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Resumo

Neste trabalho estudamos diversos problemas de empacotamento considerados NP-difíceis. As-
sumindo a hipótese de queP 6= NP, sabemos que não existem algoritmos eficientes (complexi-
dade de tempo polinomial) exatos para resolver tais problemas. Uma das abordagens considera-
das para tratar tais problemas é a de algoritmos de aproximação, que são algoritmos eficientes e
que geram soluções com garantia de qualidade. Neste trabalho apresentamos alguns algoritmos
aproximados para problemas de empacotamento com aplicações práticas. Outra maneira de se
lidar com problemas NP-difíceis é o desenvolvimento de heurísticas. Neste trabalho também
apresentamos heurísticas baseadas no método de geração de colunas para problemas de corte
e empacotamento bidimensional. Resultados computacionais sugerem que tais heurísticas são
eficientes e geram soluções de muito boa qualidade.
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Abstract

In this work we study several packing problems that are NP-hard. If we consider thatP 6= NP,
we know that there are no efficient (polynomial time complexity) exact algorithms to solve
these problems. One way to deal with these kind of problems isto use approximation algo-
rithms, that are efficient algorithms that produce solutions with quality guarantee. We present
several approximation algorithms for some packing problems that have practical applications.
Another way to deal withNP-hard problems is to develop heuristics. We also consider column
generation based heuristics for packing problems. In this case, we present column generation
algorithms for some two dimensional packing problems and also present computational tests
with the proposed algorithms. The computational results shows that the heuristics are efficient
and produce solutions of very good quality.
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Capítulo 1

Introdução

Neste trabalho apresentamos algoritmos voltados para problemas de empacotamento. Mui-
tas das variações de problemas de empacotamento são problemas de otimização que pertencem
à classeNP-difícil. Problemas de otimização, na sua forma geral, têm como objetivo maximi-
zar ou minimizar uma função definida sobre um certo domínio. Ateoria clássica de otimização
trata do caso em que o domínio é infinito. Já no caso dos chamados problemas de otimização
combinatória, o domínio é tipicamente finito; além disso, emgeral é fácil listar os seus elemen-
tos e também testar se um dado elemento pertence a esse domínio. Ainda assim, a idéia ingênua
de testar todos os elementos deste domínio na busca pelo melhor mostra-se inviável na prática,
mesmo para instâncias de tamanho moderado.

Como trabalho de doutorado fizemos um estudo na área de otimização combinatória, mais
especificamente sobre problemas de empacotamento. Quando nos referimos a problemas de
empacotamento, estamos tratando de uma grande classe de problemas onde temos um ou mais
objetos grandesn-dimensionais, os quais chamamos de recipientes, e vários objetos menores
tambémn-dimensionais os quais chamamos de itens. O nosso objetivo éempacotar itens den-
tro de recipientes maximizando ou minimizando uma dada função objetivo. Provavelmente os
dois problemas de empacotamento mais conhecidos sejam o problema de empacotamento uni-
dimensional (Bin Packing Problem) e o problema da mochila (Knapsack Problem). No primeiro
problema temos uma lista de itens e um número infinito de recipientes iguais. O objetivo é em-
pacotar todos os itens no menor número de recipientes possível. No segundo problema, temos
um único recipiente e uma lista de itens, cada item com um determinado valor. O objetivo do
problema é empacotar itens da lista que maximizem a soma de seus valores.

Neste trabalho, assumimos a hipótese de queP 6= NP. Desta forma, tais problemas e
muitos outros problemas de otimização que sãoNP-difíceis não possuem algoritmos eficientes
exatos. Muitos destes problemas aparecem em aplicações práticas e há um forte apelo econô-
mico para resolvê-los. Problemas de empacotamento possuemaplicações em diversas áreas
da Computação e Pesquisa Operacional. Podemos citar como exemplos, problemas em aloca-
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2 Capítulo 1. Introdução

ção de recursos em computadores ou problemas clássicos de corte de materiais em indústrias
[37, 42, 36, 17, 18, 19, 20, 21, 16].

Como não conseguimos resolver tais problemas de forma exatae eficiente, buscamos al-
ternativas que possam ser úteis. Existem vários métodos quesão muito utilizados na prática
como o uso de heurísticas, programação inteira, métodos híbridos, redes neurais, algoritmos
genéticos, dentre outros.

O foco deste trabalho de doutorado está no desenvolvimento de heurísticas para problemas
de empacotamento, principalmente aquelas em que conseguimos estabelecer uma razão, no pior
caso, entre a solução devolvida pela heurística e a solução ótima. Tais heurísticas são comu-
mente chamadas de algoritmos de aproximação. Neste caso, o algoritmo sacrifica a otimalidade
em troca da garantia de uma solução aproximada computável emtempo polinomial em relação
ao tamanho da entrada. Em linhas gerais, algoritmos de aproximação são aqueles que não ne-
cessariamente produzem uma solução ótima, mas soluções queestão dentro de um certo fator
da solução ótima. Esta garantia deve ser satisfeita para todas as instâncias do problema. Desta
forma, devemos dar uma demonstração formal deste fato. Também é nosso interesse o estudo
de heurísticas baseadas no método de geração de colunas. Muitos problemas de empacotamento
podem ser formulados com programas lineares que possuem um número muito grande de co-
lunas. Desta forma, a resolução de tais programas lineares por métodos tradicionais se torna
impraticável. Muitos destes programas lineares fornecem soluções fracionárias muito próximas
das soluções inteiras. Com isso, há um grande interesse em resolver tais sistemas lineares, e
usá-los para obter soluções inteiras. Como o número de colunas é muito grande aplica-se o
método de geração de colunas.

1.1 Objetivos do Trabalho

O principal objetivo deste trabalho é apresentar novos algoritmos para alguns problemas de
empacotamento. Para cada problema considerado também buscamos apresentar aplicações prá-
ticas destes, de forma a se ter uma maior motivação por parte do leitor. Para alguns destes
problemas fizemos inclusive testes computacionais, demonstrando a aplicabilidade prática de
alguns dos algoritmos propostos.

1.2 Organização do Texto

Esta tese está organizada como uma coletânea de artigos. Umadas grandes vantagens desta
forma de apresentação é mostrar de forma direta os resultados obtidos na tese de doutorado.
Por outro lado, uma desvantagem é que pode haver repetições de definições durante o texto.
De qualquer maneira optamos por esta forma de organização. Cada artigo apresenta aplica-



1.2. Organização do Texto 3

ções dos problemas considerados, bem como os algoritmos propostos. A seguir detalhamos a
organização do texto.

No Capítulo 2 apresentamos algumas definições e conceitos básicos que são usados nos
capítulos seguintes.

No Capítulo 3 fazemos um resumo dos principais resultados desta tese que correspondem
aos resultados dos capítulos seguintes.

Do Capítulo 4 até o Capítulo 8 apresentamos cinco artigos comos principais resultados
desta tese.

No Capítulo 9 apresentamos as conclusões e trabalhos futuros.



Capítulo 2

Preliminares

Este capítulo contém, de forma resumida, definições e noçõesbásicas que serão necessárias
no decorrer da leitura do trabalho. Primeiramente apresentamos conceitos e problemas básicos
de empacotamento. Em seguida, introduzimos definições básicas sobre algoritmos de aproxi-
mação, e discutimos brevemente algumas técnicas usadas no desenvolvimento de algoritmos
aproximados. Apresentamos ainda um resultado de análise combinatória que é utilizado fre-
quentemente neste trabalho e por fim apresentamos o algoritmo simplexe como ele pode ser
usado com o método de geração de colunas.

