Não há equilíbrio com estratégias puras no jogo "Cara ou Coroa"





- Escolha usando probabilidades
- Jogador i escolhe distribuição de probabilidade pi nas estratégia pur (para cada estratégia pura i define uma probabilidade)
- Isto define uma distribuição para os resultados
- O jogador quer
 - maximizar o benefício esperado
 - ► OU
 - minimizar o custo esperado

- ► Escolha usando probabilidades
- Jogador i escolhe distribuição de probabilidade pi nas estratégia pur (para cada estratégia pura i define uma probabilidade)
- Isto define uma distribuição para os resultados
- ▶ O jogador quer
 - maximizar o benefício esperado
 - ou
 - minimizar o custo esperado

- p_i é a distribuição de probabilidade do jogador i,
- $ho = (p_1, p_2, \dots, p_n)$ é o vetor das distribuições dos jogadores
- \triangleright cada resultado s tem uma probabilidade p(s) de ocorrer

$$p(s) = p_1(s) \cdot p_2(s) \cdot \ldots \cdot p_n(s)$$

Valor esperado do benefício U₁ para o jogador i:

$$E[U_i(p)] = \sum_{s \in S} p(s) \cdot u_i(s)$$

- p_i é a distribuição de probabilidade do jogador i,
- $ho = (p_1, p_2, \dots, p_n)$ é o vetor das distribuições dos jogadores,
- \triangleright cada resultado s tem uma probabilidade p(s) de ocorrei

$$p(s) = p_1(s) \cdot p_2(s) \cdot \ldots \cdot p_n(s)$$

Valor esperado do benefício *U_i* para o jogador *i*:

$$E[U_i(p)] = \sum_{s \in S} p(s) \cdot u_i(s).$$

- p_i é a distribuição de probabilidade do jogador i,
- $ho = (p_1, p_2, \dots, p_n)$ é o vetor das distribuições dos jogadores,
- \triangleright cada resultado s tem uma probabilidade p(s) de ocorrer

$$p(s) = p_1(s) \cdot p_2(s) \cdot \ldots \cdot p_n(s)$$

▶ Valor esperado do benefício *U_i* para o jogador *i*:

$$E[U_i(p)] = \sum_{s \in S} p(s) \cdot u_i(s).$$

- p_i é a distribuição de probabilidade do jogador i,
- $p = (p_1, p_2, \dots, p_n)$ é o vetor das distribuições dos jogadores,
- \triangleright cada resultado s tem uma probabilidade p(s) de ocorrer

$$p(s) = p_1(s) \cdot p_2(s) \cdot \ldots \cdot p_n(s)$$

Valor esperado do benefício U_i para o jogador i:

$$E[U_i(p)] = \sum_{s \in S} p(s) \cdot u_i(s).$$

- Jogo com estratégias puras é caso particular
- ▶ Se jogador i escolhe estratégia pura si, basta definir
 - ▶ Probabilidade $p_i(s_i) = 1$ e
 - Probabilidade $p_i(s_i') = 0$ para todo $s_i' \neq s_i$

- Jogo com estratégias puras é caso particular
- Se jogador i escolhe estratégia pura si, basta definir
 - ▶ Probabilidade $p_i(s_i) = 1$ e
 - ▶ Probabilidade $p_i(s_i') = 0$ para todo $s_i' \neq s_i$

Definição: Um vetor $p = (p_1, \dots, p_n)$ das distribuições de probabilidade é um equilíbrio de Nash em estratégias mistas se

- ▶ troca de p_i por p'_i, não melhora o benefício esperado de i, para todo i
- ► $E[U_i(p'_i, p_{-i})] \le E[U_i(p)]$, para todo p'_i sobre S_i .

Exemplo: Cara ou Coroa

Jogador A ganha se faces são iguais e B ganha se diferentes

$$p_A(Cara) = 1/3$$
 $p_A(Coroa) = 2/3$
 $p_B(Cara) = 1/4$ $p_B(Coroa) = 3/4$

▶ A utilidade esperada de *A*, para $p = (p_A, p_B)$ é

$$E[U_{A}(p)] = u_{A}(Cara, Cara) \cdot Pr(Cara, Cara) + u_{A}(Cara, Coroa) \cdot Pr(Cara, Coroa) + u_{A}(Coroa, Cara) \cdot Pr(Coroa, Cara) + u_{A}(Coroa, Coroa) \cdot Pr(Coroa, Coroa)$$

$$= (+1)\frac{1}{3}\frac{1}{4} + (-1)\frac{1}{3}\frac{3}{4} + (-1)\frac{2}{3}\frac{1}{4}(-1) + (+1)\frac{2}{3}\frac{3}{4}$$

► Analogamente para jogador $B, E[U_B(p)] = \frac{-1}{6}$

Exemplo: Cara ou Coroa

▶ Jogador A ganha se faces são iguais e B ganha se diferentes

$$p_A(Cara) = 1/3$$
 $p_A(Coroa) = 2/3$
 $p_B(Cara) = 1/4$ $p_B(Coroa) = 3/4$

▶ A utilidade esperada de A, para $p = (p_A, p_B)$ é

$$\begin{split} E[U_A(p)] &= u_A(Cara, Cara) \cdot Pr(Cara, Cara) + \\ u_A(Cara, Coroa) \cdot Pr(Cara, Coroa) + \\ u_A(Coroa, Cara) \cdot Pr(Coroa, Cara) + \\ u_A(Coroa, Coroa) \cdot Pr(Coroa, Coroa) \\ &= (+1)\frac{1}{3}\frac{1}{4} + (-1)\frac{1}{3}\frac{3}{4} + (-1)\frac{2}{3}\frac{1}{4}(-1) + (+1)\frac{2}{3}\frac{3}{4} = \frac{1}{6} \end{split}$$

Analogamente para jogador $B, E[U_B(p)] = \frac{-1}{6}$

Exemplo: Cara ou Coroa

Jogador A ganha se faces são iguais e B ganha se diferentes

$$p_A(Cara) = 1/3$$
 $p_A(Coroa) = 2/3$
 $p_B(Cara) = 1/4$ $p_B(Coroa) = 3/4$

▶ A utilidade esperada de A, para $p = (p_A, p_B)$ é

$$\begin{split} E[U_A(p)] &= u_A(Cara, Cara) \cdot Pr(Cara, Cara) + \\ &u_A(Cara, Coroa) \cdot Pr(Cara, Coroa) + \\ &u_A(Coroa, Cara) \cdot Pr(Coroa, Cara) + \\ &u_A(Coroa, Coroa) \cdot Pr(Coroa, Coroa) \\ &= (+1)\frac{1}{3}\frac{1}{4} + (-1)\frac{1}{3}\frac{3}{4} + (-1)\frac{2}{3}\frac{1}{4}(-1) + (+1)\frac{2}{3}\frac{3}{4} = \frac{1}{6} \end{split}$$

► Analogamente para jogador B, $E[U_B(p)] = \frac{-1}{6}$.

Exemplo: Cara ou Coroa

► Suponha que A escolhe com probabilidade ½ cada estratégia

$$p_A(Cara) = 1/2$$
 $p_A(Coroa) = 1/2$

$$p_B(Cara) = \rho$$
 $p_B(Coroa) = 1 - \rho$

▶ Utilidade esperada de A é

$$E[U_A(p)] = (+1)\frac{1}{2}\rho + (-1)\frac{1}{2}(1-\rho) + (-1)\frac{1}{2}\rho + (+1)\frac{1}{2}(1-\rho) = 0$$

- ▶ Se A e B usarem distribuição $p_A = p_B = (1/2, 1/2)$ não há vantagem para um jogador mudar de distribuição
- ▶ Então: $p = (p_A, p_B)$ é um equilíbrio de Nash em estratégias mistas

Exemplo: Cara ou Coroa

Suponha que A escolhe com probabilidade ¹/₂ cada estratégia

$$p_A(Cara) = 1/2$$
 $p_A(Coroa) = 1/2$
 $p_B(Cara) = \rho$ $p_B(Coroa) = 1 - \rho$

► Utilidade esperada de A é

$$E[U_A(\rho)] = (+1)\frac{1}{2}\rho + (-1)\frac{1}{2}(1-\rho) + (-1)\frac{1}{2}\rho + (+1)\frac{1}{2}(1-\rho) = 0$$

- ▶ Se A e B usarem distribuição $p_A = p_B = (1/2, 1/2)$ não há vantagem para um jogador mudar de distribuição
- ▶ Então: $p = (p_A, p_B)$ é um equilíbrio de Nash em estratégias mistas

Exemplo: Cara ou Coroa

Suponha que A escolhe com probabilidade ½ cada estratégia

$$p_A(Cara) = 1/2$$
 $p_A(Coroa) = 1/2$
 $p_B(Cara) = \rho$ $p_B(Coroa) = 1 - \rho$

Utilidade esperada de A é

$$E[U_A(p)] = (+1)\frac{1}{2}\rho + (-1)\frac{1}{2}(1-\rho) + (-1)\frac{1}{2}\rho + (+1)\frac{1}{2}(1-\rho) = 0$$

- ► Se A e B usarem distribuição $p_A = p_B = (1/2, 1/2)$ não há vantagem para um jogador mudar de distribuição
- ▶ Então: $p = (p_A, p_B)$ é um equilíbrio de Nash em estratégias mistas

Exemplo: Cara ou Coroa

Suponha que A escolhe com probabilidade ¹/₂ cada estratégia

$$p_A(Cara) = 1/2$$
 $p_A(Coroa) = 1/2$
 $p_B(Cara) = \rho$ $p_B(Coroa) = 1 - \rho$

Utilidade esperada de A é

$$E[U_A(p)] = (+1)\frac{1}{2}\rho + (-1)\frac{1}{2}(1-\rho) + (-1)\frac{1}{2}\rho + (+1)\frac{1}{2}(1-\rho) = 0$$

- Se A e B usarem distribuição $p_A = p_B = (1/2, 1/2)$ não há vantagem para um jogador mudar de distribuição
- ▶ Então: $p = (p_A, p_B)$ é um equilíbrio de Nash em estratégias mistas

John F. Nash

Teorema: (Nash'51) Todo jogo com número finito de jogadores e estratégias possui um equilíbrio de Nash em estratégias mistas.

Complexidade de se encontrar equilíbrio de Nash

- ► Existência de equilíbrio
- Tempo de Convergência para se obter um equilíbrio
- Qualidade do equilíbrio atingido

Complexidade de se encontrar equilíbrio de Nash

- Existência de equilíbrio
- Tempo de Convergência para se obter um equilíbrio
- Qualidade do equilíbrio atingido

Complexidade de se encontrar equilíbrio de Nash

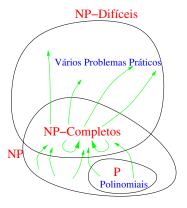
- Existência de equilíbrio
- Tempo de Convergência para se obter um equilíbrio
- Qualidade do equilíbrio atingido

- Complexidade Computacional: medida no tamanho da instância e.g. número de bits
- Algoritmos eficientes: Algoritmos de tempo polinomial
- ▶ Problemas NP-Completos e NP-Difíceis: Só se conhecem algoritmos de tempo exponencia

- Complexidade Computacional: medida no tamanho da instância e.g. número de bits
- Algoritmos eficientes: Algoritmos de tempo polinomial
- ▶ Problemas NP-Completos e NP-Difíceis: Só se conhecem algoritmos de tempo exponencia

- Complexidade Computacional: medida no tamanho da instância e.g. número de bits
- Algoritmos eficientes: Algoritmos de tempo polinomial
- Problemas NP-Completos e NP-Difíceis:
 Só se conhecem algoritmos de tempo exponencial

Possivel divisão de algumas classes de complexidade



► Conjectura de 1 Milhão US\$: P = NP ?

