
Optimal algorithms for the batch scheduling problem in OBS networks

Gustavo B. Figueiredoa, Eduardo Candido Xavierb, Nelson L. S. da Fonsecab

aDepartment of Computer Science, Federal University of Bahia, Brazil
bInstitute of Computing, University of Campinas, Brazil

Abstract

This paper introduces optimal batch scheduling algorithms for the problem of scheduling batches of bursts in optical
burst switching networks. The problem is modelled as a job scheduling problem with identical machines. The
consideration of previously scheduled bursts in the scheduling allows such modeling. Two optimal algorithms with
polynomial time complexity are derived and evaluated. Results show that the algorithm that allows re-scheduling of
previously scheduled bursts leads to preferred solutions.

Moreover, an extended version of the JET reservation protocol is proposed for efficient handling of batches of
bursts. Results obtained via simulation prove the superior performance of the BATCHOPT algorithm.

Keywords: OBS Networks, channel scheduling, batch scheduling

1. Introduction

In Optical Burst Switching (OBS) networks, packets are aggregated at edge nodes to create transmission units
called bursts. A control packet is transmitted out-of-band, ahead of the burst, so that bandwidth can be reserved for
the data burst. The control packet carries information about the burst, such as size and offset time (defined as the
time interval separating the arrival of the control packet and that of the data burst). A scheduling mechanism then
reserves bandwidth of the output channels of nodes in the core network for incoming bursts, based on the information
carried by their control packets. Since the nodes at the network border do not wait for the confirmation of bandwidth
reservation to transmit a burst, the incoming burst will be discarded at a core node if bandwidth has not been reserved.

The Just-Enough-Time (JET) [1] is a commonly used protocol for resource reservation in OBS networks. JET
reserves the channel for the duration of the transmission of a burst, starting at its expected arrival time (given by the
offset time minus the burst processing time). If this request for bandwidth reservation is granted, a new offset time is
calculated, and this information is inserted into the control packet being forwarded to the next hop in the route.

Since bursts have different offset times, they may arrive in a different order than that of their control packets. This
can lead to fragmentation of the occupancy of the output channels, since the occupancy pattern of output channels
typically alternates between periods of occupancy and period of idleness, called void intervals. These void intervals
can be used to accommodate the transmission of new bursts. Indeed, a void interval, I j, defined by its starting, s j, and
its ending time, e j, can be allocated to a burst with an arrival time, t′, and departure time, t′′ if and only if s j ≤ t′ e
t′′ ≤ e j.

Most of the existing algorithms for burst scheduling provide greedy processing to individual bursts [41, 42, 43, 48,
28]. However, this approach can lead to the loss of bursts which could be avoided if the arrival time were previously
known. One way of ameliorating this type of loss is to gather reservation requests during a certain time interval,
and then schedule them as a batch of requests. The objective of this process is to maximize the number of bursts
transmitted, i.e, to minimize the loss of bursts. For this reason, the occupancy of the output channels by the bursts can
be modeled as an interval graph [56] with the solution of the burst assignment problem given by the solution of the
coloring of an interval graph problem.

Email addresses: gustavo@dcc.ufba.br (Gustavo B. Figueiredo), ecx@ic.unicamp.br (Eduardo Candido Xavier),
nfonseca@ic.unicamp.br (Nelson L. S. da Fonseca)

Preprint submitted to Elsevier May 21, 2013

Previous work [11] [12] on batch scheduling in OBS networks have addressed the channel reservation problem
as a job scheduling problem with non-identical machines. However, such modeling leads to an NP-hard problem.
As a consequence, heuristics have been proposed to solve the problem. In this paper, we show how the problem of
batch scheduling in OBS networks can be formulated as a job scheduling problem with identical machines. We, then,
introduce two optimal algorithms: one for networks with no prioritized requests and which has linear time complexity
and the other for networks with prioritized requests which involve polynomial time complexity. In addition to low
computational complexity, the results derived via simulation show that the proposed algorithms produce a lower
probability of blocking than existing heuristics. These algorithms differ in respect to the re-scheduling of previously
scheduled bursts. Moreover, the JET protocol is extended to operate efficiently with batch scheduling algorithms.
Such an extension is compatible with the JET protocol, since its operation is exactly that of the JET protocol for
scheduling individual bursts.

This paper is organized as follows. Section 2 presents concepts related to batch scheduling. Section 3 presents re-
lated background and notation. Section 4 reviews related work. Section 5 presents the new optimum batch scheduling
algorithms. Section 6 presents an extended version of the JET protocol. Section 7 presents numerical examples and
Section 8 draws some conclusions.

2. Batch Scheduling in OBS networks

To minimize the chance of loss of burst, an algorithm should allocate bandwidth for a burst so that the chances of
allocation to upcoming bursts is maximized. A channel is considered available for accommodation of a burst if there
is a void large enough to accommodate the request. If no such channel is available, the request will be lost.

The scheduling algorithms proposed in [41, 42, 43, 48, 28] employ greedy strategies to reserve resources, but
these strategies use only the information on individual control packets when they arrive without consideration of the
overall demand during intervals between control packet arrivals.

A

B

Time

(a) Example of bad instances for greedy strategies.

Batch scheduling

Algorithm

BA

d

B
a
tc

h
 o

f
re

q
u
e
s
ts

A

B

(b) Batch scheduling of channels leading to no losses.

Figure 1: Examples of how batch scheduling can avoid losses of bursts

Figure 1(a) provides an example of a situation in which greedy algorithms fail to allocate resources for bursts: Let
A, B and C be control packets arriving in this order and let their corresponding bursts arrive in that same order. These
bursts can be accommodated only in channels 1 and 2 (dashed lines). Note that if channel 2 were used for burst A and
channel 1 for burst B (as could happen if the the algorithms proposed in [28, 43, 42] were used) there would be no
way to accommodate burst C. On the other hand if channel 1 is used by burst A and channel 2 by bursts B and C, the
result is a no loss scenario. This example illustrates the failure of scheduling due to lack of knowledge about future
requests.

To decrease the loss of bursts, a new class of batch scheduling algorithms were proposed in [11] and [12] .
The idea here is to group the largest possible number of control packets and process them together. After gathering
information on the control packets, they are ordered and assigned to the channel with the smallest index value that has
available wavelength to accommodate the burst (Figure 1(b)). One main characteristic of the heuristics presented in
[11] and [12] is that they collect requests arriving in time intervals of a fixed duration before processing them. This
strategy, however, generates losses when the beginning of batch processing succeeds a request starting time.