2.1 Problemas de Empacotamento

Nesta seção descrevemos os principais problemas de empatotamento tratados nesta tese.
Nos problemas de empacotamento temos um ou mais objetos grandesn-dimensionais, os

quais chamamos derecipientes, e vários objetos menores tambémn-dimensionais os quais
chamamos deitens. O nosso objetivo é empacotar itens dentro de recipientes, de forma a
maximizar ou minimizar uma dada função objetivo. No caso geral, tanto os itens quanto os
recipientes podem assumir qualquer forma, ou modelo (retângulos, esferas, formas quaisquer
etc.). O empacotamento deve ser feito de tal maneira que os itens não ocupem um mesmo
espaço e que as capacidades do recipiente sejam respeitadas.

Uma tipologia para vários tipos de problemas de empacotamento foi feita por Dyckhoff [14]
e mais recentemente uma nova tipologia foi proposta por Wäscheret al. [41].

Problemas de empacotamento são muito comuns na indústria e em problemas computaci-
onais. Em muitas aplicações, faz-se necessário cortar materiais (placas de metal, vidro, papel
ou tecido) em itens menores para se atender uma determinada demanda. Note que para deci-
dirmos como cortar o material, podemos supor que estamos empacotando os itens no material.
Como exemplos de problemas computacionais, citamos problemas de alocação de tarefas em
computadores. Tais problemas podem ser vistos como problemas de empacotamento. Temos

4
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várias tarefas, que correspondem a itens, e devemos alocá-las a um conjunto de processadores
de modo a otimizar uma certa função objetivo, como por exemplo, maximizar o peso das tare-
fas que podem ser processadas até um determinado momento. Neste caso, o problema consiste
em empacotar itens unidimensionais, que possuem um tamanhoe um peso, em recipientes cujo
tamanho é dado pelo limite de tempo.

Problemas de empacotamento são comuns em nosso cotidiano. Ofamoso astrônomo Johan-
nes Kepler, em 1611, já se perguntava a melhor maneira de alocação de esferas. Um feirante
que deseja empilhar laranjas por exemplo, pode se perguntarqual a melhor maneira de realizar
tal tarefa. O problema de empacotamento de esferas propostopor Kepler só teve uma solução
confirmada formalmente em 1998 [38], em uma sequência de trabalhos feitos por Hales [23].

Definiremos agora três problemas de empacotamento básicos que são tratados nesta tese.
Estes problemas serão tratados com algumas restrições extras que são apresentadas em cada
capítulo.

O primeiro problema, chamadobin packing, tem como entrada uma lista de itensL =

(a1, . . . , am), cada item com tamanhos(ai), e um númeroB que indica o tamanho de um
recipiente. Assumimos que para todo itemai ∈ L, vale ques(ai) ≤ B. Este problema consiste
em empacotar todos os itens deL no menor número possível de recipientes, ou seja, devemos
achar uma partiçãoP1, . . . , Pq deL tal queq seja mínimo e

∑

ai∈Pj
s(ai) ≤ B, para cada parte

Pj .

Existem as versões em outras dimensões deste problema, comobin packingbidimensional,
tridimensional etc. Nestes casos, os recipientes e os itenspossuem tamanhos dados por uma
tupla que indica o seu tamanho em cada dimensão.

Podemos assumir ainda que cada itemai ∈ L possui uma multiplicidadedi. Neste caso
devemos gerar um empacotamento que contémdi itens dotipo ai, i = 1, . . . , m. Os problemas
com multiplicidade são conhecidos na literatura comocutting stock.

Detalhes sobre algoritmos de aproximação para este problema podem ser encontrados em
Coffmanet al. [10]. Para o caso bidimensional pode-se consultar as resenhas de Lodiet al.
[29, 30].

O segundo problema é conhecido comoknapsack, ou problema da mochila. Neste caso
temos apenas um recipiente de tamanhoB, e uma lista de itensL = (a1, . . . , am) cada item
com tamanhos(ai) e valorp(ai). O objetivo do problema é empacotar um subconjunto dos
itens deL em um recipiente de tamanhoB de tal forma que a soma dos valores destes itens
empacotados seja maximizada. Também podemos considerar asversões multi-dimensionais
deste problema.

O problema, como foi definido, é conhecido como restrito, ou mochila 0/1. Neste caso, cada
item pode ser empacotado apenas uma vez. Na versão não-restrita, um itemai ∈ L pode ser
empacotado várias vezes. Um esquema de aproximação para o problema restrito foi proposto
na década de 70 por Ibarra e Kim [26]. Maiores informações sobre este problema podem ser
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encontradas no livro de Martello e Toth [31].
O terceiro problema é conhecido comostrip packing. Neste problema temos uma lista de

itens bidimensionaisL = (a1, . . . , am), cada itemai com tamanho(x(ai), y(ai)), e uma faixa
de larguraL e altura infinita. O objetivo do problema é empacotar todos ositens na faixa de
tal maneira que seja minimizada a altura total utilizada para empacotar os itens. Versões multi-
dimensionais podem ser consideradas.

Dentre os diversos algoritmos propostos para este problema, destacamos um esquema de
aproximação apresentado por Kenyon e Rémila [27, 28], e algoritmos exatos como o proposto
por Martelloet al. [32].

Neste trabalho, consideramos duas classes de algoritmos para problemas de empacotamento,
a classeonlinee a classeoffline. Os algoritmos chamadosoffline, são aqueles onde todos os da-
dos da instância são conhecidos pelo algoritmo de antemão. Na classe de algoritmos chamados
online, os dados da instância não são conhecidos de antemão pelo algoritmo. Itens chegam com
o passar do tempo e devem ser empacotados assim que estiveremdisponíveis. Muitos proble-
mas de empacotamento têm esta característica, e neste caso épreciso desenvolver algoritmos
onlinepara estes problemas. Um exemplo de problemaonlineé oBin Packing Online, que tem
a mesma definição que o problemaoffline, com exceção de que os itens a serem empacotados
chegam um por vez, de tal forma que um algoritmo para este problema deve empacotar um item
sem saber quais os próximos itens da lista.

2.2 Algoritmos de Aproximação

Nesta seção apresentamos a notação utilizada e alguns conceitos básicos sobre algoritmos de
aproximação.

Dado um algoritmoA, para um problema de minimização, seI for uma instância para
este problema, denotamos porA(I) o valor da solução devolvida pelo algoritmoA aplicado
à instânciaI. Denotamos porOPT(I) o correspondente valor para uma solução ótima de
I. Dizemos que um algoritmoA tem um fator de aproximaçãoα, ou éα-aproximado, se
A(I)/OPT(I) ≤ α, para toda instânciaI. No caso dos algoritmos probabilísticos, consi-
deramos a desigualdadeE[A(I)]/OPT(I) ≤ α, onde a esperançaE[A(I)] é tomada sobre
todas as escolhas aleatórias feitas pelo algoritmo. Estes limites de desempenho são chamados
de absolutos. Em problemas de empacotamento é comum considerar aproximaçõesassintó-
ticas. Neste caso dizemos que um algoritmoA tem fator de aproximação assíntóticoα se
limOPT (I)→∞A(I)/OPT(I) ≤ α. É importante ressaltar que algoritmos de aproximação con-
siderados neste trabalho têm complexidade de tempo polinomial.