Problemas NP-difíceis

- Vários problemas práticos são NP-difíceis
 - Problema do Caixeiro Viajante
 - Atribuição de Freqüências em Telefonia Celular
 - Empacotamento de Objetos em Contêineres
 - Escalonamento de Funcionários em Turnos de Trabalho
 - Escalonamento de Tarefas em Computadores
 - Classificação de Objetos
 - Projetos de Redes de Computadores
 - vários outros e também
 - vários problemas que ocorrem em Teoria dos Jogos
- ► P≠NP ⇒ não existem algoritmos eficientes para problemas NP-Completos e NP-difíceis

Problemas NP-difíceis

- Vários problemas práticos são NP-difíceis
 - Problema do Caixeiro Viajante
 - Atribuição de Freqüências em Telefonia Celular
 - Empacotamento de Objetos em Contêineres
 - Escalonamento de Funcionários em Turnos de Trabalho
 - Escalonamento de Tarefas em Computadores
 - Classificação de Objetos
 - Projetos de Redes de Computadores
 - vários outros e também
 - vários problemas que ocorrem em Teoria dos Jogos
- ► P≠NP ⇒ não existem algoritmos eficientes para problemas NP-Completos e NP-difíceis

Problemas NP-difíceis

- Vários problemas práticos são NP-difíceis
 - Problema do Caixeiro Viajante
 - Atribuição de Freqüências em Telefonia Celular
 - Empacotamento de Objetos em Contêineres
 - Escalonamento de Funcionários em Turnos de Trabalho
 - Escalonamento de Tarefas em Computadores
 - Classificação de Objetos
 - Projetos de Redes de Computadores
 - vários outros e também
 - vários problemas que ocorrem em Teoria dos Jogos
- ► P≠NP ⇒ não existem algoritmos eficientes para problemas NP-Completos e NP-difíceis

Comparando tempos polinomiais e exponenciais

f(n)	n = 20	<i>n</i> = 40	<i>n</i> = 60	<i>n</i> = 80	<i>n</i> = 100
n	2,0×10 ⁻¹¹ seg	$4,0 \times 10^{-11} \text{seg}$	$6.0 \times 10^{-11} \text{seg}$	$8,0\times10^{-11}$ seg	$1,0\times10^{-10}$ seg
n ²	$4.0 \times 10^{-10} \text{seg}$	$1,6 \times 10^{-9} \text{seg}$	$3,6\times10^{-9}$ seg	$6,4\times10^{-9}$ seg	$1,0 \times 10^{-8} \text{seg}$
n^3	$8,0\times10^{-9}$ seg	$6,4\times10^{-8}$ seg	$2,2\times10^{-7}$ seg	$5,1\times10^{-7}$ seg	$1,0 \times 10^{-6} \text{seg}$
n^5	$2,2\times10^{-6}$ seg	$1,0 \times 10^{-4} \text{seg}$	$7.8 \times 10^{-4} \text{seg}$	$3.3 \times 10^{-3} \text{seg}$	$1,0\times10^{-2}$ seg
2 ⁿ	$1,0 \times 10^{-6} \text{seg}$	1,0seg	13,3dias	1,3×10 ⁵ séc	$1,4\times10^{11}$ séc
3 ⁿ	$3,4\times10^{-3}$ seg	140,7dias	1,3×10 ⁷ séc	$1,7 \times 10^{19}$ séc	$5,9 \times 10^{28}$ séc

Supondo um computador com velocidade de 1 Terahertz (mil vezes mais rápido que um computador de 1 Gigahertz).

Comparando tempos polinomiais e exponenciais

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	N ₁	100 <i>N</i> ₁	1000 <i>N</i> ₁
n ²	N ₂	10 <i>N</i> ₂	31.6 <i>N</i> ₂
n ³	N ₃	4.64 <i>N</i> ₃	10 <i>N</i> ₃
n ⁵	N ₄	2.5 <i>N</i> ₄	3.98 <i>N</i> ₄
2 ⁿ	<i>N</i> ₅	$N_5 + 6.64$	$N_5 + 9.97$
3 ⁿ	N ₆	$N_6 + 4.19$	$N_6 + 6.29$

Fixando o tempo de execução

Complexidade Computacional de se Encontrar um Equilíbrio

▶ Sat Dada fórmula booleana ϕ em Forma Normal Conjuntiva (FNC) decidir se há atribuição que torna ϕ verdadeira.

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$
Se $x_1 = V$, $x_2 = F$, $x_3 = V$ então ϕ é satisfeita

- MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.
- ▶ Teorema: Os problemas Sat e MaxSat são NP-difíceis

Complexidade Computacional de se Encontrar um Equilíbrio

▶ Sat Dada fórmula booleana ϕ em Forma Normal Conjuntiva (FNC) decidir se há atribuição que torna ϕ verdadeira.

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$

Se $x_1 = V$, $x_2 = F$, $x_3 = V$ então ϕ é satisfeita

- MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.
- ► Teorema: Os problemas Sat e MaxSat são NP-difíceis.

Complexidade Computacional de se Encontrar um Equilíbrio

▶ Sat Dada fórmula booleana ϕ em Forma Normal Conjuntiva (FNC) decidir se há atribuição que torna ϕ verdadeira.

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$
Se $x_1 = V$, $x_2 = F$, $x_3 = V$ então ϕ é satisfeita

- MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.
- ► Teorema: Os problemas Sat e MaxSat são NP-difíceis.

Representação do Jogos

- n jogadores
- m estratégias para cada jogador
- Forma Padrão: Forma matricial
 - mⁿ possíveis resultados para o jogo
 - Algoritmo polinomial para encontrar equilíbrio Basta percorrer todos resultados
 - Só é viável para jogos pequenos
 - ► Mesmo com duas estratégias por jogador, temos complexidade de tempo O(n2ⁿ)

Representação do Jogos

- n jogadores
- m estratégias para cada jogador
- ► Forma Padrão: Forma matricial
 - mⁿ possíveis resultados para o jogo
 - Algoritmo polinomial para encontrar equilíbrio Basta percorrer todos resultados
 - Só é viável para jogos pequenos
 - Mesmo com duas estratégias por jogador, temos complexidade de tempo O(n2ⁿ)

- Cara ou Coroa: não tem equilíbrio puro de Nash.
- Decidir se um jogo qualquer tem equilíbrio de Nash é difícil ?
- Sim. Mesmo quando o número de jogadores que influenciam um jogador é pequeno

- ▶ Cada jogador é representado como vértice de um grafo G
- ► Escolha de um jogador só depende das escolhas dos seus vizinhos em *G*
- ► Teorema: (Gotlob, Greco, Scarello'05) Decidir a existência de equilíbrio puro de Nash em jogos gráficos é NP-completo, mesmo quando o grau de cada vértice de G é limitado a 3.

- Cara ou Coroa: não tem equilíbrio puro de Nash.
- Decidir se um jogo qualquer tem equilíbrio de Nash é difícil ?
- Sim. Mesmo quando o número de jogadores que influenciam um jogador é pequeno

- ▶ Cada jogador é representado como vértice de um grafo G
- Escolha de um jogador só depende das escolhas dos seus vizinhos em G
- ▶ Teorema: (Gotlob, Greco, Scarello'05) Decidir a existência de equilíbrio puro de Nash em jogos gráficos é NP-completo, mesmo quando o grau de cada vértice de G é limitado a 3.

- Cara ou Coroa: não tem equilíbrio puro de Nash.
- Decidir se um jogo qualquer tem equilíbrio de Nash é difícil ?
- Sim. Mesmo quando o número de jogadores que influenciam um jogador é pequeno

- Cada jogador é representado como vértice de um grafo G
- Escolha de um jogador só depende das escolhas dos seus vizinhos em G
- ► Teorema: (Gotlob, Greco, Scarello'05) Decidir a existência de equilíbrio puro de Nash em jogos gráficos é NP-completo, mesmo quando o grau de cada vértice de G é limitado a 3.

- Cara ou Coroa: não tem equilíbrio puro de Nash.
- Decidir se um jogo qualquer tem equilíbrio de Nash é difícil ?
- Sim. Mesmo quando o número de jogadores que influenciam um jogador é pequeno

- Cada jogador é representado como vértice de um grafo G
- Escolha de um jogador só depende das escolhas dos seus vizinhos em G
- ► Teorema: (Gotlob, Greco, Scarello'05) Decidir a existência de equilíbrio puro de Nash em jogos gráficos é NP-completo, mesmo quando o grau de cada vértice de G é limitado a 3.

Vamos considerar jogos que

- Sempre têm equilíbrios de Nash
- Os jogadores sempre chegam a um equilíbrio em número finito de passos
- Rodadas: Número de vezes que os jogadores fazem escolhas
- Quantas rodadas são feitas até se atingir um equilíbrio ?

Vamos considerar jogos que

- Sempre têm equilíbrios de Nash
- Os jogadores sempre chegam a um equilíbrio em número finito de passos
- Rodadas: Número de vezes que os jogadores fazem escolhas
- Quantas rodadas são feitas até se atingir um equilíbrio ?

Vamos considerar jogos que

- Sempre têm equilíbrios de Nash
- Os jogadores sempre chegam a um equilíbrio em número finito de passos
- Rodadas: Número de vezes que os jogadores fazem escolhas
- Quantas rodadas são feitas até se atingir um equilíbrio ?

Relação com a Classe PLS - Polynomial-time Local Search

- Problema de Otimização Combinatória Π:
- Dados
 - I: conjunto de instâncias
 - ightharpoonup F(x): conjunto de soluções para cada $x \in I$
 - ▶ c(s): função de custo para todo $s \in F(x)$
 - ▶ funções eficientes que verificam instâncias, soluções,...
- ▶ dado $x \in I$
 - ▶ encontrar solução $s \in F_{\Pi}(x)$ tal que $c_x(s)$ é mínimo
- Exemplo:

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$

MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.

Relação com a Classe PLS - Polynomial-time Local Search

- Problema de Otimização Combinatória Π:
- Dados
 - /: conjunto de instâncias
 - F(x): conjunto de soluções para cada $x \in I$
 - ▶ c(s): função de custo para todo $s \in F(x)$
 - ▶ funções eficientes que verificam instâncias, soluções,...
- ightharpoonup dado $x \in I$
 - ▶ encontrar solução $s \in F_{\Pi}(x)$ tal que $c_x(s)$ é mínimo
- Exemplo:

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$

MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.

Relação com a Classe PLS - Polynomial-time Local Search

- Problema de Otimização Combinatória Π:
- Dados
 - I: conjunto de instâncias
 - F(x): conjunto de soluções para cada x ∈ I
 - ▶ c(s): função de custo para todo $s \in F(x)$
 - funções eficientes que verificam instâncias, soluções,...
- ▶ dado *x* ∈ *I*
 - ▶ encontrar solução $s \in F_{\Pi}(x)$ tal que $c_x(s)$ é mínimo
- Exemplo:

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$

MaxSat Dada fórmula booleana φ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.

Relação com a Classe PLS - Polynomial-time Local Search

- Problema de Otimização Combinatória Π:
- Dados
 - /: conjunto de instâncias
 - F(x): conjunto de soluções para cada $x \in I$
 - ▶ c(s): função de custo para todo $s \in F(x)$
 - funções eficientes que verificam instâncias, soluções,...
- ▶ dado *x* ∈ *I*
 - ▶ encontrar solução $s \in F_{\Pi}(x)$ tal que $c_x(s)$ é mínimo
- Exemplo:

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3)$$

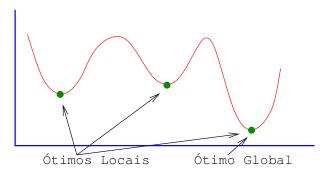
▶ MaxSat Dada fórmula booleana ϕ em FNC encontrar atribuição maximiza o número de cláusulas verdadeiras.