2

3. Background and Notation

The batch scheduling problem in OBS networks (denoted BS-OBS) can be stated as follows: Let M be a set of
k channels, and let I be a batch of n requests formed by control packets. On each channel mi ∈ M there can be
previously scheduled requests and voids resulting from lack of channel occupancy. These can be used to allocate the
requests in order to maximize the number of requests granted. Each request in the control packet Jx = (sx, ex,wx) ∈ I
is identified by a 3-tuple; the arrival time of the burst, (sx), the finishing time of the burst, (ex) and the request weight
indicating the priority of the scheduling burst, (wx). The objective is to find an allocation for a subset of requests such
that the sum of the weights of the requests granted is maximized.

The offset time of a control packet (sx, ex,wx) arriving at time t is given by sx − t. The control packet must be
processed during this offset time, otherwise its corresponding burst will be lost.

Next, some definitions will be introduced to facilitate the understanding of the mathematical formulation of the
BS-OBS problem.

Let G = (V, E) be a graph, where V(G) represents the set of vertices of G and E(G) the set of edges. Given a vertex
u ∈ V(G), we define the adjacency/neighborhood of u by Ad j(u) = {v ∈ V(G); (u, v) ∈ E(G)}. A subgraph H of G is a
graph such that V(H) ⊆ V(G) and E(H) ⊆ E(G). The degree of vertex u in the graph G, denoted by d(u|G), is the size
of the set Ad j(u). The subgraph H of G is induced by V(H) if for every pair u, v ∈ V(H) we have that (u, v) ∈ E(H) if
and only if (u, v) ∈ E(G). A clique of a graph G is a set C ⊆ V(G) such that ∀u, v ∈ C; (u, v) ∈ E(G). A clique C is
maximal if there is no other clique C′ in G such that C ⊂ C′ [56].

The graph G is called an interval graph if there is a correspondence/bijection between the set of vertices and a set
of intervals on the real line, such that there is an edge between two vertices if and only if the correspondent intervals
intersect, i.e, (u, v) ∈ E(G) ⇔ Iv ∩ Iu , ∅ [56]. Interval graphs have several properties that can be used to solve
problems in combinatorics. The fact that interval graphs can be recognizable and colorable in linear time will be
explored in this paper.

Interval graphs are typically used in the solution of the job scheduling problem, which can be stated as follows:
let I = {J1 = (s1, e1,w1), . . . , Jn = (sn, en,wn)} be a list of n jobs. Moreover, there are k machines with the same
processing capacity that are used to process these jobs. Initially, all machines are free starting at time 0. The problem
is to select a sub-list I′ ⊆ I with maximum total weight such that no pair of jobs allocated to the same machine
intersect their processing intervals.

This problem is known as the job scheduling problem with identical machines (denoted by S-IM) since there
is no restriction on which machine each job can be processed; otherwise it is called job scheduling problem with
non-identical machines (denoted by S-NIM). In S-NIM problem, there are restrictions on the assignment of jobs to
machines, i.e, for each job Ji there is a list Ni of machines on which that job cannot be scheduled. The solution of the
BS-OBS problem introduced here is based on an S-IM formulation in which jobs are represented by the requests for
bandwidth allocation and machines are represented by the output channels of core nodes.

4. Related Work

In [11], four heuristics for the solution of the OBS scheduling problem were introduced. All the heuristics involved
time complexity O(nk log(N)), where n is the number of requests being processed, k the number of channels and N
the number of previously allocated requests. In these heuristics, requests are modeled as interval graphs G. They are
briefly described below:
Smallest Vertex Ordering (SLV): In SLV, requests are allocated in the smallest last order, i.e, the first request allocated
is the one corresponding to vertex v1. The vertices v1, ..., vn of a graph G are considered to be ordered in a smallest last
fashion if vi has the smallest degree in the subgraph induced by the vertices v1, ..., vi . If a request cannot be allocated
in any channel, it is discarded and the process is repeated for all other vertices on that ordering.

The idea behind the SLV algorithm is that if a graph has only a few vertices with large degree, then if these requests
are allocated first, a small number of channels is used for them. Nonetheless, SLV can generate great loss of requests
as reported in [11]. The problem with this heuristic is illustrated in Figure 2. The requests are shown in Figure 2(a)
and the corresponding interval graph is presented in Figure 2(b). Vertex “A” is the one with the highest degree in the
smallest last ordering, and consequently the first one to be processed. However, scheduling “A” generates the loss of
all the other requests.

3

Reserved period
Unreserved period

Time

1

A

B C D E F G

(a) Requests over the time

B

A

G

ED

C F

(b) Correspondent interval graph

Figure 2: Example where heuristic in [11] is inadequate.

Maximal Cliques First (MCF): The MCF heuristic computes the order in which the requests are going to be processed
and also the requests that will be discarded. This heuristic computes all the maximal cliques of G and then sorts them
chronologically. Let {C1,C2, ...,Cm, } be the set of maximal cliques of G ordered in a way such that Ci ≺ C j for i < j.
The algorithm processes the requests of cliques in increasing order. If the size of a clique C j exceeds the number of
channels k, then the |C j| − k requests with smallest finishing time are discarded, since necessarily M − k requests are
discarded if there is a clique of size M in the interval graph such that k < M.

This heuristic can also produce poor results. Considering the example presented in Figure 2, when the heuristic
MCF is executed, the first clique to be processed (see Figure 2) is the clique with vertices “A” and “B”. Since there is
only one channel, request “A” is scheduled and all the remaining requests are discarded.
Smallest Start-time First Ordering (SSF): with this heuristic, requests are ordered and processed according to their
starting time. Poor results can also be produced as illustrated by the example in Figure 2. In this example the first
request to be processed is request “A” and all other requests are discarded.
Largest Interval First Ordering (LIF): with this heuristic, requests are ordered and processed in non-increasing order
of duration. Considering again the example presented in Figure 2 , it is possible to see the poor behavior of this
heuristic. Once “A” is allocated, all other requests are discarded. It is interesting to note that even when the total
length of the other requests is greater than the size of “A”, all other requests are discarded.

These heuristics depend on the structure of the interval graphs generated; for some graphs good solutions can be
found, but not for others. Thus, the main problem with all of the proposed approaches is that there is no guarantee
that the best solution will be achieved.

In [12] Charcranoon et al. present a heuristic that schedules the maximum number of requests, considering only
one channel. This heuristic Max Stable Set algorithm (Max-SS) [12] is presented next. It tries to find a maximum
independent set to maximize the number of disjoint requests that can be scheduled on a channel. Max-SS finds one
independent set for each channel, with a time complexity of O(n log n) which is the complexity needed to find the
maximum independent set in an interval graph.

5. Optimum algorithms for the BS-OBS problem

The job scheduling formulation of the BS-OBS problem relies on the list I of reservation requests as well as the
list S of requests already allocated to the channels. The problem is to find a subset of requests of I with a maximum
total weight that can be scheduled on the channels, since two intersecting requests cannot be scheduled on the same
channel.