Do ponto de vista teórico, os algoritmos de aproximação maisdesejados são aqueles que
obtêm valores mais próximos possível do valor ótimo. Dado umvalor constanteǫ > 0, é possí-
vel mostrar para vários problemas, que estes admitem algoritmos com fatores de aproximação
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(1 + ǫ), no caso de problemas de minimização, e(1 − ǫ), no caso de problemas de maximi-
zação, ondeǫ pode ser tomado tão pequeno quanto se queira. Chamamos estesalgoritmos de
esquemas de aproximação polinomialou PTAS (Polynomial Time Approximation Scheme) se
apresentarem tais fatores de aproximação e tempo de execução polinomial na entrada. Chama-
mos de FPTAS (Fully Polynomial Time Approximation Scheme) o esquema de aproximação que
tem tempo de execução polinomial na entrada e em1

ǫ
. Logo, dentre os dois tipos, os algoritmos

mais desejados são os FPTAS.

Em problemas de empacotamento é também comum considerar esquemas de aproximação
assintóticos. A definição é parecida com a que demos anteriormente para aproximação as-
síntotica, mas neste caso deve valer a desigualdadelimOPT (I)→∞A(I)/OPT(I) ≤ (1 + ǫ).
Denotamos por APTAS (Asymptotic Polynomial Time Approximation Scheme) os algoritmos
que apresentarem tais fatores de aproximação e tempo de execução polinomial na entrada. De-
notamos por AFPTAS (Asymptotic Fully Polynomial Time Approximation Scheme) os APTAS
que têm tempo de execução polinomial na entrada e em1

ǫ
.

Uma outra forma de análise de problemasNP-difíceis é a utilização do conceito de apro-
ximação dual proposto por Hochbaum e Shmoys [24]. Neste casoum algoritmo é dual apro-
ximado se ele consegue encontrar uma solução, não necessariamente viável, cujo valor é no
máximo o valor de uma solução ótima. Neste caso, a medida de qualidade de aproximação está
ligada a quão inviável é a solução. Existem algumas situações na prática nas quais as restrições
de viabilidade são flexíveis e o conceito de algoritmos de aproximação duais podem ser utili-
zados. Neste caso o fator de aproximação é uma razão entre alguma inviabilidade da solução
em relação à restrição de viabilidade. Por exemplo, no caso do problemabin packing, onde
todos os recipientes têm tamanho 1, um algoritmo que para qualquer instânciaI do problema
encontra uma solução que usaOPT (I) recipientes de tamanho1.3 corresponde a um algoritmo
dual aproximado com fator de aproximação1.3.

No caso de algoritmosonlineo termo comumente utilizado para designar fator de aproxi-
mação écompetitive ratio, que é a razão, no pior caso, entre o valor da solução devolvida pelo
algoritmo sobre o valor de uma solução ótima para a versãooffline do problema. No texto,
quando tratarmos de problemasonline, usaremos o termo fator de aproximação com o mesmo
significado decompetitive ratio.

Ao projetar um algoritmo aproximado e provar que o mesmo tem um certo fator de apro-
ximaçãoα, é interessante verificar se este fator de aproximaçãoα demonstrado é o melhor
possível. Para isto, devemos encontrar uma instância cuja razão entre a solução obtida pelo al-
goritmo e sua solução ótima é igual, ou tão próxima quanto se queira, deα. Neste caso, dizemos
que o fator de aproximaçãoα do algoritmo é justo.

Nos últimos anos surgiram várias técnicas de caráter geral para o desenvolvimento de al-
goritmos de aproximação. Algumas destas são:arredondamento de soluções via programação
linear, dualidade em programação linear e método primal-dual, algoritmos probabilísticos (e
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sua desaleatorização) e programação semidefinida(veja [15, 25, 39, 5]). Além disso, resulta-
dos sobreprovas verificáveis probabilisticamente[2, 3, 4] permitiram obter vários resultados
sobre a impossibilidade de aproximações.

Uma estratégia comum para se tratar problemas de otimizaçãocombinatória é formular o
problema como um programa linear inteiro e resolver a relaxação linear deste, uma vez que isto
pode ser feito em tempo polinomial. Programação linear tem sido usado para a obtenção de
algoritmos aproximados através de diversas maneiras. Uma muito comum é o uso de arredon-
damentos das soluções fracionárias do programa linear. Outra técnica é resolver o sistema dual
do programa linear, em vez do primal, e em seguida obter uma solução com base nas variáveis
duais. Outra técnica mais recente, é o uso do método de aproximação primal-dual, que tem sido
usado para obter diversos algoritmos combinatórios usandoa teoria de dualidade em progra-
mação linear. Neste caso, o método é em geral combinatório, não requerendo a resolução de
programas lineares e consiste de uma generalização do método primal-dual tradicional.

Já no caso de algoritmos probabilísticos, o algoritmo contém passos que dependem de uma
seqüência de bits aleatórios. Neste caso, a análise da solução gerada pelo algoritmo é calcu-
lada com base no valor esperado da solução. É interessante observar que apesar do modelo
parecer restrito, a maioria dos algoritmos probabilísticos pode ser desaleatorizada, através do
método das esperanças condicionais, tornando-se algoritmos determinísticos (veja [15, 5]). A
versão probabilística é, em geral, mais simples de se implementar e mais fácil de se analisar
que a correspondente versão determinística. Além disso, muitos dos algoritmos de aproxima-
ção combinam o uso de técnicas de programação linear com técnicas usadas em algoritmos
probabilísticos, considerando o valor das variáveis obtidas pela relaxação linear como probabi-
lidades.

No caso da técnica de programação semidefinida, temos um sistema de programação mate-
mática para o problema, que não precisa ser estritamente linear. Em alguns casos é possível ter
restrições não lineares na formulação, como por exemplo restrições quadráticas. Se a formu-
lação for escrita sob certas condições, o problema pode ser resolvido em tempo polinomial. A
vantagem deste método é que muitos problemas podem ser representados através de modelos
de programação semidefinida, isto é, formulações não necessariamente lineares. Goemans e
Williansom [22] apresentaram uma forma bastante inovadorade se arredondar as soluções de
um sistema quadrático, através do arredondamento probabilístico, considerando cada uma das
variáveis do sistema como um vetor na esfera unitária.

Estas técnicas, tanto isoladamente como em conjunto, têm sido usadas nos últimos anos
com sucesso em diversos problemas de otimização combinatória.

Outro tópico importante em algoritmos de aproximação é a inaproximalidade de problemas.
Dado um certo problemaQ, dizemos que este problema possui fator de inaproximalidade α,
se não existir um algoritmoα-aproximado paraQ. Uma das maneiras para se demonstrar tais
resultados, é mostrar que se existir um algoritmoα-aproximado para um problemaQ, então
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podemos resolver em tempo polinomial um problemaQ′ que sejaNP-difícil. Resultados im-
portantes nesta área foram feitos com a utilização de provasverificáveis probabilisticamente,
devido a Aroraet al. [3, 4]. Para mais detalhes sobre resultados de inaproximalidade veja
[2, 5, 25, 39].

2.3 Um Resultado sobre Contagem

Nesta seção apresentamos um resultado sobre contagem que é utilizado em diversas partes
desta tese. Problemas de contagem aparecem como um ramo da análise combinatória onde
busca-se descobrir uma expressão que determina a quantidade de elementos de um determinado
conjunto. Uma visão mais ampla sobre problemas de contagem eanálise combinatória pode ser
encontrada em [13].

Considere os seguintes problemas:

1. Qual o número de soluções da inequação
∑n

i=1 xi ≤ d, onded é um número inteiro
positivo e todas as variáveisxi são inteiras não negativas?