Problema de Otimização Local

- Grafo de vizinhanças G entre soluções
- Exemplo: Vizinhança Flip para MaxSat
 - ▶ Uma atribuição A é vizinha de B se
 - ▶ B é a atribuição A trocando o valor de uma das variáveis
 - $A = (x_1 = V, x_2 = F, x_3 = V)$
 - ▶ $B = (x_1 = F, x_2 = F, x_3 = V)$
 - A e B são vizinhas

Problema de Otimização Local

- Grafo de vizinhanças G entre soluções
- ▶ Encontrar uma solução ótima local s tal que $c(s) \le c(s')$ para toda solução s' que é vizinha de s



Classe PLS (*Polynomial-time Local Search*) (Johnson, Papadimtriou, Yannakakis'88)

- Problemas de otimização local
- Podemos decidir eficientemente se temos uma solução ótima local
- Caso contrário, apresentar uma solução vizinha melhor

PLS**-redução:** *Q* tem uma PLS-redução para *P* se

- há funções eficientes que mapeiam soluções de Q para F
- mapeamento preserva soluções ótimas locais

P é PLS-completo se está em PLS e há uma PLS-redução de Q para P, para todo $Q \in PLS$

Classe PLS (*Polynomial-time Local Search*) (Johnson, Papadimtriou, Yannakakis'88)

- Problemas de otimização local
- Podemos decidir eficientemente se temos uma solução ótima local
- Caso contrário, apresentar uma solução vizinha melhor

PLS-redução: Q tem uma PLS-redução para P se

- há funções eficientes que mapeiam soluções de Q para P
- mapeamento preserva soluções ótimas locais

P é PLS-completo se está em PLS e há uma PLS-redução de Q para P, para todo $Q \in PLS$

Classe PLS (*Polynomial-time Local Search*) (Johnson, Papadimtriou, Yannakakis'88)

- Problemas de otimização local
- Podemos decidir eficientemente se temos uma solução ótima local
- Caso contrário, apresentar uma solução vizinha melhor

PLS-redução: Q tem uma PLS-redução para P se

- há funções eficientes que mapeiam soluções de Q para P
- mapeamento preserva soluções ótimas locais

P é PLS-completo se está em PLS e há uma PLS-redução de Q para P, para todo $Q \in \text{PLS}$

Teorema: Os seguintes problemas são PLS-completos

- Min EqPartição de Grafos vizinhança Kerninghan-Lin (Johnson, Papadimitriou, Yanakakis'88)
- ► TSP vizinhança k-OPT (Krentel'89)
- ► TSP vizinhança Lin&Kerninghan (Papadimitriou'90)
- ► Max2Sat com vizinhança Flip (Schaffer e Yanakakis'91)
- MaxCut troca par de vértices (Schaffer e Yanakakis'91)

Se existir um algoritmo eficiente que obtém um ótimo local para um deles, haverá para todos problemas de otimização local PLS

Teorema: Encontrar um equilíbrio de Nash em jogos potenciais é PLS-completo.

Teorema: Os seguintes problemas são PLS-completos

- Min EqPartição de Grafos vizinhança Kerninghan-Lin (Johnson, Papadimitriou, Yanakakis'88)
- ► TSP vizinhança k-OPT (Krentel'89)
- TSP vizinhança Lin&Kerninghan (Papadimitriou'90)
- Max2Sat com vizinhança Flip (Schaffer e Yanakakis'91)
- ► MaxCut troca par de vértices (Schaffer e Yanakakis'91)

Se existir um algoritmo eficiente que obtém um ótimo local para um deles, haverá para todos problemas de otimização local PLS

Teorema: Encontrar um equilíbrio de Nash em jogos potenciais é PLS-completo.

Teorema: (Daskalakis, Goldberg, Papadimitriou'06) Encontrar equilíbrio de Nash em jogos finitos é um problema PPAD-completo

A existência de algoritmo eficiente para NASH implica em algoritmos eficientes para

- ▶ Problema de ponto fixo de Brouwer
- ▶ Problema Ham Sandwich
- Busca de equilíbrios de Arrow-Debreu em mercados
- ▶ etc

Teorema: (Daskalakis, Goldberg, Papadimitriou'06) Encontrar equilíbrio de Nash em jogos finitos é um problema PPAD-completo

A existência de algoritmo eficiente para NASH implica em algoritmos eficientes para

- Problema de ponto fixo de Brouwer
- Problema Ham Sandwich
- Busca de equilíbrios de Arrow-Debreu em mercados
- etc

Teorema: (Gilboa e Zemel'89) Os seguintes são problemas NP-Completos em jogos com 2 jogadores

- ► Há pelo menos 2 equilíbrios de Nash ?
- ▶ Há um equilíbrio onde o jogador 1 tem utilidade pelo menos K?

Teorema: (Gilboa e Zemel'89) Os seguintes são problemas NP-Completos em jogos com 2 jogadores

- Há pelo menos 2 equilíbrios de Nash ?
- ▶ Há um equilíbrio onde o jogador 1 tem utilidade pelo menos *K* ?

Teorema: (Gilboa e Zemel'89) Os seguintes são problemas NP-Completos em jogos com 2 jogadores

- Há pelo menos 2 equilíbrios de Nash ?
- ► Há um equilíbrio onde o jogador 1 tem utilidade pelo menos K?

Teorema: (Gilboa e Zemel'89) Os seguintes são problemas NP-Completos em jogos com 2 jogadores

- Há pelo menos 2 equilíbrios de Nash ?
- ► Há um equilíbrio onde o jogador 1 tem utilidade pelo menos K?

- Um jogo pode ter vários equilíbrios de Nash
- Como medir um resultado em equilíbrio de Nash ?
- Podemos ter equilíbrios incomparáveis
- ► Em muitos casos, podemos usar uma função de valoração social:
 - Função utilitária: Soma (ou média) das utilidades dos jogadores
 - Função igualitária: Pior benefício de um jogador

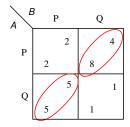
- Um jogo pode ter vários equilíbrios de Nash
- Como medir um resultado em equilíbrio de Nash ?
- Podemos ter equilíbrios incomparáveis
- ► Em muitos casos, podemos usar uma função de valoração social:
 - Função utilitária: Soma (ou média) das utilidades dos jogadores
 - Função igualitária: Pior benefício de um jogador

- Um jogo pode ter vários equilíbrios de Nash
- Como medir um resultado em equilíbrio de Nash ?
- Podemos ter equilíbrios incomparáveis
- ► Em muitos casos, podemos usar uma função de valoração social:
 - ► Função utilitária: Soma (ou média) das utilidades dos jogadores
 - Função igualitária: Pior benefício de um jogador

- Um jogo pode ter vários equilíbrios de Nash
- Como medir um resultado em equilíbrio de Nash ?
- Podemos ter equilíbrios incomparáveis
- ► Em muitos casos, podemos usar uma função de valoração social:
 - ► Função utilitária: Soma (ou média) das utilidades dos jogadores
 - Função igualitária: Pior benefício de um jogador

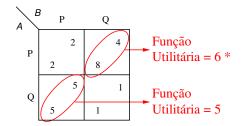
- Um jogo pode ter vários equilíbrios de Nash
- Como medir um resultado em equilíbrio de Nash ?
- Podemos ter equilíbrios incomparáveis
- ► Em muitos casos, podemos usar uma função de valoração social:
 - Função utilitária: Soma (ou média) das utilidades dos jogadores
 - Função igualitária: Pior benefício de um jogador

Exemplo: Jogo de maximização do benefício



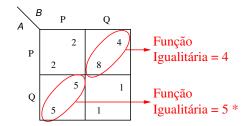
Resultados em equilíbrio de Nash

Exemplo: Jogo de maximização do benefício



Função utilitária: Média das utilidades dos jogadores

Exemplo: Jogo de maximização do benefício



Função igualitária: Pior benefício de um jogador

Como medir a qualidade dos resultados em equilíbrio ?

- Preço da Anarquia
- ▶ Preço da Estabilidade
- Comparação com resultado ótimo social
 Melhor resultado obtido com a correspondente função social

Como medir a qualidade dos resultados em equilíbrio ?

- ▶ Preço da Anarquia
- Preço da Estabilidade
- Comparação com resultado ótimo social
 Melhor resultado obtido com a correspondente função social

Como medir a qualidade dos resultados em equilíbrio ?

- Preço da Anarquia
- Preço da Estabilidade
- Comparação com resultado ótimo social
 Melhor resultado obtido com a correspondente função social

Preço da Anarquia - Koutsoupias, Papadimitriou'99

- Compara valor do pior equilíbrio com um resultado ótimo social
- Para jogos de minimização

$$PA = \frac{\text{Custo do pior resultado em equilíbrio}}{\text{Custo de um resultado ótimo social}}$$

Para jogos de maximização

PA = Benefício de um resultado ótimo social
Benefício de um pior resultado em equilíbrio

Preço da Anarquia - Koutsoupias, Papadimitriou'99

- Compara valor do pior equilíbrio com um resultado ótimo social
- Para jogos de minimização

$$PA = \frac{Custo do pior resultado em equilíbrio}{Custo de um resultado ótimo social}$$

Para jogos de maximização

 $PA = \frac{\text{Benefício de um resultado ótimo social}}{\text{Benefício de um pior resultado em equilíbrio}}$

Preço da Estabilidade

Anschelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'04

- Compara valor do melhor equilíbrio com um resultado ótimo socia
- Para jogos de minimização

Para jogos de maximização

 $PE = \frac{Beneficio de um resultado ótimo social}{Beneficio de um melhor resultado em equilíbrio}$

Preço da Estabilidade

Anschelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'04

- Compara valor do melhor equilíbrio com um resultado ótimo social
- Para jogos de minimização

$$PE = \frac{\text{Custo do melhor resultado em equilíbrio}}{\text{Custo de um resultado ótimo social}}$$

Para jogos de maximização

PE = Benefício de um resultado ótimo social
Benefício de um melhor resultado em equilíbrio

Preço da Estabilidade

Anschelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'04

- Compara valor do melhor equilíbrio com um resultado ótimo social
- Para jogos de minimização

$$PE = \frac{\text{Custo do melhor resultado em equilíbrio}}{\text{Custo de um resultado ótimo social}}$$

Para jogos de maximização

 $PE = \frac{\text{Benefício de um resultado ótimo social}}{\text{Benefício de um melhor resultado em equilíbrio}}$

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- ▶ Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- ► Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- ▶ w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- ► Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- ► Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

Dados

- m máquinas
- n tarefas, cada uma pertencente a um jogador
- ▶ w_i é o peso da tarefa i

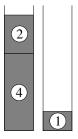
- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

Dados

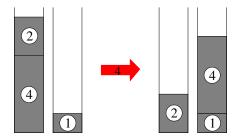
- m máquinas
- n tarefas, cada uma pertencente a um jogador
- w_i é o peso da tarefa i

- Configuração inicial: Cada tarefa em alguma máquina
- Movimentos: Um jogador pode migrar sua tarefa de uma máquina para outra, se for melhor
- ► Rodadas: Apenas um jogador move em cada rodada
- Objetivo do jogador: Colocar sua tarefa em máquina menos carregada
- Custo para jogador: Peso total da máquina onde está sua tarefa
- Custo social: maior peso de uma máquina (função igualitária)

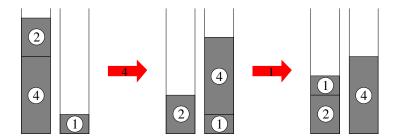
Jogo de Balanceamento de Carga



Jogo de Balanceamento de Carga



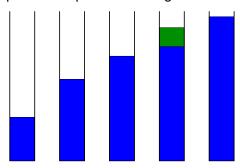
Jogo de Balanceamento de Carga



Teorema: (Fotakis, Kontogiannis, Koutsoupias, Mavronicolas, Spirakis'09, O jogo de balanceamento de carga sempre converge para um equilíbrio de Nash.