The heuristics in [11] were based on the formulation of the job scheduling problem with non-identical machines.
Thus, if some incoming request intersects a request already scheduled to a machine m, then the second request cannot
be scheduled for this machine.

4

[13] introduces an optimal algorithm for the job scheduling problem with non-identical machines which has com-
putational complexity of O(nk+1). However, its computational complexity is prohibitive for the solution of the BS-OBS
problem because the exponential dependency on the number of channels (k).

The approach proposed here is the formulation of the BS-OBS problem as a job scheduling with identical machines
problem. For that, instead of trying to accommodate requests of I into the existing voids generated by previously
allocated requests S , all requests in the set I ∪ S are considered for scheduling. Moreover, all previous allocated
requests in S are rescheduled. In this way, the BS-OBS problem can be formulated as a S-IM problem.

Figure 3 illustrates this idea. At a given moment, channel 1 is reserved for the time period [8, 14] and channel
2, for the time period [3, 9] and [15, 20] then a set of incoming requests A ([1, 6]), B ([10, 14]), C ([16, 21]) and D
([7, 12]) arrived. These incoming requests are grouped with those previously allocated in a single batch, and both
channels become elegible for allocation by any of the requests of this newly formed batch.

M2

M1

New requests

A

B

C

D

I

1

2

0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22193

time

M2

M1

New requests

A

B

C

D

I

1

2

S

Precessed requests

Considered in the new solution

Figure 3: Batch Scheduling with Identical Machines.

5.1. Optimum algorithm with linear time complexity
A formulation for the batch scheduling problem with linear time complexity is proposed here. The algorithm,

called GreedyOPT, is suitable for networks in which all requests have the same priority. It involves two major steps.
In the first, the problem is transformed into a job scheduling problem with identical machines, thus allowing the
employment of fast exact algorithms.

In the second step, the algorithm in [6], proposed for job scheduling with identical machines, with time complexity
O(n max{log(n), k}) is used. This algorithm process sequentially the requests of the newly formed batch. It tries to
schedule the requests on one of the channels. If a given request cannot be scheduled, the algorithm tries to replace it
with one of the requests already scheduled that has latest ending time. The correctness of the algorithm is given by
Theorem 1.

Theorem 1. If one of the requests in a set has its duration shortened by the anticipation of its ending time, the number
of requests granted is equal to or higher than the number of requests in the original allocation for that set of requests.

Proof. See page 147 in [2].

GreedyOPT considers both the already allocated requests and the incoming new ones for the new schedule.
GreedyOPT processes the new requests in chronological order to accommodate them into one of the k channels.
If this is not possible, the requests already allocated but with a data burst yet to arrive can be deallocated if a new
assignment decision will improve the burst loss ratio. A heap is used to sort the requests, which leads to a O(S log(S))
complexity for this step. The GreedyOPT is presented in Algorithm 1.

The GreedyOPT algorithm optimally solves the batch scheduling problem with identical machines when all re-
quests have the same priority. This is shown in Theorem 2.

5

Algorithm 1 GreedyOPT
INPUT
The set of the output channels of a node i, (k), a set of new requests (I), and a set of requests already allocated for
which data bursts have not yet arrived (S).
OUTPUT
A maximum cardinality set I′.
GreedyOPT

1: N ← |I| + |S |
2: Sort all the requests in I ∪ S in chronological order of starting time
3: Add the requests sequentially into the set I′

4: If it is not feasible to allocate all the requests, remove from I′ that request with latest ending time.

Theorem 2. Let t0 be the earliest time at which more than k requests in J intersect each other and ey = max j∈Je j.
Then, the optimal schedule excludes this yth request.

Proof. See Proposition 1 in [6]

The next theorem establishes the computational complexity of GreedyOPT.

Theorem 3. The computational complexity of the GreedyOPT algorithm is O(N log(N)+Nk) = O(N max(log(N), k)),
where k is the number of output channels of an OBS node, n the number of incoming requests, S the set of requests
already allocated with the data burst yet to arrive s = |S |, the cardinality of the set S and N = n + s.

Proof. See Appendix A.

5.2. Optimal algorithm with polynomial time for prioritized requests

Eduardo INI
This section, presents an algorithm with polynomial time complexity, entitled BATCHOPT, for networks in which
requests have different priorities. As with the GreedyOPT algorithm, it is implemented in two steps. In the first step,
the problem is transformed into a problem of job scheduling with identical machines. In the second step, an adaptation
of the algorithm presented below is used to schedule the requests.

Arkin and Silverberg [13] proposed an optimal algorithm (denoted here AS) for the job scheduling problem with
identical machines which will be described next. Our algorithm extends the AS algorithm to include the set S of
requests already scheduled in the solution.

AS builds an interval graph G considering incoming requests and it computes all the maximal cliques of this
graph; it then sorts the cliques into an increasing order for the starting time, C1, . . . ,Cr. Figure 4 exemplifies this
construction.

C2

a

b

c

d

e

f

C1 C2 C3

a

b

C1

c

d

f

e

C3

Figure 4: Requests are on the left. On the right is the corresponding interval graph and its maximal cliques numbered according to the ordering of
time.

6

A flow-graph G′ is then constructed as follows: first create a vertex v0 and for each clique C j (j = 1, . . . , r) create a
vertex v j, then, create directed arcs (v j, v j−1) for each C j, with cost 0 and infinite capacity. Let M be the maximum size
of a clique among the cliques C1, . . . ,Cr. For each clique C j, create a directed arc (v j−1, v j) with cost 0 and capacity
equal to M − |C j| that represents a dummy job. For each job Ji belonging to cliques C j, . . . ,C j+l, create a directed arc
(v j−1, v j+l) with capacity 1 and cost wi. This arc represents all cliques which Ji belongs (C j to C j+l). The aim is to find
a flow from v0 to vr in G′ of (M − k) units and with minimum cost. In the solution to this minimum cost flow problem
in G′, the arcs along the flow correspond to jobs that must be discarded whereas arcs with zero flow correspond to
jobs that should be scheduled.