2. Dadosn letrasα ed letrasβ, quantas palavras diferentes podemos formar com todas estas
letras permutando-as?

A princípio, estes dois problemas podem parecer distintos,mas são equivalentes. Podemos
fazer a seguinte associação para os dois problemas. Dada umapermutação qualquer den letras
α e d letrasβ, o número de letrasβ à esquerda da primeira letraα corresponde ao valor da
variávelx1. O número de letrasβ entre ai-ésima e(i + 1)-ésima letrasα corresponde ao valor
da variávelxi+1, para1 ≤ i ≤ n − 1. O número de letrasβ à direita da última letraα não é
associado com nenhuma variável.

Para respondermos às duas questões acima usaremos combinações. A combinação
(

n
d

)

re-
presenta o número total de subconjuntos ded elementos de um determinado conjunto comn

elementos. O número destes subconjuntos é exatamente:

n!

(n− d)!d!
.

Dadosn letrasα ed letrasβ, podemos enumerar as posições onde cada letra pode aparecer.
As posições vão de 1 atén + d. O número de possibilidades de distribuição das letrasα nestas
posições é dado por

(

n+d
n

)

. Dado cada uma destas possibilidades, restamn + d − n posições
para serem preenchidas pelas letrasβ, o que nos dá

(

d
d

)

possibilidades. Logo o número total de
palavras diferentes que podemos formar comn letrasα ed letrasβ é dado por

(

n + d

n

)(

d

d

)

=

(

n + d

n

)

=

(

n + d

d

)

.
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O número de configurações para os dois problemas propostos noinício desta seção é dado
pela fórmula acima. Nesta tese, usamos este resultado no contexto de empacotamento. Suponha
que para uma determinada instância do problemabin packingunidimensional, o número total
de itens sejam e saibamos calcular o número total de configurações diferentes de recipientes.
Denotamos porc o número total de configurações de recipientes.O número total de soluções
para esta instância é limitado por

(

m + c

m

)

.

De fato, note que o número máximo de recipientes utilizados em uma solução qualquer para
esta instância ém. Associando cada configuraçãoi de recipiente a uma variável inteiraxi,
estamos contando o número de possibilidades de soluções para uma equação

c
∑

i=1

xi ≤ m,

onde cadaxi indica quantas vezes a configuraçãoi será usada em uma solução específica.
Logo o número de soluções para esta instância é limitado por

(

m + c

m

)

=
(m + c)!

m!c!
≤ (m + c)c.

Note que se o número de configurações de recipientes for constante, o número total de soluções
para esta determinada instância é polinomial em relação ao tamanho da entrada.

2.4 Geração de Colunas

Nesta seção apresentamos de forma resumida o funcionamentodo algoritmosimplex, e
como podemos resolver programas lineares com um número muito grande de colunas utilizando-
se o método de geração de colunas. Maiores detalhes sobre programação linear, o algoritmo
simplexe geração de colunas podem ser encontrados no livro de Bazaraa et al. [6].

2.4.1 O algoritmoSimplex

Considere o programa linear,

Min cx

sujeito a Ax = b (2.1)

xj ≥ 0 j = 1, . . . , n.

ondeA é uma matrizm× n de postom, c é um vetor de custos de tamanhon, b é um vetor de
tamanhom e x é um vetor de variáveis de tamanhon. UmabaseBm×m deste programa linear
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consiste em uma sub-matriz deA inversível. Uma base é ditaviável seB−1b ≥ 0 (note que
B−1b é uma solução do programa linear).

A idéia do algoritmosimplexpara resolução de sistemas deste tipo está fundamentada em
alguns resultados que relacionambases viáveise pontos extremos do poliedro descrito pelasm

restrições do sistema.

Teorema 2.4.1Se o programa linear (2.1) possui uma solução ótima com valorfinito, então
existe um vértice do poliedro descrito pelas restrições de (2.1), cujo valor é igual ao valor da
solução ótima.

Em outras palavras o que o teorema nos diz, é que é suficiente nos concentrarmos nos
pontos extremos do poliedro pois se um programa linear possui uma solução ótima finita, então
podemos achar uma solução ótima em algum vértice.

SejaB uma base viável para (2.1). SejaxB as variáveis correspondentes as colunas deB

(chamadas devariáveis básicas) e xN as demais variáveis (chamadasvariáveis não básicas)
correspondentes as colunas de uma matrizN de dimensõesm× (n−m). FazendoxB = B−1b

e xN = 0, temos uma solução para o programa linear. Para cada baseB possível, associamos
esta com a solução (chamadasolução básica) dada porxB = B−1b e xN = 0. O próximo
teorema garante que cada uma dassoluções básicascorresponde a um vértice, e que para cada
vértice do poliedro existe uma solução básica correspondente.

Teorema 2.4.2Para cada vértice do poliedro do programa linear (2.1), existe uma (não ne-
cessariamente única) base viável que corresponde a este vértice, e para cada base viável existe
apenas um vértice correspondente a esta base.

A idéia do algoritmosimplexé partir de uma base viável inicial e fazer alterações de colunas
que levem a outras bases melhorando o valor da solução até um ponto em que possamos garantir
que estamos em uma solução ótima, ou que o sistema é ilimitado(no caso em que a solução
pode ser melhorada o quanto quisermos).

Suponha que temos uma solução básica

(

B−1b

0

)

cujo valor da função objetivo é

z0 = c

(

B−1b

0

)

= (cB, cN)

(

B−1b

0

)

= cBB−1b (2.2)

Temos queb = Ax = BxB + NxN , e multiplicando esta equação porB−1 obtemos

xB = B−1b− B−1NxN

= B−1b−
∑

j∈R B−1ajxj

= b∗ −
∑

j∈R(yj)xj

(2.3)
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ondeR é o conjunto dos índices das variáveis não básicas eb∗ = B−1b. O valor da função
objetivo pode ser reescrito da seguinte forma:

z = cBxB + cNxN

= cB(B−1b−
∑

j∈R B−1ajxj) +
∑

j∈R cjxj

= cBB−1b− cB

∑

j∈R B−1ajxj +
∑

j∈R cjxj

= z0 −
∑

j∈R(cBB−1aj − cj)xj

= z0 −
∑

j∈R(zj − cj)xj

(2.4)

ondezj = cBB−1aj para cadaj ∈ R ez0 = cBB−1b.

Desta forma, utilizando estas transformações podemos reescrever o sistema (2.1) da seguinte
forma:

Min z = z0 −
∑

j∈R

(zj − cj)xj

sujeito a
∑

j∈R

(yj)xj + xB = b∗ (2.5)

xj ≥ 0 j ∈ R exB ≥ 0.

Note que partimos de uma base viável com solução(xB, xN) e reescrevemos o programa
linear de tal forma que a função objetivo tem um valor constantez0 menos um termo em função
das variáveis não básicas, que tem valor zero dado quexN = 0. Mas note que se para alguma
colunaaj deA tivermos

cBB−1aj − cj = zj − cj > 0

podemos incrementar o valor da variável não básicaxj correspondente, e melhorarmos o valor
da solução do programa linear. Se para todoj tivermoszj − cj ≤ 0 então a solução básica
corresponde a uma solução ótima. O valorcj − zj é conhecido como custo reduzido da coluna
j e o vetorcBB−1 corresponde ao vetor de solução dual do programa linear. Umaobservação
interessante é que o custo reduzido das variáveis básicas é igual a zero. Para ver isso, note que
BB−1 é a identidade, e para uma colunabi deB, temos quecBB−1bi = ci.