Prova. Idéia:

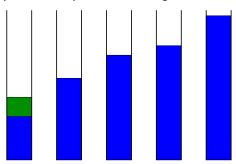
Considere as máquinas ordenadas pela carga (menores primeiro) A ordem das máquinas sempre fica lexicograficamente maior



Teorema: (Fotakis, Kontogiannis, Koutsoupias, Mavronicolas, Spirakis'09, O jogo de balanceamento de carga sempre converge para um equilíbrio de Nash.

Prova. Idéia:

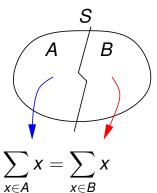
Considere as máquinas ordenadas pela carga (menores primeiro) A ordem das máquinas sempre fica lexicograficamente maior



Teorema: Encontrar um melhor balanceamento de carga em equilíbrio é um problema NP-difícil.

Prova. Redução pelo problema da Partição:

Partição: Dado conjunto de inteiros positivos S decidir se podemos particionar S em A e B tal que a soma em A é igual a soma em B

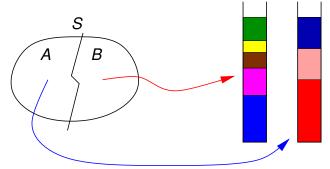


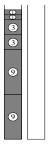
Teorema: Encontrar um melhor balanceamento de carga em equilíbrio é um problema NP-difícil.

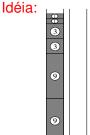
Prova. Redução pelo problema da Partição:

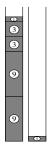
Partição: Dado conjunto de inteiros positivos S decidir se podemos particionar S em A e B tal que a soma em A é igual a soma em B

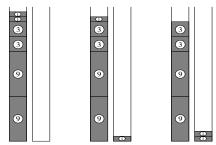
Redução: Duas máquinas e cada inteiro de *S* é o peso de uma tarefa.

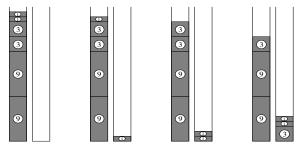


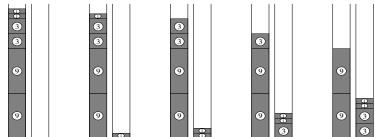


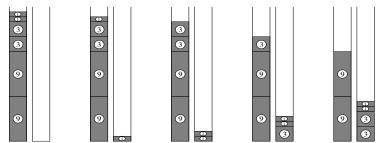


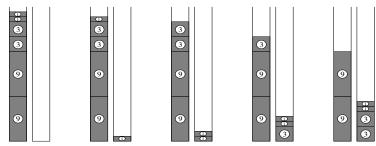


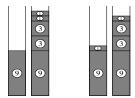


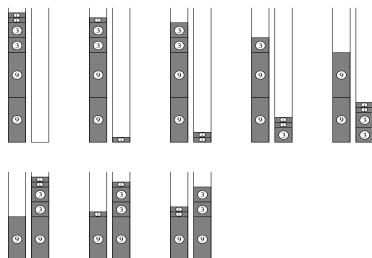




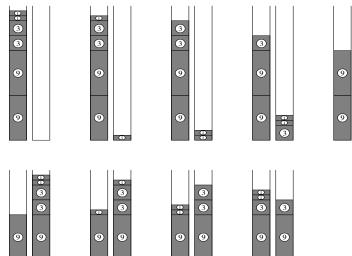




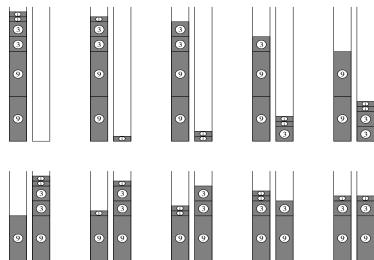




Idéia:



3



Outros resultados

Teorema: (Vocking'07) Para qualquer instância, há uma ordem de no máximo n migrações de melhor-resposta para se atingir um equilíbrio de Nash.

Teorema: O preço da estabilidade do jogo de balanceamento de carga é 1.

Outros resultados

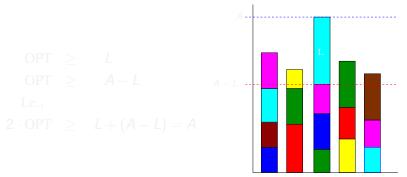
Teorema: (Vocking'07) Para qualquer instância, há uma ordem de no máximo n migrações de melhor-resposta para se atingir um equilíbrio de Nash.

Teorema: O preço da estabilidade do jogo de balanceamento de carga é 1.

Preço da Anarquia do Problema de Balanceamento

Teorema: O Preço da Anarquia é no máximo 2. *Prova*.

- A o peso da máquina mais carregada (pior utilidade)
- L o peso de uma tarefa na máquina mais carregada
- OPT o peso de um resultado ótimo social

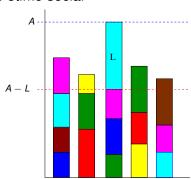


Preço da Anarquia do Problema de Balanceamento

Teorema: O Preço da Anarquia é no máximo 2. *Prova*.

- A o peso da máquina mais carregada (pior utilidade)
- L o peso de uma tarefa na máquina mais carregada
- OPT o peso de um resultado ótimo social

$$\begin{array}{ccc} \mathrm{OPT} & \geq & L \\ \mathrm{OPT} & \geq & A-L \\ \mathrm{I.e.,} \\ 2\cdot\mathrm{OPT} & \geq & L+(A-L)=A \end{array}$$



- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- Há k jogadores
- ▶ O jogador i quer construir rota ligando pontos s; e t
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- ▶ Jogadores podem mudar sua rota (para gastar menos)

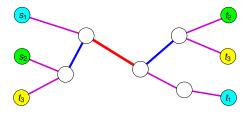
- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- ► Há k jogadores
- \triangleright O jogador *i* quer construir rota ligando pontos s_i e t_i
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- ▶ Jogadores podem mudar sua rota (para gastar menos)

- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- Há k jogadores
- O jogador i quer construir rota ligando pontos si e t
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- ▶ Jogadores podem mudar sua rota (para gastar menos)

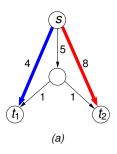
- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- Há k jogadores
- O jogador i quer construir rota ligando pontos si e ti
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- Jogadores podem mudar sua rota (para gastar menos

- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- ▶ Há k jogadores
- ▶ O jogador i quer construir rota ligando pontos s_i e t_i
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- ▶ Jogadores podem mudar sua rota (para gastar menos)

- Grafo representando possíveis ligações (arestas) entre pontos
- Há custo para construir ligações
- ▶ Há k jogadores
- O jogador i quer construir rota ligando pontos si e ti
- Há cooperação na construção da rede: custo de um link é dividido entre seus usuários
- Jogadores podem mudar sua rota (para gastar menos)

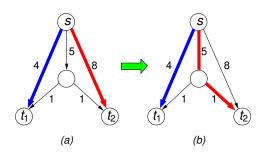


Exemplo de resultado do jogo



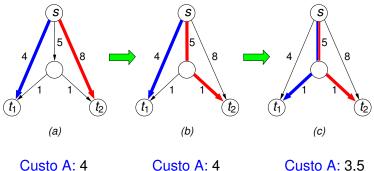
Custo A: 4 Custo B: 8 Custo A: 4

Custo A: 3,5 Custo B: 3.5



Custo A: 4 Custo B: 8 Custo A: 4 Custo B: 6

Custo A: 3,5 Custo B: 3,5



Custo A: 4 Custo B: 8 Custo A: 4 Custo B: 6 Custo A: 3,5 Custo B: 3,5

Seja

- P_i rota usada pelo jogador i
- k_e número de jogadores que usam aresta e
- $ightharpoonup P = (P_1, \dots, P_k)$ vetor de estratégias do jogo
- $ightharpoonup c_i(P)$ custo do jogador i, ao usar P. I.e.,

$$c_i(P) = \sum_{e \in P_i} \frac{c_e}{k_e}$$

c(P) custo total das conexões (função utilitária). I.e.,

$$c(P) = \sum_{e \in F_0} c_e$$
, onde $E_P = P_1 \cup \ldots \cup P_k$.

 \cap

$$c(P) = \sum_{i} c_i(P)$$

Seja

- P_i rota usada pelo jogador i
- k_e número de jogadores que usam aresta e
- ▶ $P = (P_1, ..., P_k)$ vetor de estratégias do jogo
- $ightharpoonup c_i(P)$ custo do jogador i, ao usar P. I.e.,

$$c_i(P) = \sum_{e \in P_i} \frac{c_e}{k_e}$$

▶ c(P) custo total das conexões (função utilitária). I.e.,

$$c(P) = \sum_{e \in E_P} c_e$$
, onde $E_P = P_1 \cup \ldots \cup P_k$.

OH

$$c(P) = \sum_{i} c_{i}(P)$$

Seja

- P_i rota usada pelo jogador i
- k_e número de jogadores que usam aresta e
- $ightharpoonup P = (P_1, \dots, P_k)$ vetor de estratégias do jogo
- $ightharpoonup c_i(P)$ custo do jogador i, ao usar P. I.e.,

$$c_i(P) = \sum_{e \in P_i} \frac{c_e}{k_e}$$

c(P) custo total das conexões (função utilitária). I.e.,

$$c(P) = \sum_{e \in E_P} c_e$$
, onde $E_P = P_1 \cup \ldots \cup P_k$.

OH

$$c(P) = \sum_i c_i(P)$$

Seja

- P_i rota usada pelo jogador i
- k_e número de jogadores que usam aresta e
- $ightharpoonup P = (P_1, \dots, P_k)$ vetor de estratégias do jogo
- $ightharpoonup c_i(P)$ custo do jogador i, ao usar P. I.e.,

$$c_i(P) = \sum_{e \in P_i} \frac{c_e}{k_e}$$

c(P) custo total das conexões (função utilitária). I.e.,

$$c(P) = \sum_{e \in E_P} c_e$$
, onde $E_P = P_1 \cup \ldots \cup P_k$.

OU

$$c(P) = \sum_i c_i(P)$$

Seja

- P_i rota usada pelo jogador i
- k_e número de jogadores que usam aresta e
- $P = (P_1, ..., P_k)$ vetor de estratégias do jogo
- $ightharpoonup c_i(P)$ custo do jogador i, ao usar P. I.e.,

$$c_i(P) = \sum_{e \in P_i} \frac{c_e}{k_e}$$

c(P) custo total das conexões (função utilitária). I.e.,

$$c(P) = \sum_{e \in E_P} c_e$$
, onde $E_P = P_1 \cup \ldots \cup P_k$.

ou

$$c(P) = \sum_{i} c_{i}(P)$$

Vamos apenas movimentos de melhor-resposta

▶ I.e., jogadores resolvem Caminho Mínimo para migrar

Teorema: O preço da anarquia é no máximo k. Prova.

- OPT custo de uma solução ótima social
- $ightharpoonup P = (P_1, \dots, P_k)$ um resultado do jogo

OPT
$$\geq$$
 Custo de caminho mínimo de s_1 a $t_1 \geq c_1(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_2 a $t_2 \geq c_2(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_k a $t_k \geq c_k(P)$

$$k \cdot \text{OPT} \ge \sum_{i} c_i(P) = c(P)$$

Vamos apenas movimentos de melhor-resposta

I.e., jogadores resolvem Caminho Mínimo para migrar

Teorema: O preço da anarquia é no máximo k.

Prova.