Figure 5 exemplifies the construction of the flow-graph G′ for the interval graph G in Figure 4. It is created
four vertexes, v0 and three vertexes associated with cliques: v1 corresponding to C1, v2 corresponding to C2 and v3
corresponding to C3. Then it is created the bottom arcs (v3, v2), (v2, v1), (v1, v0) with cost 0 and infinite capacity. The
maximum size of a clique in this example is M = 3 (cliques C1 and C3). Notice that M = |C1| = |C3|. Then it is not
created dummy arcs for these cliques, since the capacity of the arcs should be M − |C1| = M − |C3| = 0. It is created
only one dummy arc (v1, v2) for C2, with capacity 1 and cost 0. Now it is created the arcs associated with jobs. Since
job a belongs only to C1, it is created an arc (v0, v1) with capacity 1 and cost wa. Similarly it is created arcs associated
to jobs b, d, e, and f , since each one of these jobs belongs to only one clique. The exception is job c, that belongs to
C1, C2 and C3, and in this case an arc (v0, v3) is created, but also with capacity 1 and cost wc. The construction of the
flow graph is then finished. The problem is then to find a minimum cost flow from v0 to v3 of 3 − k units of flow.
Eduardo FIM

Figure 5: An example of construction of a flow graph.

Theorem 4. The algorithm AS [13] optimally solves the job scheduling problem with identical machines.

Proof. See [13] for the proof.

To include already scheduled jobs in the AS algorithm, it is necessary to have a formulation that can be applied to
BS-OBS.

The set S of previously scheduled requests can be easily introduced in the S-IM problem by assuming that they
have a weight of infinity for each request Ji ∈ S . This guarantees that the already scheduled requests will remain
scheduled in the final solution. The formulation of the proposed algorithm, entitled BATCHOPT, considers both the
requests to be scheduled and those already scheduled in the search for an optimal solution, as in [13]. The pseudo-code
of the BATCHOPT algorithm is presented next (Algorithm 2).

Algorithm 2 BATCHOPT
Input
k channels of a node i, a set I of requests and a set S of previously scheduled requests that intersects with some of the
requests in I.
Output
A subset I′ ⊆ I of maximum weight with a feasible schedule.
BATCHOPT

1: Set infinity weights for each request in S .
2: Construct an interval graph G representing I ∪ S .
3: Order the maximal cliques of G chronologically.
4: Construct a flow graph G′.
5: Compute a flow of size M − k and minimum cost.
6: Allocate all requests that correspond to arcs in G′ that have a flow equal to zero.

The optimality and feasibility of the schedule produced by the algorithm can be proved using the following theo-
rem.

7

Theorem 5. The BATCHOPT algorithm optimally solves the OBS scheduling problem. Moreover, each request
already being scheduled remains scheduled on its previously scheduled channel.

Proof. See Appendix B

We now establish the time complexity of the proposed algorithm.

Theorem 6. The BATCHOPT algorithm has time complexity O(N2 log(N) + N), where N = |I ∪ S |, i.e, N is the
number of requests in the batch plus the number of requests in S .

Proof. See Appendix B.

6. Adaptation of the JET protocol

In this section, a variation of the JET protocol adapted for batch scheduling is proposed.
The batch scheduling algorithms previously proposed collect requests during a time window, called acceptance

window, and then employ various heuristics to schedule the requests. It was assumed that each intermediary node
have a fixed acceptance window ∆ used to gather requests to form a batch. However, such an approach leads to
the unnecessary loss of bursts, since the fact that requests can arrive at a network node with different offset times
is ignored. Figure 6 illustrates this type of loss. In this figure, two control packets arrive during the fixed size time
window. Burst A arrive at time tA and the burst B arrive at time tB. While burst A will be processed by the batch
scheduling policy and will be potentially transmitted, burst B will not be considered by the scheduling policy and it
will be lost, because it arrived during the fixed time window.

To overcome this problem, we propose an extension of the JET protocol, called JET-∆ , which is employed jointly
with batch scheduling algorithms. In this variation, the acceptance window is added to the offset time, as illustrated
in Figure 7. Furthermore, the instant of time that ends the period for collecting requests and begins the processing
period, called the processing threshold, is determined in a way that it occurs prior to the arrival of the next arriving
burst, ensuring that all requests are processed before the arrival of their burst.

In the JET protocol, the source node computes the offset time based on the estimated processing time of all
intermediary nodes along the route to the destination node. The offset time computed at the source node s with
destination d, along a route with intermediary nodes H is

T s
d =

∑
i∈H

Pi

 + Pd

where Pi is the estimated processing time at an intermediary node i and Pd is the processing time at the destination.
When an intermediary node i ∈ H receives a control packet, it processes the request. If the request is scheduled

then it computes a new offset time decreasing its processing time, and sends this information in the control packet to
the next node in the route. Let T i

d be the offset time of the control packet received at time td by node i which has d as
a destination. Node i computes, at time ti, a new offset time as:

T i+1
d = T i

d − (ti − td).

The processing time (ti − td), at node i is then decreased.

∆ ∆

timei

s et

t

i
j

T
i
k

T

A

B

Acceptance window

A

s e
B B

AA

B

Figure 6: Example of data burst loss due to the use of fixed size acceptance window.

8

A worst case estimation of the computation of the offset time at the source node is assumed, which leads to an
offset time at the source node computed os:

T s
d =

∑
i∈I

Pi

 + |I|∆ + Pd.

T s
d includes the value |I|∆, which accounts for all acceptance time windows of all intermediary nodes. This offset time

should be enough to avoid losses, since no node can take more time than (Pi + ∆) to process one control packet. In
general, the processing time of each node is of the order of microseconds, and the acceptance window is of the order
of milliseconds. In this case, the processing times are almost negligible, and an upper bound Pmax can be established.

Since at any given OBS node there can be several control packets from distinct source-destination pairs waiting to
be processed and these control packets can have different offset times, it is important to ensure that each control packet
will be processed before the arrival of its corresponding burst. Thus, a processing threshold (L) should be determined
by the data burst arriving first and this should be computed for every arrival of a control packet. The threshold is given
by L = (tR + ∆) − δ, where R is the minr{tr + T i

j + ∆}, δ is the batch processing time, and tr the arrival time of control
packet r with offset time T i

j at node i on its way to node j. The request which determines the processing threshold is
the request for the burst which arrives first.

It is important to note that the JET-∆ extension can be used by batch scheduling algorithms, as well as by greedy
scheduling algorithms, by making ∆ = 0.

When the processing threshold is reached, the batch is processed. All bursts going to the same destination are
grouped and the information about the new batch goes into the same control packet to decrease the overhead [8].

i
j

T∆

i

A

Time

cp1

cp2

 cp3

t

1

i
l

T

Processing threshold

∆
3

Figure 7: Time diagram of the JET-∆ reservation protocol

The inclusion of the acceptance window into the offset time can increase the end-to-end delay experienced by
the packets assembled in a burst. However, this can be ameliorated if the maximum tolerable end-to-end delay is
considered when computing the acceptance window as:

∆ =
D − T s

j

H
(1)

Where D is the maximum tolerable end-to-end delay, T s
j the offset time of a burst j at the network border and H

is the number of hops from source to destination.
An alternative way of reducing the introduction of delay is to use prediction of burst size at the assembly edge

node, as proposed in [22] and [21].