Sejak o índice de uma variável não básica cujo valorzk − ck seja positivo. Mantendo todas
as demais variáveis não básicas iguais a zero o sistema (2.5)pode ser reduzido a

z = z0 − (zk − ck)xk (2.6)
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Note que seyik ≤ 0, entãoxBi
deve aumentar seu valor a medida quexk cresce. Seyik > 0,

entãoxBi
deve diminuir de valor a medida quexk cresce. Para mantermos as restrições de não-

negatividade,xk pode ser incrementada até o ponto em que a primeira variável básica assume
valor igual a zero. Examinando a equação (2.7), podemos ver que a primeira variável básica
a assumir valor zero a medida quexk aumenta é aquela correspondente a menor fraçãob∗i /yik

parayik positivo. Podemos incrementarxk até o valor

xk =
b∗r
yrk

= Min1≤i≤m

{

b∗i
yik

: yik > 0
}

. (2.8)

Note que seyik ≤ 0 para todoi, então o sistema é ilimitado, pois a medida que incrementa-
mosxk, as variáveis básicas também são incrementadas e o valor da função objetivo decresce.
Quandoxk é incrementada criamos uma nova solução básica onde a colunaak da matrizA toma
lugar da colunaaBr . Temos então uma nova solução cujos valores das variáveis básicas são

xBi
= b∗i −

yik

yrk

b∗r , parai = 1, 2, . . . , m

xk =
b∗r
yrk

e todas as demais variáveis iguais a zero.

Abaixo temos uma descrição do algoritmosimplex. Maiores detalhes sobre o algoritmo,
sobre como achar uma base viável inicial, tratamento de degenerescência, ciclagem e outros
tópicos podem ser encontrados no livro de Bazaraaet al. [6].

Partindo de uma baseB viável para o sistema (2.1) execute os seguintes passos.

1. Resolva o sistemaBxB = b cuja única solução éxB = B−1b = b∗. SejaxB = b∗, xN = 0

ez = cBxB. Prossiga para o próximo passo.
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2. Resolva o sistemawB = cB cuja solução éw = cBB−1. Calculezj − cj = waj − cj para
todas as variáveis não básicas. Seja

zk − ck = Maxj∈R {zj − cj}

ondeR é o conjunto dos índices associados as variáveis não básicas. Sezk−ck ≤ 0 então
pare com a solução básica atual como uma solução ótima. Caso contrário prossiga para o
próximo passo.

3. Resolva o sistemaByk = ak, cuja solução éyk = B−1ak. Seyk ≤ 0 então pare pois
solução é ilimitada. Seyk 6≤ 0 prossiga para o próximo passo.

4. Calcule o índicer da coluna a sair da base que é aquele que atem ao mínimo

b∗r
yrk

= Min1≤i≤m

{

b∗i
yik

: yik > 0
}

.

Atualize a matrizB inserindo a colunaak no lugar da colunaaBr . Volte ao passo 1.

2.4.2 O algoritmoSimplexcom Geração de Colunas

A idéia do algoritmo de geração de colunas é simular o algoritmo simplex, mas no passo 2 do
algoritmo, ao invés de calcularmos o custozj − cj para cada uma das variáveis não básicas,
resolvemos de forma indireta o sub-problema

Maxj∈R {zj − cj} . (2.9)

Logo o algoritmo não mantém em memória todas as colunas do programa linear, e na hora
de gerar uma coluna resolvendo o sub-problema (2.9) não há uma verificação explícita de todas
as variáveis não básicas. Ressaltamos que a resolução de (2.9) implicitamente não é sempre
possível mas para alguns problemas isto é possível.

Como exemplo do método de geração de colunas vamos considerar o problemacutting stock
unidimensional (denotado por CS). Neste problema temos umalista de itensL = (a1, . . . , am),
com tamanhos(s(a1), . . . , s(am)), um vetor de demandas para cada item(d1, . . . , dm) e reci-
pientes (bins) de tamanhoB. O objetivo do problema é gerar um empacotamento dos itens
suprindo todas as demandas utilizando a menor quantidade derecipientes possível.

Chamamos depadrão, uma descrição de um empacotamento de itens em um recipiente.
Podemos considerar um padrãopj = (p1j , . . . , pmj) como um vetor onde cada posiçãopij

indica quantos itens do tipoi estão empacotados neste padrãoj. Um padrãopj para ser válido
deve satisfazer

∑m
i=1 pijs(ai) ≤ B. SejaP uma matriz de dimensõesm× n que contém todos



2.4. Geração de Colunas 15

os tipos de padrões possíveis como colunas. Note que o númerode padrões possíveis é muito
grande. Podemos formular o problema CS da seguinte forma

Min (1) · x

sujeito a Px = d (2.10)

xj ≥ 0 j = 1, . . . , n.

Neste programa linear temos um vetorx de tamanhon, que indica quantas vezes cada padrão
deve ser utilizado em uma solução e (1) representa um vetor de uns com dimensãon. Note que
estamos minimizando o número de recipientes utilizados.

O custo de uma colunaj deste programa linear é

zj − cj = (1)B−1pj − 1.

Sejaw = (1)B−1 eP o conjunto de padrões possíveis. No passo 2 do algoritmosimplextemos
então que resolver o sub-problema

Maxpj∈P {wpj − 1} ,

onde cada padrão possível deve satisfazer

m
∑

i=1

pijs(ai) ≤ B.

Note que se considerarmospij como variáveis inteiras, o sub-problema acima corresponde
ao problema da mochila, ou seja, ao invés de considerarmos todos os padrões possíveis, pode-
mos resolver o sub-problema acima como um problema da mochila descrito abaixo

Max wp− 1

sujeito a

m
∑

i=1

pis(ai) ≤ B (2.11)

pi ≥ 0, inteira, i = 1, . . . , m.

ondep é um vetor de tamanhom de variáveis inteiras.
Podemos começar a resolução do programa linear (2.10) com uma base viável correspon-

dente a matriz identidadeIm×m, e o passo 2 do algoritmosimplexé resolvido utilizando o
programa linear (2.11). Desta maneira, sempre mantemos na memória apenas as colunas bási-
cas na resolução de (2.10), e o passo 2 do algoritmosimplexé resolvido de forma implícita sem
a necessidade de calcular o custozj − cj para todas as variáveis não básicas.



Capítulo 3

Resumo dos Resultados

Neste capítulo descrevemos os principais resultados apresentados nesta tese. Cada um dos pró-
ximos capítulos desta tese representa um artigo com resultados originais desenvolvidos durante
o doutorado. Cada artigo apresenta aplicações dos problemas considerados, bem como algorit-
mos propostos para tais problemas.

No Capítulo 4 apresentamos o problema que chamamos deClass Constrained Shelf Bin
Packing(CCSBP). Este problema é uma generalização dobin packingonde itens têm classes
diferentes e devemos empacotar os itens separando-os por prateleiras.

Uma instância para este problema consiste de uma tuplaI = (L, s, c, d, ∆, B), ondeL é
uma lista de itens,s e c são funções de tamanho e classe sobre os itens deL, d é o tamanho
de uma divisória,∆ é o tamanho máximo de uma prateleira eB é o tamanho dos recipientes.
Dado uma sub-listaL′ ⊆ L denotamos pors(L′) a soma dos tamanhos dos itens emL′, i.e,
s(L′) =

∑

e∈L′ s(e). Um empacotamentoP da instânciaI para o problema CCSBP consiste
em um conjunto de recipientesP = {P1, . . . , Pk}, onde os itens em cada recipientePi ∈ P

estão particionados em prateleiras{N i
1, . . . , N

i
qi
} tal que para cada prateleiraN i

j temos que
s(N i

j) ≤ ∆, todos os itens emN i
j são de uma mesma classe e

∑qi

j=1(s(N
i
j) + d) ≤ B.