- OPT custo de uma solução ótima social
- $ightharpoonup P = (P_1, \dots, P_k)$ um resultado do jogo

OPT
$$\geq$$
 Custo de caminho mínimo de s_1 a $t_1 \geq c_1(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_2 a $t_2 \geq c_2(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_k a $t_k \geq c_k(P)$

$$k \cdot \text{OPT} \ge \sum_{i} c_i(P) = c(P)$$

Vamos apenas movimentos de melhor-resposta

I.e., jogadores resolvem Caminho Mínimo para migrar

Teorema: O preço da anarquia é no máximo k. *Prova*.

- OPT custo de uma solução ótima social
- $ightharpoonup P = (P_1, \dots, P_k)$ um resultado do jogo

OPT
$$\geq$$
 Custo de caminho mínimo de s_1 a $t_1 \geq c_1(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_2 a $t_2 \geq c_2(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_k a $t_k \geq c_k(P)$

$$k \cdot \text{OPT} \ge \sum_i c_i(P) = c(P)$$

Vamos apenas movimentos de melhor-resposta

I.e., jogadores resolvem Caminho Mínimo para migrar

Teorema: O preço da anarquia é no máximo k. *Prova*.

- OPT custo de uma solução ótima social
- $P = (P_1, \dots, P_k)$ um resultado do jogo

OPT
$$\geq$$
 Custo de caminho mínimo de s_1 a $t_1 \geq c_1(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_2 a $t_2 \geq c_2(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_k a $t_k \geq c_k(P)$

$$k \cdot \text{OPT} \ge \sum_{i} c_i(P) = c(P)$$

Vamos apenas movimentos de melhor-resposta

I.e., jogadores resolvem Caminho Mínimo para migrar

Teorema: O preço da anarquia é no máximo k. *Prova*.

- OPT custo de uma solução ótima social
- $ightharpoonup P = (P_1, \dots, P_k)$ um resultado do jogo

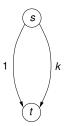
OPT
$$\geq$$
 Custo de caminho mínimo de s_1 a $t_1 \geq c_1(P)$

OPT
$$\geq$$
 Custo de caminho mínimo de s_2 a $t_2 \geq c_2(P)$

OPT \geq Custo de caminho mínimo de s_k a $t_k \geq c_k(P)$

$$k \cdot \text{OPT} \ge \sum_{i} c_i(P) = c(P)$$

Teorema: Existe instância com preço da anarquia k.



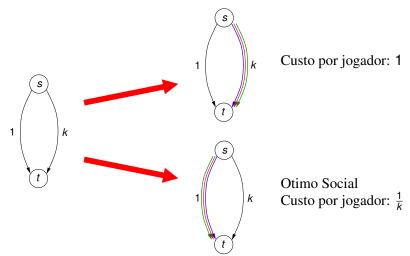
Todos os *k* jogadores tem a mesma origem e o mesmo destino

Teorema: Existe instância com preço da anarquia k.

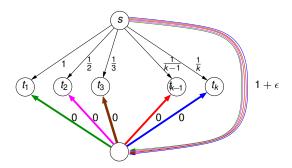


Todos os *k* jogadores tem a mesma origem e o mesmo destino

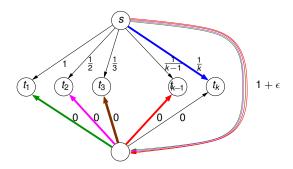
Teorema: Existe instância com preço da anarquia k.

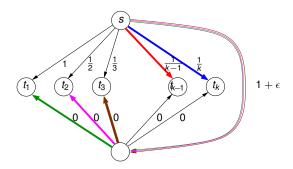


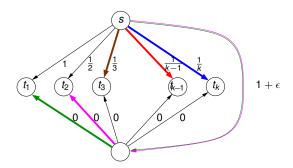
Todos os *k* jogadores tem a mesma origem e o mesmo destino

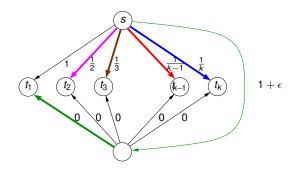


Resultado ótimo social: $1 + \varepsilon$

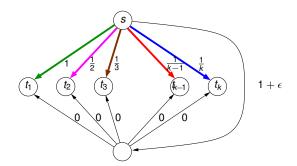








Teorema: Existe instância com preço da estabilidade pelo menos H_k , onde $H_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$



Resultado em equilíbrio: H_k

Teorema: (Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'08) O preço da estabilidade é no máximo H_k

Uma função numérica Φ é potencial exata se

- ▶ mapeia cada vetor de estratégias $P = (P_1, ..., P_k)$ para um valor
- se um jogador i troca P_i por P'_i, a diferença em seu custo é exatamente a diferença na função potencial

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

Teorema: (Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'08) O preço da estabilidade é no máximo H_k

Uma função numérica Φ é potencial exata se

- ▶ mapeia cada vetor de estratégias $P = (P_1, ..., P_k)$ para um valor
- se um jogador i troca P_i por P'_i, a diferença em seu custo é exatamente a diferença na função potencial

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

Teorema: (Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'08) O preço da estabilidade é no máximo H_k

Uma função numérica Φ é potencial exata se

- ▶ mapeia cada vetor de estratégias $P = (P_1, ..., P_k)$ para um valor
- se um jogador i troca P_i por P'_i, a diferença em seu custo é exatamente a diferença na função potencial

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

Teorema: (Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden'08) O preço da estabilidade é no máximo H_k

Uma função numérica Φ é potencial exata se

- ▶ mapeia cada vetor de estratégias $P = (P_1, ..., P_k)$ para um valor
- se um jogador i troca P_i por P'_i, a diferença em seu custo é exatamente a diferença na função potencial

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}), \quad \text{para todo } P'_i$$

Teorema: Um jogo finito com função potencial exata sempre converge para um equilíbrio

Prova.

- Quando um jogador i muda de Pi para Pi, seu custo diminui
- A função potencial diminui da mesma quantidade

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

- Função potencial sempre decresce
- Como há número finito de configurações, o jogo converge.

Teorema: Um jogo finito com função potencial exata sempre converge para um equilíbrio

Prova.

- Quando um jogador i muda de Pi para Pi, seu custo diminui
- A função potencial diminui da mesma quantidade

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

- Função potencial sempre decresce
- Como há número finito de configurações, o jogo converge.

Teorema: Um jogo finito com função potencial exata sempre converge para um equilíbrio

Prova.

- Quando um jogador i muda de P_i para P'_i, seu custo diminui
- A função potencial diminui da mesma quantidade

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

- Função potencial sempre decresce
- Como há número finito de configurações, o jogo converge

Teorema: Um jogo finito com função potencial exata sempre converge para um equilíbrio

Prova.

- Quando um jogador i muda de P_i para P'_i, seu custo diminui
- A função potencial diminui da mesma quantidade

$$\Phi(P) - \Phi(P'_i, P_{-i}) = c_i(P) - c_i(P'_i, P_{-i}),$$
 para todo P'_i

- Função potencial sempre decresce
- Como há número finito de configurações, o jogo converge.

Há função potencial para o Jogo de Roteamento? Simil

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- ▶ c_e custo de se construir aresta e
- ▶ k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e \in E} c_e \cdot H(k_e)$$

Há função potencial para o Jogo de Roteamento? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- ▶ c_e custo de se construir aresta e
- k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e \in E} c_e \cdot H(k_e).$$

Há função potencial para o Jogo de Roteamento ? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- ▶ c_e custo de se construir aresta e
- ▶ k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e \in E} c_e \cdot H(k_e).$$

Há função potencial para o Jogo de Roteamento? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- c_e custo de se construir aresta e
- ▶ k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e \in E} c_e \cdot H(k_e),$$

Há função potencial para o Jogo de Roteamento? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- c_e custo de se construir aresta e
- k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e} c_e \cdot H(k_e)$$

Há função potencial para o Jogo de Roteamento? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- c_e custo de se construir aresta e
- k_e número de caminhos que usam e

$$H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$\Psi(P) = \sum_{e \in E} c_e \cdot H(k_e),$$

Há função potencial para o Jogo de Roteamento ? Sim!

- ▶ P vetor de estratégia $P = (P_1, ..., P_k)$
- ► ce custo de se construir aresta e
- k_e número de caminhos que usam e
- $H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$

$$\Psi(P) = \sum_{e \in F} c_e \cdot H(k_e),$$

Há função potencial para o Jogo de Roteamento ? Sim!

- ▶ *P* vetor de estratégia $P = (P_1, ..., P_k)$
- ► ce custo de se construir aresta e
- k_e número de caminhos que usam e
- $H(t) = \begin{cases} 1 + \frac{1}{2} + \dots + \frac{1}{t} & \text{para } t \ge 1 \\ 0 & \text{caso contrário} \end{cases}$

$$\Psi(P) = \sum_{e \in F} c_e \cdot H(k_e),$$

Prova.

Considere a mudança de escolha do jogador i de P_i para P'_i .

- P_i caminho usado pelo jogador i em P
- $ightharpoonup P'_i$ novo caminho a ser usado pelo jogador i em P'

$$ightharpoonup P = (P_1, \dots, P_{i-1}, P_i, P_{i+1}, \dots, P_k)$$

$$P' = (P_1, \ldots, P_{i-1}, P'_i, P_{i+1}, \ldots, P_k)$$

- k_e número de caminhos (jogadores) usando aresta e em P
- ▶ k_e número de caminhos (jogadores) usando aresta e em P'

$$\begin{split} \Psi(P) - \Psi(P') &= \sum_{e \in P_i \setminus P_i'} \frac{c_e}{k_e} + \sum_{e \in P_i' \setminus P_i} \frac{-c_e}{k_e'} \\ &= \sum_{e \in P_i \setminus P_i'} \frac{c_e}{k_e} + \sum_{e \in P_i \cap P_i'} \frac{c_e}{k_e} - \sum_{e \in P_i' \setminus P_i} \frac{c_e}{k_e'} - \sum_{e \in P_i \cap P_i'} \frac{c_e}{k_e'} \\ &= \sum_{e \in P_i} \frac{c_e}{k_e} - \sum_{e \in P_i'} \frac{c_e}{k_e'} \\ &= c_i(P) - c_i(P'), \end{split}$$

Corolário: O jogo de roteamento global converge para um equilíbrio

A função $\Psi(P)$ está próxima do valor do custo de S.

Lema: Se
$$P = (P_1, ..., P_k)$$
 é um vetor de estratégias, então $c(P) \le \Psi(P) \le H(k)c(P)$

Prova

 \triangleright $c(P) \leq \Psi(P)$ vale pois

$$c(P) = \sum_{e \in E_P} c_e \le \sum_{e \in E_P} c_e H(k_e) = \sum_{e \in E} c_e H(k_e) = \Psi(P)$$

▶ $\Psi(P) \leq H(k)c(P)$ vale pois

$$\Psi(P) = \sum_{e \in E} c_e H(k_e) = \sum_{e \in E_P} c_e H(k_e) \le \sum_{e \in E_P} c_e H(k) = H(k) c(P).$$

Corolário: O jogo de roteamento global converge para um equilíbrio

A função $\Psi(P)$ está próxima do valor do custo de S.

Lema: Se
$$P = (P_1, ..., P_k)$$
 é um vetor de estratégias, então $c(P) \le \Psi(P) \le H(k)c(P)$

Prova

 \triangleright $c(P) < \Psi(P)$ vale pois

$$c(P) = \sum_{e \in E_P} c_e \le \sum_{e \in E_P} c_e H(k_e) = \sum_{e \in E} c_e H(k_e) = \Psi(P)$$

▶ $\Psi(P) \leq H(k)c(P)$ vale pois

$$\Psi(P) = \sum_{e \in E} c_e H(k_e) = \sum_{e \in E_P} c_e H(k_e) \le \sum_{e \in E_P} c_e H(k) = H(k)c(P).$$

Corolário: O jogo de roteamento global converge para um equilíbrio

A função $\Psi(P)$ está próxima do valor do custo de S.