7. Numerical Examples

In this section, the proposed algorithms are compared to existing algorithms, although the algorithm MAX-SS is
not considered since it considers only OBS networks with a single data channel. To evaluate the performance of the
algorithms, simulations were carry out using the simulator OB2S (Optical Burst Switching Simulator). The algorithms
were implemented in C, using the library available in [4].

9

Each simulation run consisted of the allocation of 10.000 requests to the available channels. Each experiment
was executed 20 times, with different seeds and the confidence interval for the mean value was computed using a
confidence level of 95%.

Two distinct scenarios were considered in the simulations: in the first scenario, the experiments reported in [11]
were reproduced in order to evaluate the performance of the algorithms and compare the results those in the literature.
In the second scenario, topologies of real networks with a more realistic set of parameters were employed. The results
are reported in the following subsections.

7.1. Topology with one bottleneck node

OBS

Node

Source

 1

Source

 1

Source

 2

Source

 3

Source

 4

Sink

Figure 8: Topology used in the first simulation scenario.

Figure 8 shows the topology used in the first scenario. In this topology, there is a single OBS node connected
to four sources and a single destination node. Each input link has 2 wavelengths (one for data and one for control
signaling). The link connecting the OBS node to the destination has five wavelengths (four for data and one for control
signaling). Each wavelength has 2.5 Gbps capacity (OC-48).

As in [11], we defined the constant τ as the time required to transmit 1024 bits on one of the wavelengths, i.e.,
τ = 1024

2377728000 = 4.3e−7 seconds. Bursts were generated according to a Poisson distribution with mean size, b = 81920
bits. The offset time was generated according to an uniform distribution in the interval [130τ, 150τ]. The acceptance
window had an arbitrary value of 100τ, which was approximately 40µsec.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Network load (Erlangs)

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 9: Blocking probability for each algorithm.

Figure 9 shows the blocking probability resulted from the algorithms. The lowest blocking probability is produced
by the BATCHOPT algorithm, followed by the GreedyOPT algorithm. Although both BATCHOPT and GreedyOPT
optimally schedule requests for a given batch, only the BATCHOPT guarantees that requests already scheduled in
previous batches remain scheduled in the current computation. As a consequence, only the new requests which do not
overlap with already scheduled requests are added to the final solution. With GreedyOPT algorithm, requests already

10

scheduled in previous batches may be dropped during the computation of future batches, thus increasing the blocking
probability.

0.25

0.3

0.35

0.4

0.45

0 50 100 150

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Offset range

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 10: Blocking Probability as a function of the difference in offset time

Another experiment conducted using this simulation scenario aimed to evaluate the effect of the offset range in
the probability of blocking. The offset range is defined as the difference between the highest and lowest value of the
offset time, Tmax − Tmin. The value of Tmax was fixed at 200τ and the value of Tmin was gradually increased. In this
experiment, the network load was of 99% of the link capacity.

Figure 10 shows that, as observed in the experiments reported in [11], there is an increase in blocking probability
as the offset range is increased due to the retro-blocking phenomenon of the JET signaling protocol, in which a
reservation request can be blocked by another reservation starting after it.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Acceptance window

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 11: Blocking Probability as a function of the size of the acceptance window

Figure 11 shows the blocking probability as a function of the size of the acceptance window. In this experiment,
as in [11], the difference between the highest and lowest offset time is adjusted to 50τ and the network load to 50τ
with the acceptance window varying from 10τ to 190τ.

It can be seen that, except for the BATCHOPT and GreedyOPT algorithms, the blocking probabilities produced
do not depend on the increasing size of the acceptance window. In fact, the success of allocation by heuristics depends
on the pattern of the starting and ending times of the requests rather than the number of requests.

Under BATCHOPT and GreedyOPT, the blocking probability decreases as the acceptance window increases,
since increasing the acceptance window also increases the number of requests composing each batch. The optimal

11

algorithms schedule the maximum number of requests in each batch resulting in lower blocking probabilities than
those given by heuristics.

7.2. Simulations using real network topologies

In these experiments, the simulations used real topology networks such as NSFNet and Abilene, shown in Fig-
ure 12. Each link represents a fiber with 32 wavelengths with 2.5 Gbps of capacity. The processing time for a control
packet and the time required to configure the switching fabric was 50µs. Each node at the edge can be either source
or destination; for each request, source and destination were drawn from a uniform distribution. Traffic was generated
according to a Poisson process, and the burst size followed a negative exponential distribution.

(a) Backbone NSFNet (b) Backbone Abilene

Figure 12: Real topologies used in the simulations

7.2.1. Comparison of grouping strategies
As previously discussed, the dimensioning of the acceptance window is challenging in complex topologies with

several source-destination pairs. The scheduling algorithm used in these simulations was the BATCHOPT since it
produced the best results in the evaluation reported in section 7.1. This algorithm was employed with JET-∆ strategy,
as well as with the FIXED strategy proposed in [11].

−1

−0.5

0

0.5

1

100 300 500 700 900 1100 1300 1500 1700

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Acceptance window (τ)

BATCHOPT−(J ET−∆)
BATCHOPT - (FIXED)

Figure 13: Blocking probability for the strategies of JET-∆ and FIXED as a function of acceptance window size.

Figure 13 displays the blocking probability as a function of the size of the acceptance window. While the accep-
tance window is smaller than the smallest offset time, the blocking probability produced by BATCHOPT is constant,
regardless of the grouping strategy adopted. When the acceptance window becomes larger than the smallest offset
time, the performance of FIXED deteriorates. Since the acceptance window is larger than the smallest possible offset
time, the bursts corresponding to the requests in the batch arrive at the network nodes even before their requests have
been processed, causing burst loss.

12

7.2.2. Comparison of the batch scheduling algorithms
In this section, the two algorithms are evaluated using topologies of real network. In these experiments, JET-∆

was employed as grouping strategy.

0

0.02

0.04

0.06

0.08

0.1

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Acceptance window (τ)

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 14: Blocking probability as a function of the window acceptance size.

First, the impact of the acceptance window size (∆) was evaluated. Each request had a unit cost and the network
load was 1000 Erlangs. Figure 14 shows the blocking probability as a function of ∆ and Figure 15 shows the mean
number of requests in each batch as a function of ∆. The heuristics LIF, MCF, SSF and SLV were not sensitive
to changes in the acceptance window size due to the fixed order in which the requests were processed, since the
acceptance of requests depends more on the adjacency structure of the interval graph representing the requests than
on the number of requests processed.