Uma aplicação interessante do problema CCSBP pode ser encontrada no trabalho de Fer-
reiraet al. [16] que introduziram este problema que aparece na indústria de metais.

Apresentamos algoritmos baseados nas estratégiasFirst Fit (Decreasing)eBest Fit (Decre-
asing)para o problema CCSBP. Quando o número de classes diferentesé limitado por uma
constante, apresentamos algoritmos com fatores de aproximação assintótico3.4 e 2.445. Se
o número de classes não é limitado por uma constante, mostramos algoritmos com fatores de
aproximação absolutos iguais a4 e3.

Por fim, para o caso em que o número de classes é limitado por umaconstante, apresentamos
um APTAS para o problema CCSBP.

Uma versão resumida deste artigo foi aceita para apresentação no GRACO2005 (2nd Brazi-
lian Symposium on Graphs, Algorithms, and Combinatorics) [44]. A versão completa apresen-
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tada nesta tese, foi aceita para publicação em uma edição especial da revistaDiscrete Applied
Mathematicscom artigos selecionados do congresso.

No Capítulo 5 consideramos dois problemas: o CCSBP e o problema bin packingcom
restrições de classes, denotado porCCBP. Uma instância deste último problema é uma tupla
I = (L, s, c, C, Q) ondeL = (a1, . . . , an) é uma lista comn itens, cada itemai ∈ L com
tamanho0 < s(ai) ≤ 1 e classec(ai) ∈ {1, . . . , Q}, e um conjunto de recipientes de tamanho
1 e C compartimentos. Um empacotamento para esta instância consiste em um conjunto de
recipientesP = {P1, . . . , Pk} tal que, para cadaPi o número de classes diferentes de itens
empacotados emPi é no máximoC, e a soma dos tamanhos dos itens empacotados emPi é no
máximo1. O objetivo do problema é encontrar um empacotamento deI que utiliza o menor
número de recipientes possível.

Neste capítulo apresentamos esquemas de aproximação duaispara ambos os problemas. O
artigo que corresponde a este capítulo foi submetido para publicação em uma revista.

No Capítulo 6 apresentamos o problemabin packingcom restrição de classes (CCBP) com
aplicações para um problema de construção de servidores de vídeo sob demanda.

Para o problemaonline, consideramos dois casos: no primeiro caso, que chamamos de
limitado, dada uma constantek, um algoritmo pode manter ativo no máximok recipientes
durante sua execução (conhecido na literatura comok-bounded); no segundo caso um número
ilimitado de recipientes pode permanecer ativo. Um recipiente ativo é aquele que pode ser
usado para empacotar itens. Quando um recipiente se torna inativo, ele não pode mais voltar a
ser ativo. Para o caso limitado, mostramos que não pode existir nenhum algoritmo com fator de
aproximação constante. Além disso, mostramos que se os itens de uma instância têm tamanho
pelo menosε, então não existe algoritmo com fator de aproximação melhordo que O(1/Cε).
Para o caso não limitado mostramos um algoritmoonlinecom fator de aproximação entre2.666

e2.75.

Também apresentamos neste capítulo resultados para a versão offlinedo problema. Quando
todos os itens têm tamanhos iguais, apresentamos um algoritmo (1 + 1/C)-aproximado. Para
o caso paramétrico, quando os itens possuem tamanhos no máximo B/m (B é o tamanho do
recipiente), para algum inteirom, apresentamos um algoritmo com fator de aproximação igual a
(1 + 1/C + 1/ min{C, m}). Implementamos alguns dos algoritmos apresentados e reportamos
resultados computacionais baseados em instâncias que refletem o problema de construção de
servidores de vídeo sob demanda. Tais experimentos mostramque os algoritmos considerados
geram soluções de muito boa qualidade.

Neste capítulo consideramos ainda a versão do problema com recipientes de tamanhos va-
riados (VCCBP). Este problema foi estudado primeiramente por Dawandeet al. [12, 11] onde
uma tentativa de um APTAS foi considerada, para o caso em que onúmero de classes diferentes
na entrada é limitado por uma constante. Mostramos que o algoritmo proposto por Dawandeet
al. [12, 11] está errado e então mostramos um APTAS para o problema.



18 Capítulo 3. Resumo dos Resultados

Os resultados deste capítulo foram apresentados no12th Annual International Computing
and Combinatorics Conference (COCOON 2006)[45], e a versão apresentada aqui foi subme-
tida para publicação em uma revista.

No Capítulo 7 apresentamos algoritmos de aproximação para aversão do problemabin pac-
king onde os itens possuem demandas, ou seja, para cada item existe uma multiplicidade que
indica quantos itens deste tamanho devem ser empacotados. Estes problemas são conhecidos
na literatura como problemas decutting stock. Neste capítulo mostramos como adaptar vários
algoritmos de aproximação desenvolvidos para problemas sem demanda para o caso onde há
demanda. Mostramos que se um determinado algoritmo para um problema sem demanda tiver
uma determinada propriedade, que denominamos de algoritmos comportados, então este algo-
ritmo pode ser transformado em outro para o caso com multiplicidades. Dentre os resultados
deste capítulo destacamos um esquema de aproximação assintótico para o problemacutting
stockunidimensional e um algoritmo com fator de aproximação assintótico igual2.077 para
o problemacutting stockbidimensional. Os resultados deste capítulo aparecem em umartigo
aceito para publicação na revistaEuropean Journal of Operational Research[8].

Finalmente no Capítulo 8 apresentamos algoritmos para problemas de empacotamento bidi-
mensional. Os problemas considerados assumem cortes guilhotináveis e em estágios. Apresen-
tamos algoritmos exatos para o problema da mochila bidimensional baseados em programação
dinâmica. Consideramos também o problemabin packingbidimensional com demandas e o
problemastrip packingbidimensional com demandas. Para estes problemas apresentamos heu-
rísticas baseadas no método de geração de colunas. Implementamos os algoritmos propostos
e reportamos os resultados computacionais obtidos com estes algoritmos. Tais resultados in-
dicam que estes algoritmos acham soluções de muito boa qualidade em tempos razoáveis. Os
resultados deste capítulo, juntamente com resultados obtidos anteriormente por Cintra e Waka-
bayashi [9], fazem parte de um artigo aceito para publicaçãona revistaEuropean Journal of
Operational Research.



Capítulo 4

Artigo: A One-Dimensional Bin Packing
Problem with Shelf Divisions

E. C. Xavier2 F. K. Miyazawa2

Abstract

Given bins of sizeB, non-negative valuesd and∆, and a listL of items, each iteme ∈ L with
sizese and classce, we define a shelf as a subset of items packed inside a bin with total items
size at most∆ such that all items in this shelf have the same class. Two subsequent shelves
must be separated by a shelf division of sized. The size of a shelf is the total size of its items
plus the size of the shelf division. The Class Constrained Shelf Bin Packing Problem (CCSBP)
is to pack the items ofL into the minimum number of bins, such that the items are divided into
shelves and the total size of the shelves in a bin is at mostB. We present hybrid algorithms
based on the First Fit (Decreasing) and Best Fit (Decreasing) algorithms, and an APTAS for the
problem CCSBP when the number of different classes is bounded by a constantC.