Lema: Se
$$P = (P_1, ..., P_k)$$
 é um vetor de estratégias, então $c(P) \le \Psi(P) \le H(k)c(P)$

Prova.

▶ $c(P) \le \Psi(P)$ vale pois

$$c(P) = \sum_{e \in E_P} c_e \le \sum_{e \in E_P} c_e H(k_e) = \sum_{e \in E} c_e H(k_e) = \Psi(P)$$

▶ $\Psi(P) \le H(k)c(P)$ vale pois

$$\Psi(P) = \sum_{\theta \in E} c_{\theta} H(k_{\theta}) = \sum_{\theta \in E_{P}} c_{\theta} H(k_{\theta}) \leq \sum_{\theta \in E_{P}} c_{\theta} H(k) = H(k) c(P)$$

Corolário: O jogo de roteamento global converge para um equilíbrio

A função $\Psi(P)$ está próxima do valor do custo de S.

Lema: Se
$$P = (P_1, ..., P_k)$$
 é um vetor de estratégias, então $c(P) \le \Psi(P) \le H(k)c(P)$

Prova.

▶ $c(P) \le \Psi(P)$ vale pois

$$c(P) = \sum_{e \in E_P} c_e \leq \sum_{e \in E_P} c_e H(k_e) = \sum_{e \in E} c_e H(k_e) = \Psi(P)$$

▶ $\Psi(P) \le H(k)c(P)$ vale pois

$$\Psi(P) = \sum_{e \in E} c_e H(k_e) = \sum_{e \in E_P} c_e H(k_e) \leq \sum_{e \in E_P} c_e H(k) = H(k) c(P).$$

Teorema: O preço da estabilidade é no máximo H(k) *Prova.* Seja

- O* um resultado ótimo social
- O um resultado em equilíbrio obtido a partir de O*
- P um resultado em equilíbrio de menor custo

$$c(P) \leq c(O)$$

$$\leq \Psi(O)$$

$$\leq \Psi(O^*)$$

$$\leq H(k)c(O^*)$$

Teorema: O preço da estabilidade é no máximo H(k) *Prova.* Seja

- O* um resultado ótimo social
- O um resultado em equilíbrio obtido a partir de O*
- ▶ P um resultado em equilíbrio de menor custo

$$c(P) \leq c(O)$$
 $\leq \Psi(O)$
 $\leq \Psi(O^*)$
 $\leq H(k)c(O^*)$

Teorema: Encontrar um resultado ótimo social é NP-difícil

Teorema: (Fabrikant, Papadimitriou, Talwar'04) Encontrar um equilíbrio em jogos potenciais é PLS-completo

Teorema: (Syrgkanis'10) Encontrar um equilíbrio de Nash no jogo de roteamento global é PLS-completo

Teorema: (Tardos e Wexler'07) Para grafos não-orientados há compartilhamento de custo onde o preço da anarquia é limitado a 2

- Estamos interessados em fazer as regras do jogo
- Jogadores devem declarar informações verdadeiras
- Busca de algoritmos/protocolos eficientes
- Obtendo resultados de qualidade

- Estamos interessados em fazer as regras do jogo
- Jogadores devem declarar informações verdadeiras
- ▶ Busca de algoritmos/protocolos eficientes
- Obtendo resultados de qualidade

- Estamos interessados em fazer as regras do jogo
- Jogadores devem declarar informações verdadeiras
- Busca de algoritmos/protocolos eficientes
- Obtendo resultados de qualidade

- Estamos interessados em fazer as regras do jogo
- Jogadores devem declarar informações verdadeiras
- Busca de algoritmos/protocolos eficientes
- Obtendo resultados de qualidade

- Estamos interessados em fazer as regras do jogo
- Jogadores devem declarar informações verdadeiras
- Busca de algoritmos/protocolos eficientes
- Obtendo resultados de qualidade

Considere um leilão de um item único

- Os jogadores d\u00e3o lance pelo item
- É definido o ganhador do leilão
- ▶ É definido quanto o ganhador paga pelo item

Regra do maior valor:

- Os jogadores d\u00e3o lance pelo item
- O ganhador é o jogador do maior lance
- O ganhador paga o valor do seu lance

Lances:

Bob vence e paga 10

Mas: se Bob desse lance de 6, teria ganho e sua utilidade seria maior

Regra do maior valor:

- Os jogadores d\u00e3o lance pelo item
- O ganhador é o jogador do maior lance
- O ganhador paga o valor do seu lance

Lances:

Carlos

Bob vence e paga 10

Mas: se Bob desse lance de 6, teria ganho e sua utilidade seria maior

Regra do maior valor:

- Os jogadores d\u00e3o lance pelo item
- O ganhador é o jogador do maior lance
- O ganhador paga o valor do seu lance

Alice

Lances:

Bob

Carlos

Bob vence e paga 10

Mas: se Bob desse lance de 6, teria ganho e sua utilidade seria maior Incentivo a mentir!

Regra do segundo maior valor (Leilão de Vickrey):

- O ganhador é o jogador do maior lance
- O ganhador paga o valor do segundo maior lance
- Simula o leilão ascendente

Lances:

Bob vence e paga 5

Incentiva a todos dizerem seu valor/lance verdadeiro Valor pago não depende do lance do ganhador

Regra do segundo maior valor (Leilão de Vickrey):

- O ganhador é o jogador do maior lance
- O ganhador paga o valor do segundo maior lance
- Simula o leilão ascendente

Lances:

Bob vence e paga 5

Incentiva a todos dizerem seu valor/lance verdadeiro Valor pago não depende do lance do ganhador

Regra do segundo maior valor (Leilão de Vickrey):

- O ganhador é o jogador do maior lance
- O ganhador paga o valor do segundo maior lance
- Simula o leilão ascendente

Lances:

Bob vence e paga 5

Incentiva a todos dizerem seu valor/lance verdadeiro Valor pago não depende do lance do ganhador

Mecanismo VCG - Vickrey, Clarke, Groves

- Mecanismo deve escolher uma alternativa de um conjunto A (escolha social)
- Deve definir quanto cada jogador deve pagar pela escolha
- Cada jogador deve anunciar sua informação privada (mentir não o leva a ter mais vantagens).

Mecanismo VCG - Vickrey, Clarke, Groves

- Mecanismo deve escolher uma alternativa de um conjunto A (escolha social)
- Deve definir quanto cada jogador deve pagar pela escolha
- Cada jogador deve anunciar sua informação privada (mentir não o leva a ter mais vantagens).

Mecanismo VCG - Vickrey, Clarke, Groves

- Mecanismo deve escolher uma alternativa de um conjunto A (escolha social)
- Deve definir quanto cada jogador deve pagar pela escolha
- Cada jogador deve anunciar sua informação privada (mentir não o leva a ter mais vantagens).

Mecanismos de revelação direta

Def.: Um mecanismo é dado por

- ightharpoonup uma função de escolha social $f:V_1 \times \cdots \times V_n \to A$
- ► funções de pagamento p₁,...,p_n
 - onde $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$ é o valor que o jogador i paga.

Mecanismos de revelação direta

Def.: Um mecanismo é dado por

- ightharpoonup uma função de escolha social $f: V_1 \times \cdots \times V_n \to A$
- ▶ funções de pagamento p₁,...,p_n
 - onde $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$ é o valor que o jogador i paga.

Mecanismos de revelação direta

Def.: Um mecanismo é dado por

- ▶ uma função de escolha social $f: V_1 \times \cdots \times V_n \rightarrow A$
- ▶ funções de pagamento p₁,...,p_n
 - onde $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$ é o valor que o jogador i paga

Mecanismos de revelação direta

Def.: Um mecanismo é dado por

- ▶ uma função de escolha social $f: V_1 \times \cdots \times V_n \rightarrow A$
- ▶ funções de pagamento p₁,..., p_n

onde $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}$ é o valor que o jogador i paga.

Um jogador i possui

- ▶ Um valor privado $v_i(a)$ para cada alternativa $a \in A$
- utilidade u_i(a) = v_i(a) − p_i(v) (quanto vale menos o quanto pagou)

Queremos que i declare $v_i(a)$

e a declaração $v_i^*(a)$ não o leva a ter um benefício maior.

Um jogador i possui

- ▶ Um valor privado $v_i(a)$ para cada alternativa $a \in A$
- ▶ utilidade u_i(a) = v_i(a) p_i(v) (quanto vale menos o quanto pagou)

Queremos que i declare $v_i(a)$

e a declaração $v_i^\prime(a)$ não o leva a ter um benefício maior.

Um jogador i possui

- ▶ Um valor privado $v_i(a)$ para cada alternativa $a \in A$
- ▶ utilidade $u_i(a) = v_i(a) p_i(v)$ (quanto vale menos o quanto pagou)

Queremos que i declare $v_i(a)$

e a declaração $v_i'(a)$ não o leva a ter um benefício maior

Um jogador i possui

- ▶ Um valor privado $v_i(a)$ para cada alternativa $a \in A$
- ▶ utilidade $u_i(a) = v_i(a) p_i(v)$ (quanto vale menos o quanto pagou)

Queremos que i declare $v_i(a)$

e a declaração $v'_i(a)$ não o leva a ter um benefício maior.

Def.: Um mecanismo $(f, p_1, ..., p_n)$ é incentivo-compatível se para todo jogador i, todo $v_1 \in V_1, ...,$ todo $v_n \in V_n$ e todo $v_i' \in V_i$ temos

$$v_i(a) - p_i(v_i, v_{-i}) \ge v_i(a') - p_i(v'_i, v_{-i}),$$

onde a = f(v) e $a' = f(v'_i, v_{-i})$.

Def.: Um mecanismo é dito ter uma função de utilidade se sua função de escolha social é uma função utilitária.

Def.: Um mecanismo $(f, p_1, ..., p_n)$ é dito ser um mecanismo VCG se

$$f(v_1, \ldots, v_n) \in \arg \max_{a \in A} \sum_i v_j(a)$$

isto é, f maximiza o benefício social e

▶ temos funções $h_1, ..., h_n$, onde

$$h_i:V_{-i}\to\mathbb{R}$$

para todo $v_1 \in V_1,...$, para todo $v_n \in V_n$, temos

$$p_i(v_1,\ldots,v_n) = h_i(v_{-i}) - \sum_{i \neq i} v_j(f(v_1,\ldots,v_n))$$

Def.: Um mecanismo $(f, p_1, ..., p_n)$ é dito ser um mecanismo VCG se

$$f(v_1,\ldots,v_n) \in \arg\max_{a \in A} \sum_j v_j(a)$$

isto é, f maximiza o benefício social e

▶ temos funções h₁,..., h_n, onde

$$h_i:V_{-i}\to\mathbb{R}$$

para todo $v_1 \in V_1,...$, para todo $v_n \in V_n$, temos

$$p_i(v_1,\ldots,v_n) = h_i(v_{-i}) - \sum_{i \neq i} v_j(f(v_1,\ldots,v_n))$$

Def.: Um mecanismo $(f, p_1, ..., p_n)$ é dito ser um mecanismo VCG se

$$f(v_1,\ldots,v_n) \in \arg\max_{a \in A} \sum_j v_j(a)$$

isto é, f maximiza o benefício social e

▶ temos funções h₁,..., h_n, onde

$$h_i: V_{-i} \to \mathbb{R}$$

para todo $v_1 \in V_1, ...,$ para todo $v_n \in V_n$, temos

$$p_i(v_1,\ldots,v_n) = h_i(v_{-i}) - \sum_{i \neq i} v_j(f(v_1,\ldots,v_n))$$

Def.: Um mecanismo $(f, p_1, ..., p_n)$ é dito ser um mecanismo VCG se

$$f(v_1,\ldots,v_n) \in \arg\max_{a \in A} \sum_j v_j(a)$$

isto é, f maximiza o benefício social e

▶ temos funções h₁,..., h_n, onde

$$h_i: V_{-i} \to \mathbb{R}$$

para todo $v_1 \in V_1, ..., para todo <math>v_n \in V_n$, temos

$$p_i(v_1,...,v_n) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v_1,...,v_n))$$

Teorema: (Groves'73) Todo mecanismo VCG é incentivo-compatível.