0

5

10

15

20

25

30

35

40

45

0 0.0002 0.0004 0.0006 0.0008 0.001

M
e
a
n
 n

u
m

b
e
r

o
f

re
q
u
e
s
ts

 i
n
 e

a
c
h
 b

a
tc

h

Acceptance window (τ)

Figure 15: Average number of requests per batch as a function of acceptance window size.

Both, BATCHOPT and GreedyOPT can benefit from an increase in the mean number of requests in each batch.
The larger the acceptance window for requests, the better is the performance. This is due to the fact that when
more requests are processed at one time, more information about the intersections between requests is available. The
algorithms can then make the best choice for scheduling the requests in the batch.

In practice, the window size should be adjusted as a function of the timing requirements of the traffic, given by
Equation 6. In order to avoid impacting the performance of applications with time constraints, ∆ was set to 1ms [3].

13

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 20 40 60 80 100 120 140 160 180 200

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Network load (Erlangs)

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 16: Blocking probability as a function of the network load.

Figure 16 reveals the blocking probability as a function of network load in a scenario where all requests have
the same priority. Increasing the network load also increases the blocking probability. With the increase in network
load, the size of maximal cliques of the interval graph associated with the requests increases, which explains the
growth in the blocking probability. This is a common behavior in all algorithms evaluated. However, the increase in
blocking probability is less when the BATCHOPT algorithm is used. Compared to the SLV algorithm (the algorithm
that produced the worst results), the BATCHOPT algorithm produced gains of 42% in blocking probability. Since
all requests had the same priority, the algorithm always select the set of requests of maximum cardinality and, thus,
discards those with least number of request. The gains in the blocking probability of LIF, MCF and SSF in relation to
SLV are 12%, 8% and 2%, respectively.

The algorithm that produced the second lowest blocking probability was GreedyOPT, with a gain of 35% when
compared to SLV. Although the GreedyOPT algorithm is optimum it does not guarantee that already scheduled re-
quests remain scheduled i.e. a requests already scheduled can be blocked by those being processed in the current
batch.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

200 400 600 800 1000 1200 1400 1600 1800 2000

B
lo

c
k
in

g
 p

ro
b
a
b
il
it

y

Network load (Erlangs)

LIF
SSF
MCF
SLV

GREEDYOPT
BATCHOPT

Figure 17: Blocking probability as a function of network load (considering QoS)

Simulations considering requests with different priorities (Quality of Service) were also conducted. In these
simulations, five classes were considered with the class associated with a request being randomly picked from a
uniform distribution. The weight of the classes involved follow the pattern: w1 = 1,w2 = 2,w3 = 4,w4 = 8,w5 = 16,
where wi is the weight of class i.

14

Table 1: Relative gain in execution time

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Mean
Reference 7.2×10−2 8.0×10−2 6.8×10−2 7.6×10−2 7.2×10−2 7.3×10−2

value

LIF 37% 27% 22% 40% 33% 32%
SSF 41% 30% 25% 42% 37% 35%
MCF 33% 26% 26% 34% 25% 28%
SLV 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GreedyOPT 36% 27% 25% 40% 31% 32%
BATCHOPT 33% 25% 23% 36% 27% 28%

Figure 17 shows the blocking probability resulted from the algorithms when the requests have different priorities.
Again, the algorithm that produced the lowest blocking probability was BATCHOPT algorithm followed by Greedy-
OPT algorithm. Moreover, the difference in the blocking probability among all evaluated algorithms is lower when
compared to Figure 16. This happens because BATCHOPT and GreedyOPT try to maximize the sum of weights of
the requests in the batch. Thus, while trying to do this, a higher number of requests with low weight can be discarded
by those algorithms.

Figure 18 shows the distribution of loss per class. Note that BATCHOPT provides the lowest blocking probabilities
for the classes with higher priorities, concentrating most of the losses in those with lowest priority. In other words,
BATCHOPT was capable of providing differentiated services for distinct classes of service. This does not happen
with the other policies, which leads to an ”almost uniform” distribution of losses.

Figure 18: Blocking probability per class as a function of load.

The time for execution of the algorithms was also assessed. Simulations were run on a Intel Pentium Core 2 Duo
machine with 2.8Ghz clock, 4GB RAM, and OpenSuse 11.1 operating system. The execution time was measured
using the time command. Five sets of 500 requests were randomly generated. Ten simulations were executed for each
set with the mean execution time for each set computed as well as the overall mean execution time. Gain was defined
as the percentage difference in relation to the lowest execution time. They are displayed in Table 1. The slowest
algorithm is the SLV algorithm while the SSF is the fastest. GreedyOPT was at most 6% slower than SSF. On an
average it was 32% faster than LIF algorithm and 3% slower than the SSF. BATCHOPT was at most 10% slower than
SSF. On an average it was 28% faster than LIF algorithm and 7% slower than SSF.

15

8. Conclusions

This paper has introduced two optimum algorithms for the batch scheduling problem in OBS networks, they are
based on a formulation of the problem of scheduling jobs with identical machines. Such a formulation considers not
only the unprocessed requests but also those scheduled in the problem formulation. Although GreedyOPT has linear
computational complexity, BATCHOPT produces the lowest blocking probability ratio. The blocking ratio given by
these two algorithms are lower than those given by other existing heuristics. The difference between the proposed
algorithms is that one (BATCHOPT) maintains the original scheduling of the already scheduled requests while the
other (GreedyOPT) does not. Results derived via simulation show that this proposed BATCHOPT scheduling algo-
rithm outperforms those previously proposed ones. BATCHOPT algorithm produces blocking probability 42% lower
than that SLV, the algorithm with the highest blocking probability, and 30% lower than LIF, the third lowest block-
ing probability. Moreover, the BACTHOPT algorithm is only 7% slower than the SSF algorithm, which is the fastest
heuristic. Moreover, BATCHOPT penalizes less the high priority classes in prioritized networks than do other existing
heuristics. Furthermore, this paper has extended the JET reservation protocol for the consideration the scheduling of
bursts although it remains compatible to the original JET.

References

[1] Qiao, C. and Yoo, M., Choices, Features and Issues in Optical Burst Swirching (OBS), Optical Network Magazine (1) (2000) pp. 36-44.
[2] Figueiredo, G. B., Control Mechanisms for Optical Burst Switched Networks, PhD Thesis, Institute of Computing, University of Campinas,

2009.
[3] Network QoS Needs of Advanced Internet Applications: A Survey, Internet2 QoS Working Group, Available in

http://qos.internet2.edu/wg/apps/fellowship/Docs/Internet2AppsQoSNeeds.pdf, 2001.
[4] Sedgewick, Robert, Algorithms in C, Part 5: Graph Algorithms, Addison-Wesley Professional, 2001.
[5] Olariu, Stephan, An optimal greedy heuristic to color interval graphs, Information Procesing Letters 37 (1) 1991 pp. 21-25.
[6] Bouzina, Khalid I. and Emmons, Hamilton, Interval Scheduling on Identical Machines, Journal of Global Optimization 9 (3-4) 1996 pp.