Key Words: Approximation algorithms, bin packing, shelf packing.

4.1 Introduction

In this paper we present approximation algorithms for a class constrained bin packing problem
when the items must be separated by non-null shelf divisions. We denote this problem byClass
Constrained Shelf Bin Packing Problem(CCSBP).

1An extended abstract of this paper was presented at GRACO2005 (2nd Brazilian Symposium on Graphs,
Algorithms, and Combinatorics) and appeared in ElectronicNotes in Discrete Mathematics 19 (2005) 329–335.
This research was partially supported by CNPq (Proc. 470608/01–3, 478818/03–3, 306526/04-2 and 490333/04-4)
and ProNEx–FAPESP/CNPq (Proc. 2003/09925-5).

2Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 —
Campinas–SP — Brazil, {eduardo.xavier,fkm}@ic.unicamp.br.
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An instance for the CCSBP problem is a tupleI = (L, s, c, d, ∆, B), whereL is a list of
items,s andc are size and class functions overL, d is the size of the shelf division,∆ is the
maximum size of a shelf andB is the size of the bins. Given a sublist of itemsL′ ⊆ L we
denote bys(L′) the sum of the sizes of the items inL′, i.e,s(L′) =

∑

e∈L′ se. A shelf packing
P of an instanceI for the CCSBP problem is a set of binsP = {P1, . . . , Pk}, where the items
packed in a binPi ∈ P are partitioned into shelves{N i

1, . . . , N
i
qi
} such that for each shelfN i

j

we have thats(N i
j) ≤ ∆, all items inN i

j are of the same class and
∑qi

j=1(s(N
i
j) + d) ≤ B.

Without loss of generality we consider that0 < se ≤ ∆ andce ∈ Z+ for eache ∈ L.

The CCSBP problem is to find a shelf packing of the items ofL into the minimum number
of bins. This problem isNP -hard since it is a generalization of the bin packing problem: in
this case consider that the instance has just one class,∆ = B andd = 0. We note that the term
shelf is used under another context in the literature for the2-D strip packing problem. In this
case, packings are two staged packings divided into levels.

There are many practical applications for the CCSBP problemeven when there is only
one class of items. For example, when the items to be packed must be separated by non-null
shelf divisions (inside a bin) and each shelf has a limited capacity. In Figure 4.1 we can see an
example of a shelf packing of items into one bin, withB = 60, ∆ = 17, d = 3 and all items
of the same class. The CCSBP problem is also adequate when some items cannot be stored
in a same shelf (like foods and chemical products). In most ofthe cases, the sizes of the shelf
divisions have non-negligible width. Although these problems are very common in practice, to
our knowledge this is the first paper that presents approximation results for them.

54

5 7 5

9 8

44

3

3

3

Maximum weigth

Maximum total weight
supported: 60

supported by shelf
division: 17

Figure 4.1: Example of a shelf packing of items into one bin.

An interesting application for the CCSBP problem was introduced by Ferreira et al. [4] in
the iron and steel industry. In this problem, we have raw material rolls that must be cut into
final rolls grouped by certain properties after two cutting phases. The rolls obtained after the
first phase, called primary rolls, are submitted to different processing operations (tensioning,
tempering, laminating, hardening etc.) before the second phase cut. Due to technological lim-
itations, primary rolls have a maximum allowable width and each cut has a trimming process
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that generates a loss in the roll width. Each processing operation has a high cost which implies
items to be grouped before doing it, where each group corresponds to one shelf.

Given an algorithmA, and an instanceI for the CCSBP problem, we denote byA(I) the
number of bins used by algorithmA to pack the instanceI and byOPT(I) the number of bins
used in an optimal solution. The algorithmA is anα-approximation, ifA(I)/OPT(I) ≤ α, for
any instanceI. In this case, we also say thatA has an absolute performance boundα. In bin
packing problems, it is also usual to use the asymptotic worst case analysis. We say thatA has
an asymptotic performance boundα if there is a constantβ such thatA(I) ≤ αOPT(I) + β

for any instanceI.

Given an algorithmAε, for someε > 0, and an instanceI for some problemP we denote
by Aε(I) the value of the solution returned by algorithmAε when executed on instanceI. We
say thatAε, for ε > 0, is an asymptotic polynomial time approximation scheme (APTAS) for
the problem CCSBP if there exist constantst andK such thatAε(I) ≤ (1 + tε)OPT(I) + K

for any instanceI.

Results: In this paper we present hybrid algorithms for the CCSBP problem, based on the First
Fit (Decreasing) and Best Fit (Decreasing) algorithms for the bin packing problem. When the
number of different classes is bounded by a constant, we showthat the hybrid versions of the
First Fit and Best Fit algorithms have an asymptotic performance bound of3.4 and the hybrid
versions of the First Fit Decreasing and Best Fit Decreasingalgorithms have an asymptotic
performance bound less than2.445. In the case where the number of different classes is part
of the input, we show that the hybrid versions of the First Fitand Best Fit algorithms have an
absolute performance bound of4 and the hybrid version of the First Fit Decreasing algorithm
has an absolute performance bound of3. At last, for the case when the number of classes is
bounded by a constant, we present an APTAS for the CCSBP problem.

Related Work: A special case of the CCSBP problem is the Bin Packing problem, which is
one of the most studied problems in the literature. Some of the most famous algorithms for the
bin packing problem are the algorithms FF, BF, FFD and BFD, with asymptotic performance
bounds17/10, 17/10, 11/9 and11/9, respectively. Fernandez de la Vega and Lueker [3] pre-
sented an APTAS for the bin packing problem. Dawande et al. [2], presented approximation
schemes for a class constrained version of the bin packing (CCBP), where bins can have dif-
ferent sizes and each bin is used to pack items of at mostk different classes, and the number of
different classes in the input instance is bounded by a constant. Shachnai and Tamir [7], pre-
sented a polynomial time approximation scheme for a dual version of the problem CCBP also
for the case where the number of different classes in the input instance is bounded by a constant.
Shachnai and Tamir [8], considered a special case of an online class constrained bin packing
problem. In this case all items have the same size and must be packed without knowledge of
the next subsequent items of the input. We refer the reader toCoffman et al. [1] for a survey on
approximation algorithms for bin packing problems. In [11], we consider the knapsack version
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of the CCSBP problem, where each iteme has also a valueve. The objective is to find a shelf
packing of a subsetS of the items in just one knapsack (bin) of sizeK, such that the total
value of the items inS is maximum. We also give a PTAS for this problem. We remark that,
despite of the similarity of the problems, the techniques and algorithms used in this paper are
not related to the ones used in the knapsack version of the problem. Practical approaches for
the CCSBP problem were considered by Ferreira et al. [4], that introduced the problem in the
iron and steel industry. Recently, the problem was considered by Hoto et al. [5] and Marques
and Arenales [6]. Hoto et al. [5], considered the cutting stock version of the problem where a
demand of items must be attended by the minimum number of bins. They use a column gener-
ation strategy. In [6] exact and heuristic algorithms are presented for a knapsack version of the
problem.

4.1.1 Notation

Given an instanceI = (L, s, c, d, ∆, B) for the CCSBP problem, we denote byn = |L| the
number of items in this instance. For any integert, we denote by[t] the set{1, . . . , t}. We
assume that each class belongs to the set[C]. We assume thatC is bounded by a constant,
unless otherwise stated. We denote byOPTs(I) the minimum number of non-null shelves in
an optimal packing ofI, and byOPT(I) the number of bins in this optimal solution. Given
a packingP = {P1, . . . , Pk}, we denote by|P| = k the number of bins used in this packing,
and byNs(P) the number of shelves used in all bins ofP. Given an algorithmA we denote by
A(I) the number of bins used by the algorithmA to pack the instanceI.