Def.:

- ▶ Um mecanismo é dito ser individualmente racional se os jogadores sempre obtêm benefício não negativo. Isto é, se para todo v_1, \ldots, v_n temos $v_i(f(v_1, \ldots, v_n)) p_i(v_1, \ldots, v_n) \ge 0$
- ▶ Dizemos que um mecanismo não tem transferências positivas se nenhum jogador recebe do mecanismo (em vez de pagar). Isto é se para todas funções v_1, \ldots, v_n e todo jogador i, temos $p_i(v_1, \ldots, v_n) \ge 0$.

Regra de Clarke: É possível obter mecanismos VCG que atendam a estas duas condições definindo h_i como sendo

$$h_i(v_{-i}) = \max_{b \in A} \sum_{i \neq i} v_i(b)$$

Def.:

- ▶ Um mecanismo é dito ser individualmente racional se os jogadores sempre obtêm benefício não negativo. Isto é, se para todo v_1, \ldots, v_n temos $v_i(f(v_1, \ldots, v_n)) p_i(v_1, \ldots, v_n) \ge 0$
- ▶ Dizemos que um mecanismo não tem transferências positivas se nenhum jogador recebe do mecanismo (em vez de pagar). Isto é, se para todas funções v_1, \ldots, v_n e todo jogador i, temos $p_i(v_1, \ldots, v_n) \ge 0$.

Regra de Clarke: É possível obter mecanismos VCG que atendam a estas duas condições definindo *h*_i como sendo

 $h_i(v_{-i}) = \max_{b \in A} \sum_{i \neq i} v_i(b)$

Def.:

- ▶ Um mecanismo é dito ser individualmente racional se os jogadores sempre obtêm benefício não negativo. Isto é, se para todo v_1, \ldots, v_n temos $v_i(f(v_1, \ldots, v_n)) p_i(v_1, \ldots, v_n) \ge 0$
- ▶ Dizemos que um mecanismo não tem transferências positivas se nenhum jogador recebe do mecanismo (em vez de pagar). Isto é, se para todas funções v_1, \ldots, v_n e todo jogador i, temos $p_i(v_1, \ldots, v_n) \ge 0$.

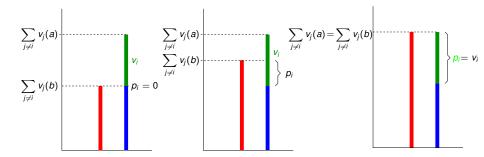
Regra de Clarke: É possível obter mecanismos VCG que atendam a estas duas condições definindo h_i como sendo $h_i(v_{-i}) = \max_{b \in A} \sum_{i \neq i} v_i(b)$

Lema: Um mecanismo VCG com regra de pagamento de Clarke

- Não faz transferências positivas
- Se v_i(a) ≥ 0 para todo v_i e a então o mecanismo é individualmente racional

Observações:

- ▶ A alternativa $a = f(v_1, ..., v_n)$ é tal que $\sum_i v_i(a)$ é máxima
- seja b a alternativa que maximiza a função social, sem o jogador i
 (i.e., b = f(v_{-i}))
- ▶ Na regra de pagamento de Clarke fazemos $p_i(v_1, ..., v_n) = \sum_{i \neq i} v_i(b) \sum_{i \neq i} v_i(a)$



Leilão de Vickrey (segundo maior valor):

Teorema: O mecanismo definido no Leilão de Vickrey é VCG

Prova

- Conjunto de alternativas é o conjunto dos jogadores
- ▶ Vencedor i* é escolhido com v_{i*} máximo
- ► Pagamento é definido como o

$$p_i = \begin{cases} \max_{b \in A} \sum_{j \neq i^*} v_j(b) - \sum_{j \neq i^*} v_j(a), & \text{se } i = i^* \\ 0, & \text{caso contrário} \end{cases}$$

Leilão de Vickrey (segundo maior valor):

Teorema: O mecanismo definido no Leilão de Vickrey é VCG

Prova.

- Conjunto de alternativas é o conjunto dos jogadores
- ▶ Vencedor i* é escolhido com v_{i*} máximo
- ► Pagamento é definido como o

$$p_i = \begin{cases} \max_{b \in A} \sum_{j \neq i^*} v_j(b) - \sum_{j \neq i^*} v_j(a), & \text{se } i = i^* \\ 0, & \text{caso contrário} \end{cases}$$

Leilão de Vickrey (segundo maior valor):

Teorema: O mecanismo definido no Leilão de Vickrey é VCG

Prova.

- Conjunto de alternativas é o conjunto dos jogadores
- ▶ Vencedor i* é escolhido com v_{i*} máximo
- Pagamento é definido como o

$$p_i = \begin{cases} \max_{b \in A} \sum_{j \neq i^*} v_j(b) - \sum_{j \neq i^*} v_j(a), & \text{se } i = i^* \\ 0, & \text{caso contrário} \end{cases}$$

Leilão de Vickrey (segundo maior valor):

Teorema: O mecanismo definido no Leilão de Vickrey é VCG

Prova.

- Conjunto de alternativas é o conjunto dos jogadores
- Vencedor i* é escolhido com v_{i*} máximo
- Pagamento é definido como o

$$p_i = \left\{egin{array}{ll} \max_{b \in \mathcal{A}} \sum_{j
eq i^*} v_j(b) - \sum_{j
eq i^*} v_j(a), & ext{se } i = i^* \ 0, & ext{caso contrário} \end{array}
ight.$$

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo ce e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preço do caminho construído

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo c_e e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preco do caminho construído

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo ce e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preco do caminho construído

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo ce e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preco do caminho construído

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo ce e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preco do caminho construído

- Grafo G = (V, E) onde cada aresta é um possível trecho a ser construído
- Queremos conectar dois vértices s e t por um caminho de G
- Cada aresta e tem um custo ce e só pode ser construída por um jogador
- Cada jogador dá um valor (lance) para ele construir o trecho da sua aresta
- Custo social é o preço do caminho construído

Objetivo

- Determinar quem constrói as arestas
- Quanto cada jogador recebe para construir o trecho

Assumiremos que o grafo é 2-aresta conexo

Objetivo

- Determinar quem constrói as arestas
- Quanto cada jogador recebe para construir o trecho

Assumiremos que o grafo é 2-aresta conexo

Objetivo

- Determinar quem constrói as arestas
- Quanto cada jogador recebe para construir o trecho

Assumiremos que o grafo é 2-aresta conexo

Objetivo

- Determinar quem constrói as arestas
- Quanto cada jogador recebe para construir o trecho

Assumiremos que o grafo é 2-aresta conexo

Objetivo

- Determinar quem constrói as arestas
- Quanto cada jogador recebe para construir o trecho

Assumiremos que o grafo é 2-aresta conexo

Mecanismo VCG:

- Definição dos vencedores:
 - Encontrar uma alternativa de custo mínimo
 - i.e., encontrar caminho mínimo P de s a t
- Definição do pagamento p_e de cada jogador ε
 - Encontrar caminho mínimo P' de s a t em G − e p_e = custo(P') − custo(P − e)

Mecanismo VCG:

- Definição dos vencedores:
 - Encontrar uma alternativa de custo mínimo
 - ▶ i.e., encontrar caminho mínimo *P* de *s* a *t*
- Definição do pagamento pe de cada jogador e
 - Encontrar caminho mínimo P' de s a t em G − e
 p₀ = custo(P') − custo(P − e)

Mecanismo VCG:

- Definição dos vencedores:
 - Encontrar uma alternativa de custo mínimo
 - ▶ i.e., encontrar caminho mínimo P de s a t
- Definição do pagamento pe de cada jogador e
 - Encontrar caminho mínimo P' de s a t em G − e p_e = custo(P') − custo(P − e)

Mecanismo VCG:

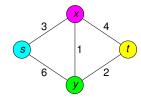
- Definição dos vencedores:
 - Encontrar uma alternativa de custo mínimo
 - ▶ i.e., encontrar caminho mínimo P de s a t
- Definição do pagamento p_e de cada jogador e
 - Encontrar caminho mínimo P' de s a t em G − e
 p_e = custo(P') − custo(P − e)

Mecanismo VCG:

- Definição dos vencedores:
 - Encontrar uma alternativa de custo mínimo
 - ▶ i.e., encontrar caminho mínimo P de s a t
- Definição do pagamento p_e de cada jogador e
 - ► Encontrar caminho mínimo P' de s a t em G e

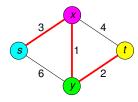
$$p_e = custo(P') - custo(P - e)$$

Exemplo:



Caminho mínimo (vencedores)

- ► Caminho mínimo de s a t: P = (s-x-y-t)
- ► *custo*(*P*) = 6

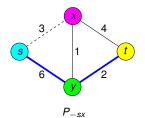


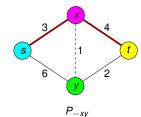
Pagamentos

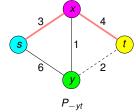
$$\rho_{sx} = c(P_{-sx}) - (c(P^*) - c_{sx}) = 8 - (6 - 3) = 5$$

$$p_{xy} = c(P_{-xy}) - (c(P^*) - c_{xy}) = 7 - (6 - 1) = 2$$

$$ho_{yt} = c(P_{-yt}) - (c(P^*) - c_{yt}) = 7 - (6 - 2) = 3$$







- Construção de árvore geradora de peso mínimo
- ► Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner
 Opa... o problema da árvore de Steiner é NP-difícil..
- ► Há uma 2-aproximação para a construção de árvore de Steiner, incentivo compatível (Guala & Proiette'05)

- Construção de árvore geradora de peso mínimo
- Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner
 Opa... o problema da árvore de Steiner é NP-difícil...
- ► Há uma 2-aproximação para a construção de árvore de Steiner, incentivo compatível (Guala & Proiette'05)

- Construção de árvore geradora de peso mínimo
- Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner
 Opa... o problema da árvore de Steiner é NP-difícil..
- ► Há uma 2-aproximação para a construção de árvore de Steiner, incentivo compatível (Guala & Proiette'05)

- Construção de árvore geradora de peso mínimo
- Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner

- Construção de árvore geradora de peso mínimo
- Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner
 Opa... o problema da árvore de Steiner é NP-difícil...
- ► Há uma 2-aproximação para a construção de árvore de Steiner, incentivo compatível (Guala & Proiette'05)

- Construção de árvore geradora de peso mínimo
- Construção de emparelhamento de peso mínimo
- Construção de árvore de Steiner
 Opa... o problema da árvore de Steiner é NP-difícil...
- Há uma 2-aproximação para a construção de árvore de Steiner, incentivo compatível (Guala & Proiette'05)

Leilões Eletrônicos ou pela Internet

Algumas características possíveis:

- Não há necessidade de espaço físico
- Flexibilidade de tempo
- Maior número de vendas simultâneas

Exemplos:

- Propaganda em motores de busca (Pay-per-Click)
- ▶ Itens de pequeno valor (CD's, livros)
- Espectros em telecomunicações (leilões combinatoriais de bilhões de dólares)

Leilões Eletrônicos ou pela Internet

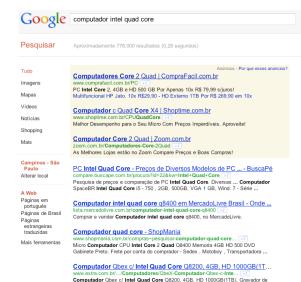
Algumas características possíveis:

- Não há necessidade de espaço físico
- Flexibilidade de tempo
- Maior número de vendas simultâneas

Exemplos:

- Propaganda em motores de busca (Pay-per-Click)
- Itens de pequeno valor (CD's, livros)
- Espectros em telecomunicações (leilões combinatoriais de bilhões de dólares)

Leilões em motores de busca



Anúncios - Por que esses anúncios?