379-393.
[7] Rodrigues, Joel J. P. C. and Freire, Mario M and Lorenz Pascal, Impact of setup message processing and optical switch configuration times on

the performance of IP over optical burst switching networks, Lecture notes in computer science 3733 (20) 2005 pp. 264-273.
[8] Elhaddad, M. and Melhem, R. and Znati, T. and Basak, D., Traffic shaping and scheduling for OBS-based IP/WDM backbones, IEEE Opticom

5285 2003 pp. 336-345.
[9] Dovrolis, Constatinos and Stiliadis, Dimitrios, Proportional Differentiated Services: Delay differentiation and packet scheduling, IEEE Trans-

actions on Networking, 10 (1) 2002 pp. 12-26.
[10] Rose, Donald. J. and Tarjan, Robert Endre and Leuker, George S., Algorithmic Aspects of vertex eliminations on graphs, SIAM Journal on

Computing 5 (1976) pp. 266-283.
[11] Kaheel, A. and Alnuweiri, H., Batch Scheduling Algorithms for Optical Burst Switching Networks, Lecture notes in Computer Science

3462/2005 (2005) pp. 90-101.
[12] Charcranoon, S. and El-Bawab, T. S. and Cankaya, H. C. and Shin, J. D., Group Scheduling for Optical Burst Switched (OBS) Networks,

IEEE Globecom (2003) pp. 2745-2749.
[13] Arkin, E. M. and Silverberg, E. B., Scheduling Jobs with Fixed Start and End Times, Discrete Applied Mathematics 18 (1987) pp. 1-8.
[14] Maranhao, J. and Soares, A. and Giozza, W. F., A study on architectures of OBS Networks, XXV Brazilian Symposium on Computer

Networks 2007 pp. 133-146.
[15] Waldman, H. and Campelo, D. R. and Camelo, R., Dynamic Priority Strategies for Wavelength Assignment in WDM Rings, IEEE GLOBE-

COM 3 2000 pp. 1510-1514.
[16] Papoulis, A., Probability, Random Variables and Sthocastic Process, McGraw-Hill 2002.
[17] Moraes, I. M. and Cunha, D. O. and Bicudo, M. D. D. and Laufer, R. P. and Duarte, O. C. M. B., An Admission Control Mechanism for

Providing Service Differentiation in Optical Burst-Switching Networks , Technical Report, Teleinformatics and Automation Group - Federal
University of Rio de Janeiro, 2005,

[18] Zhang, Q. and Vokkarane, V. M. and Jue, J. P. and Chen, B., Absolute QoS Differentiation in Optical Burst-Switched Networks, IEEE Journal
on Selected Areas in Communications 22 (2004) pp. 1781-1795.

[19] Liao, W. and Loi, C., Providing Service Differentiation for Optical-Burst Seitched Networks, Journal of Lightwave Technology 22 2004 pp.
1651-1660.

[20] Chen, Y. and Hamdi, M. and Tsang, D. H. K, Proportional QoS over OBS Networks, IEEE GLOBECOM 3 2001 pp. 1510-1514.
[21] Liu, J. and Ansari, N. and Ott, T. J., FRR for Latency Reduction and QoS Provisioning in OBS Networks, Journal on Selected Areas in

Communications 21 2003 pp. 1210-1219.
[22] Morato, D. and Aracil, J. and Diez, L. A., On Linear Prediction of Internet traffic for Packet and Burst Switchin Networks, IEEE ICC 2001

pp. 138-143.
[23] Li, J. and Qiao, C., Schedule Bursts Proactively for Optical Burst Switched Networks, Computer Networks 44 2004 pp. 617-629.
[24] Wang, X. and Morikawa, H. and Aoyama, T., Priority-based wavelength Assignment Algorithm for Optical Burst Switched Photonic Net-

works, Optical Fiber Communications Conference 2002 pp. 765-766.

16

[25] Chang, J. and Park, C., Efficient Channel Scheduling Algorithm in Optical Burst Switching Architecture, IEEE Workshop on High Perfor-
mance Switching and Routing 2002 pp. 194-198.

[26] Vokkarane, V. M. and Jue, J. P., Prioritized Burst Segmentation and Composite Burst-Assembly Techniques for QoS Support in Optical
Burst-Switched Networks, IEEE Journal on Selected Areas in Communications 21 2003 pp. 1198-1209.

[27] Detti, A. and Eramo, V. and Listanti, M., Performance Evaluation of a New Technique for IP Support in a WDM Optical Network: Optical
Composite Burst Switching (OCBS), Journal of Lightwave Technology 20 2002 pp. 154-165.

[28] Xu, J. and Qiao, C. and Li, J. and Xu, G., Efficient Channel Scheduling Algorithms in Optical Burst Switched Networks, IEEE INFOCOM 3
2003 pp. 2268-2278.

[29] Xu, J. and Qiao, C. and li, J. and Xu, G., Efficient Burst Scheduling Algorithms in Optical Burst-Switched Networks Using Geometric
Techniques, IEEE Journal on Selected Areas in Communications 22 2004 pp. 1796-1811.

[30] Li, J. and Qiao, C. and Chen, Y., Recent Progress in the Scheduling Algorithms in Optical-Burst-Switched Networks, OSA Journal of Optical
Networking 3 2004 pp. 229-241.

[31] Chen, Y. and Qiao, C. and Xiang, Y., Optical Burst Switching (OBS): A New Area in Optical Networking Research, IEEE Network 18 2004
pp. 16-23.

[32] Oh, S. and Kang, M., A Burst Assembly ALgorithm in Optical Burst Switching Networks, Optical Fiber Communications Conference 2002
pp. 771-773.

[33] Dolzer, K., Assured Horizon - A New Combined Framework for Burst Assembly and Reservaton in Optical Burst Switched Networks, NOC
2002.

[34] Ge, An and Callegati, Franco and Tamil, Lakshman S., On Optical Burst Switching and Self-Similar Traffic, IEEE Communications Letters
4 2000 pp. 98-100.

[35] Tachibana, Takuji and Ajima, Tamoya and Kasahara, Shoji, Round-Robin Burst Assembly and Constant Transmission Scheduling for Optical
Burst Switching Networks, IEEE GLOBECOM 2003 pp. 2772-2776.

[36] Cao, Xiaojun and Li, Jikai and Chen, Yang and Qiao, Chumming, Assembling TCP/IP Packets in Optical Burst Switched Networks IEEE
GLOBECOM 2002 pp. 2808-2812.