Computador em Oferta

Computador A Partir de R\$ 484,03. Em Até 24x Sem Juros* no Pontofriol

Computadores com Intel

www.carrefour.com.br/Computador_Intel Aproveite as Super Ofertas no Carrefour. Pague em 15x Sem Juros

Computadores - Extra.com

www.extra.com.br/Computadores +1
Computadores A Partir De R\$ 581,03
Em Até 12x Sem Juros, Imperdivel!

RicardoEletro -Computador www.ricardoeletro.com.br/Computador

Computadores a partir de R\$ 499 Ricardo Eletro, Preço é Tudo

Promoção de Computador

www.kalunga.com.br/Computadores

Computadores a Partir de R\$ 369,00
em até 10x Sem Juros. Aproveitel

Computadores em Oferta

www.magazineluiza.com.br/Vem_Ser_Fel
Computador em até 12x s/Juros
no Magazine Luiza. Confira Agora!

- Vários itens sendo leiloados ao mesmo tempo
- Cada comprador está interessado em diferentes combinações de itens
- Cada combinação tem um valor para o comprador

Exemplo:

► Há 3 jogadores: 1,2,3

► Há 3 itens: a, b e c

Valores de cada combinação para cada jogador

	{a}	{ <i>b</i> }	{a,b}
Jogador 1	5	4	15
Jogador 2	6	6	6
Jogador 3	2	10	12

Representação

- Se temos n itens sendo leiloados
- Cada jogador tem um valor para cada um dos 2ⁿ subconjuntos

Na prática

- ▶ Jogador está interessado em poucos itens ou combinações ou
- ▶ tem uma regra/algoritmo eficiente para dar o valor de um conjunto

Representação

- Se temos n itens sendo leiloados
- Cada jogador tem um valor para cada um dos 2ⁿ subconjuntos

Na prática

- Jogador está interessado em poucos itens ou combinações ou
- tem uma regra/algoritmo eficiente para dar o valor de um conjunto

Consideramos que

- ▶ / é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador i
- ▶ Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, ..., S_n)$ aos jogadores $S_i \cap S_i = \emptyset$ para $i \neq j$

Consideramos que

- ▶ I é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador I
- Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, ..., S_n)$ aos jogadores $S_i \cap S_i = \emptyset$ para $i \neq j$

Consideramos que

- I é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador i
- ▶ Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, ..., S_n)$ aos jogadores $S_i \cap S_i = \emptyset$ para $i \neq j$

Consideramos que

- I é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador i
- Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, ..., S_n)$ aos jogadores $S_i \cap S_i = \emptyset$ para $i \neq j$

Consideramos que

- I é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador i
- Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, \dots, S_n)$ aos jogadores $S_i \cap S_j = \emptyset$ para $i \neq j$

Consideramos que

- ▶ I é o conjunto de itens
- ▶ Valores privados são não negativos $v_i(S) \ge 0$ para todo conjunto $S \subseteq I$ e jogador i
- Valores privados nunca são maiores para subconjuntos próprios

$$v_i(S) \le v_i(T)$$
 para $S \subseteq T$

Alocação: Atribuição de itens $S = (S_1, ..., S_n)$ aos jogadores $S_i \cap S_j = \emptyset$ para $i \neq j$

Entrada: Conjunto de itens *I* a serem leiloados Subrotina: Algoritmo *R* para obter alocação socialmente eficiente

- 1. Cada jogador i submete um lance $v_i(S)$ para cada $S \subseteq I$
- 2. Use R para obter uma alocação $S = (S_1, ..., S_n)$ para o vetor de valoração $v = (v_1, ..., v_n)$ que maximiza v(S)
- 3. O pagamento do jogador i é definido como o valor p_i , dado por

$$p_i = \max\{v(S') : S' \in S_{-i}\} - \sum_{j \neq i} v_j(S_j),$$

onde \mathbb{S}_{-i} é o conjunto de todas as alocações que não atribuem conjuntos a i. Utilize a rotina R para resolver o problema de maximização.

- Resolvido uma vez para definir os vencedores
- ▶ Resolvido *n* vezes, para definir o pagamento de cada jogador
- É um problema NP-difíci

- Resolvido uma vez para definir os vencedores
- ▶ Resolvido *n* vezes, para definir o pagamento de cada jogador
- É um problema NP-difícil

- Resolvido uma vez para definir os vencedores
- Resolvido n vezes, para definir o pagamento de cada jogador
- É um problema NP-difícil

- Resolvido uma vez para definir os vencedores
- Resolvido n vezes, para definir o pagamento de cada jogador
- ► É um problema NP-difícil

Busca de alocações socialmente eficientes

- n: Número de itens
- m: Número de jogadores

- ► O(3ⁿ) para caso geral
- ▶ polinomiais quando n é pequeno em relação a m, ou vice-versa $(n \le \log m \text{ ou } m \le \log n)$

Busca de alocações socialmente eficientes

- n: Número de itens
- m: Número de jogadores

- ▶ O(3ⁿ) para caso geral
- ▶ polinomiais quando n é pequeno em relação a m, ou vice-versa $(n \le \log m \ ou \ m \le \log n)$

Busca de alocações socialmente eficientes

- n: Número de itens
- m: Número de jogadores

- ► O(3ⁿ) para caso geral
- ▶ polinomiais quando n é pequeno em relação a m, ou vice-versa $(n \le \log m \ ou \ m \le \log n)$

Busca de alocações socialmente eficientes

- n: Número de itens
- m: Número de jogadores

- ► O(3ⁿ) para caso geral
- ▶ polinomiais quando n é pequeno em relação a m, ou vice-versa $(n \le \log m \ ou \ m \le \log n)$

Teorema: Mecanismo pode ser implementado eficientemente quando

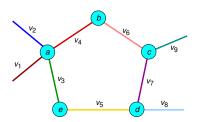
- Cada jogador está interessado em apenas um conjunto e
- o conjunto de interesse tem cardinalidade 1 ou 2

Prova. Resolução via emparelhamento de peso máximo

Teorema: Mecanismo pode ser implementado eficientemente quando

- Cada jogador está interessado em apenas um conjunto e
- o conjunto de interesse tem cardinalidade 1 ou 2

Prova. Resolução via emparelhamento de peso máximo

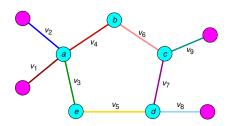


Linhas são conjuntos de interesse e vértices são itens

Teorema: Mecanismo pode ser implementado eficientemente quando

- Cada jogador está interessado em apenas um conjunto e
- o conjunto de interesse tem cardinalidade 1 ou 2

Prova. Resolução via emparelhamento de peso máximo



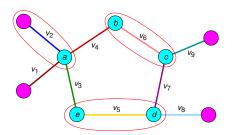
Inserimos um vértice dummy para cada conjunto unitário

Mecanismo VCG

Teorema: Mecanismo pode ser implementado eficientemente quando

- Cada jogador está interessado em apenas um conjunto e
- o conjunto de interesse tem cardinalidade 1 ou 2

Prova. Resolução via emparelhamento de peso máximo



Encontramos um emparelhamento de peso máximo

Cada jogador i está interessado só em um conjunto Si

Problema de alocação continua NP-difícil

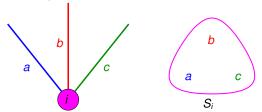
Redução via Conjunto Independente: Dado grafo G, encontrar maior subconjunto de vértices tal que não há arestas de G entre eles

Conjunto independente de cardinalidade 4

Teorema: O problema do Conjunto Independente é NP-difícil

Redução via Conjunto Independente

- Cada aresta se torna um item
- Cada vértice se torna um jogador
- Arestas incidentes a i formam o conjunto do jogador i
- Valor de cada conjunto é 1



▶ Há conj. independente de tamanho k SSE há alocação de valor k

- ▶ Como obter mecanismos eficientes ?
- ▶ E se usarmos algoritmos eficientes para o problema de alocação ?
- ▶ Podemos deixar de ter um benefício social máximo
- Podemos deixar de ter um mecanismo incentivo-compatível

- Como obter mecanismos eficientes ?
- ► E se usarmos algoritmos eficientes para o problema de alocação ?
- ▶ Podemos deixar de ter um benefício social máximo
- Podemos deixar de ter um mecanismo incentivo-compatível

- Como obter mecanismos eficientes ?
- ▶ E se usarmos algoritmos eficientes para o problema de alocação ?
- Podemos deixar de ter um benefício social máximo
- Podemos deixar de ter um mecanismo incentivo-compatível

- Como obter mecanismos eficientes ?
- ▶ E se usarmos algoritmos eficientes para o problema de alocação ?
- Podemos deixar de ter um benefício social máximo.
- Podemos deixar de ter um mecanismo incentivo-compatível

- Como obter mecanismos eficientes ?
- ▶ E se usarmos algoritmos eficientes para o problema de alocação ?
- Podemos deixar de ter um benefício social máximo.
- Podemos deixar de ter um mecanismo incentivo-compatível

- Como obter mecanismos eficientes ?
- ▶ E se usarmos algoritmos eficientes para o problema de alocação ?
- Podemos deixar de ter um benefício social máximo.
- Podemos deixar de ter um mecanismo incentivo-compatível

Mecanismo Guloso

Entrada: Conjunto de itens I a serem leiloados.

- 1. Cada jogador *i* submete um lance (S_i, v_i) , onde $S_i \subseteq I$.
- 2. Reordene os lances tal que $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \ldots \ge \frac{v_n}{\sqrt{|S_n|}}$.
- 3. $W \leftarrow \emptyset$
- 4. Para $i \leftarrow 1$ até n faça
- 5. se $S_i \cap (\cup_{i \in W} S_i) = \emptyset$ então $W \leftarrow W \cup \{i\}$.
- 6. Para $i \leftarrow 1$ até n faça
- 7. $p_i \leftarrow \frac{v_j}{\sqrt{|S_j|/|S_i|}}$, onde j é menor índice t.q. $S_i \cap S_j \neq \emptyset$ e
- 8. para todo $k < j, k \neq i, S_k \cap S_j = \emptyset$. Se não existir tal j
- 9. então $p_i \leftarrow 0$.
- 10. Devolva alocação (T_1, \ldots, T_n) , onde $T_i = S_i$ se $i \in W$ e
- 11. $T_i = \emptyset$ caso contrário, e pagamentos (p_1, \dots, p_n) .

Teorema: (Hastad'99+Zuckerman'06) O problema do conjunto independente não pode ser aproximado para $m^{1/2-\epsilon}$, para qualquer $\epsilon > 0$, a menos que P = NP

Corolário: Não existe algoritmo eficiente que aproxima o problema de alocação dentro de um fator de $m^{1/2-\epsilon}$, para qualquer $\epsilon>0$, a menos que P=NP.

Outros assuntos no livro

Algorithmic Game Theory, Edited by Nisan, Rougharden, Tardos e Vazirani Cambridge, 2007, 754pgs.

- Equilíbrio de mercados
- Criptografia,
- Eleições e escolhas sociais
- Computação distribuída
- Compartilhamento de custos
- Mecanismos online
- Sistemas de reputação
- ► Leilões em motores de busca
- etc