[37] Yu, Xiang and Chen, Yang and Qiao, Chumming, Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networks,
Opticomm 2002 pp. 149-159.

[38] Yu, Xiang and Li, Jikai and Cao, Xiaojun and Chen, Yang and Qiao, Chumming, Traffic Statistics and Performance Evaluation in Optical
Burst Switched Networks, Journal of Lightwave Technology 22 (12) 2004 pp. 2722-2738.

[39] Fumagalli, Andrea and Krishnamoorthy, Prasanna, A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture
for Metro Ring, ONDM 2003.

[40] Murty, C. and Gurusamy, M., WDM Optical Networks: Concepts, Design and Algorithms, Prentice Hall 2002.
[41] Turner, J., Terabit Burst Switching, Journal of High Speed Networking 1999 pp. 3-16.
[42] Xiong, Y. and Vandenhoute, M. and Cankaya, C., Design and Analysis of Optical Burst-Switched Networks, SPIE’99 Conf. All Optical

Networking: Architecture, Control and Management Issues 3843 1999 pp. 112-119.
[43] Xiong, Y. and Vandenhoute, M. and Cankaya, C., Control architecture in optical burst-switched WDM networks, IEEE Journal of Selected

Areas on Communications 2000 pp. 1838-1851.
[44] Herzog, Martin and Maier, Martin and Reisslein, Martin, Metropolitan Area Packet-Switched WDM Networks: A Survey on Ring Systems,

IEEE Communications Surveys 2004.
[45] Kaeel, Ayman and Alnuweiri, Hussein, Priority Scheme for Supporting Quality of Service in Optical Burst Switching Networks, Journal of

Optical Networking 2004 pp. 707-719.
[46] Yoo, M. and Qiao, C., A New Optical Burst Switching Protocol for Supporting Quality of Service, All Optical Networking: Architecture,

Control and Management Issue 1998 pp. 396-405.
[47] Xu, Lisong and Perros, Harry G. and Rouskas, George N., Access Protocols for Optical Burts-Switched Ring Networks, Information Sciences

149 2003 pp. 75-81.
[48] Xu, Lisong and Perros, Harry G. and Rouskas, George N., A Simulation Study of Access Protocols for Optical Burst-Switched Ring Networks,

Computer Networks 41 2003 pp. 143-160.
[49] Widjaja, I., Performance of burst admission control protocols, IEEE Proceding of Communications 1995 pp. 7-14.
[50] Haselton, E., A PCM Frame Switching Concept Leading to Burst Switching Network Architecture, IEEE Communications Magazine 21

1983 pp. 13-19.
[51] Perros, Harry G., An Introduction to ATM Networks, Wiley 2001.
[52] Cai, James and Fumagalli, Andrea, LightRIng: A distributed and contention-free bandwidth on-demand architecture, IFIP 5th Working

Conference on Optical Network Design ad Modeling 2001.
[53] Cai, James LightRing: An integrated WDM ring network solution for optical metropolitan area networks, PhD Thesis, Department of

Electrical Engineering, The University of Texas at Dallas 2001.
[54] Qiao, C. and Yoo, M., Optical Burst Switching (OBS) - A new paradigm for an optical Internet, Journal of High-Speed Networks 8 (1) 1999

pp. 69-84.
[55] Qiao, C. and Yoo, M., Choices, Features and Issues in Optical Burst Swirching (OBS), Optical Network Magazine 1 2000 pp. 36-44.
[56] D. West, “Introduction to Graph Theory” Prentice Hall, Inc., Upper Saddle River, NJ, (1996).

17

Appendix A.

This appendix presents proofs related for the GreedyOPT algorithm.

Theorem 3. Let k be the number of output channels of an OBS node, n the number of incoming requests, S the
set of requests already allocated but with data bursts yet to arrive, and s = |S |, the cardinality of the set S . The
computational complexity of the GreedyOPT algorithm is O(N log(N) + Nk) = O(N max(log(N), k)), where N = n + s.

Proof. It takes O(s log(s)) to determine which unprocessed requests should be organized in a heap. It takes O(N log(N))
to order the requests, as well as O(Nk) to verify the availability of a channel to accommodate the new request (line 4
of the GreedyOPT). Therefore, the complexity of GreedyOPT is O(s log(s) + N log(N) + Nk). Making s = N in
s log(s) ≤ N log(N), the complexity of GreedyOPT is thus O(2N log(N)+Nk) = O(N log(N)+Nk) = O(N(log(N)+k)).
Considering the maximum value of the (log(N) + k), we have O(N max(log(N), k))

18

Appendix B.

This appendix provides proofs related to the BATCHOPT algorithm.

Theorem 5. The BATCHOPT algorithm optimally solves the OBS scheduling problem. Moreover, each already
scheduled request remains scheduled on the scheduled channel.

Proof. Since each request in S has a weight equal to infinity, and the algorithm computes a minimum cost flow, the
algorithm will not use any of the arcs corresponding to requests in S . Therefore, the requests in S will necessarily
remain scheduled. Moreover, from the result of Theorem 4 it is known that among the requests in I, the algorithm
will schedule a subset I′ of requests of maximum weight.

Indeed, it is not necessary to change the channels for it is assigned to requests that have already been scheduled.
Suppose the algorithm generates the schedule starting at some time t. Let S ′ ⊆ S be the set of requests with starting
time prior to t. This means that each request in S ′ is already scheduled, and the scheduled channel can not be
changed. But notice that for the requests in S \ S ′ it is indeed possible to change their channel without problems. The
BATCHOPT algorithm selects a set I′ of new requests such that for any time t′ ≥ t there are at most k requests from
I′ ∪ S that will be transmitted at time t′. The requests in I′ ∪ S can be sorted by their starting times and scheduled in
this order on an available channel. This generates a feasible schedule since at any time t′ there are at most k requests
intersecting it, and will thus be there an available channel each time a request is assigned. Notice that the requests in
S were previously scheduled in a feasible schedule. Since the requests in S ′ have the earliest starting times among
the requests in S ∪ I′, they are processed first so that each request in S ′ can be scheduled on the previously scheduled
channel.

Theorem 6. The BATCHOPT algorithm has time complexity O(N2 log(N) + N), where N = |I ∪ S |, i.e, N is the
number of requests in the batch plus the number of requests in S .

Proof. Let n be the size of the incoming batch (n = |I|) and let and s be the size of previously scheduled requests that
intersects with I (s = |S |).

The time complexity to find the set S is O(s log s) if previously scheduled requests are stored using a heap. The
AS algorithm has time complexity O(N2 log N) (see [13]), and since N = s + n the overall complexity to find S and to
schedule I ∪ S is O(N2 log N).

19