4.1.2 Simple Lower Bounds

The following facts present lower bounds for the number of bins used in any optimum solution
for the CCSBP problem.

Fact 4.1.1 For any instanceI = (L, s, c, d, ∆, B), we have

OPT(I) ≥
s(L)

⌈B/(d + ∆)⌉∆
.

Proof. Since⌈B/(d + ∆)⌉ is an upper bound for the number of totally filled shelves in a bin,
the total items size in a bin is at most⌈B/(d + ∆)⌉∆.

Fact 4.1.2 For any instanceI = (L, s, c, d, ∆, B), we have

OPT(I) ≥
s(L) + OPTs(I)d

B
≥

s(L) + ⌈s(L)/∆⌉d

B
.

Proof. The statement holds since⌈s(L)/∆⌉ is a lower bound for the number of shelves used in
any packing.
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4.2 Hybrid versions of the First Fit and Best Fit Algorithms

In this section we present hybrid versions of the First Fit (Decreasing) and Best Fit (Decreas-
ing) algorithms, for the classic bin packing problem, to theCCSBP problem. Without loss of
generality, we assume that all bins have capacity 1.

We briefly describe how these algorithms work for the classicbin packing problem. The
First Fit (FF) and the Best Fit (BF) algorithms pack the itemsof a given listL = (e1, . . . , em)

in the order given byL. Assume that the itemse1, . . . , ei−1 have been packed into the bins
B1, B2, . . . , Bk, each bin with capacity1. To pack the next itemei, the algorithm FF (resp. BF)
finds the smallest indexj, 1 ≤ j ≤ k, such thats(Bj) + s(ei) ≤ 1 (resp.s(Bj) is maximum
given thats(Bj) + s(ei) ≤ 1). If the algorithm FF (resp. BF) finds such a bin, the itemei is
packed into the binBj . Otherwise, the itemei is packed into a new binBk+1. This process is
repeated until all the items ofL have been packed.

The First Fit Decreasing (FFD) (resp. Best Fit Decreasing (BFD)) algorithm first sorts the
items ofL in non-increasing order of size and then apply the algorithmFF (resp. BF). The
following result holds (see [1, 9]).

Theorem 4.2.1 For any instanceI for the bin packing problem, we have

FF(I) ≤
17

10
OPT(I) + 1, BF(I) ≤

17

10
OPT(I) + 1,

FFD(I) ≤
11

9
OPT(I) + 3, BFD(I) ≤

11

9
OPT(I) + 3

and FFD(I) ≤
3

2
OPT(I).

Now we can present the hybrid algorithms for the problem CCSBP.
Algorithms SFF, SBF, SFFDand SBFD: Given an instanceI = (L, s, c, d, ∆, B), the algo-
rithm SFF (resp. SBF, SFFD and SBFD) uses the algorithm FF (resp. BF, FFD and BFD) to
pack all items of a same class into shelves of size∆. The algorithm considers the size of each
generated shelf as the total items size in the shelf plus the size of the shelf divisiond. The set
of generated shelves are then packed into bins of sizeB using the algorithm FF (resp. BF, FFD
and BFD).

Given an instanceI = (L, s, c, d, ∆, B) for the CCSBP problem, we denote byOPT∆(I)

the minimum number of shelves of size∆ needed to packL, where all items in a shelf have the
same class. ClearlyOPT∆(I) is a lower bound for the number of shelves used in any optimal
solution. That is,OPT∆(I) ≤ OPTs(I).

Theorem 4.2.2 Let I be an instance for theCCSBPproblem. If the number of classes inI is
bounded byC then

SFF(I) ≤ (3 +
2

5
) OPT(I) + 2C, SBF(I) ≤ (3 +

2

5
) OPT(I) + 2C,
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SFFD(I) ≤ (2 +
4

9
) OPT(I) + 6C and SBFD(I) ≤ (2 +

4

9
) OPT(I) + 6C.

Proof. LetA′ be an algorithm in{FF, BF, FFD, BFD} such that

A′(I ′) ≤ αOPT(I ′) + β

for any instanceI ′ of the classic bin packing problem and letA be the corresponding algorithm
in {SFF, SBF, SFFD, SBFD}. Let I = (L, s, c, d, ∆, B) be an instance for the CCSBP prob-
lem. Consider the packingP produced by the algorithmA for the instanceI. We consider that
|P| > 1, otherwiseP is optimum. On average, all bins inP are filled by at least1/2 (including
shelf divisions), since the algorithms pack the shelves in such a way that any pair of bins have
total contents size greater than 1. We can conclude the following:

A(I)(1/2) ≤ s(L) + Ns(P)d

≤ s(L) + (αOPT∆(I) + Cβ)d (4.1)

≤ s(L) + (αOPTs(I) + Cβ)d (4.2)

≤ α(s(L) + dOPTs(I)) + Cβd

≤ αOPT(I) + Cβ, (4.3)

where (4.1) holds from Theorem 4.2.1, and (4.3) follows fromFact 4.1.2 and the fact thatd ≤ 1.

Notice that any algorithm for the classic bin packing problem can be easily extended to an
algorithm with the same asymptotic performance bound and that produces bins that on average
are filled by at least half of its capacities. Therefore, the following result can be easily derived
as a generalization of the previous theorem.

Corollary 4.2.3 Given an algorithmA′ for the bin packing problem, such that

A′(L) ≤ αOPT(L) + β

for any instanceL, then there exists an algorithmA for theCCSBPsuch that

A(I) ≤ 2αOPT(I) + 2βC,

for any instanceI of theCCSBPproblem.

This result shows that when the number of classes is bounded by a constant we can obtain, using
an APTAS for the bin packing problem, algorithms for the CCSBP problem with asymptotic
performance bound as close to 2 as desired (although with high time complexity and with high
value ofβ).
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Now we consider that the number of different classes is not bounded by a constant. Notice
that if a given algorithmA′ for the bin packing problem has absolute performance boundα,
then we can derive an algorithmA for the CCSBP problem with absolute performance bound
2α, even if the number of different classes of items is given as part of the input. Using the fact
that algorithms FF, BF and FFD have absolute performance bound 2, 2 and3/2 respectively,
we can obtain the following result.

Corollary 4.2.4 Let I be an instance for theCCSBPproblem, then

SFF(I) ≤ 4OPT(I), SBF(I) ≤ 4OPT(I) and SFFD(I) ≤ 3OPT(I),

even if the number of different classes is not bounded by a constant.

From the practical point of view, the size of the shelf division d is not so large compared
with ∆. The next theorem shows that ifd is a small fraction of∆, we can obtain a better
performance bound for the Best and First Fit strategies.

Theorem 4.2.5 Let I = (L, s, c, d, ∆, B) be an instance for theCCSBPproblem. If the num-
ber of classes inI is bounded byC andd = ∆

r
, r ≥ 1, we have

SFF(I) ≤ (2 +
14

5r
) OPT(I) + 2C, SBF(I) ≤ (2 +

14

5r
) OPT(I) + 2C,

SFFD(I) ≤ (2 +
8

9r
) OPT(I) + 6C, SBFD(I) ≤ (2 +

8

9r
) OPT(I) + 6C,

and SFFD(I) ≤ (2 +
2

r
)OPT(I).

Proof. LetA′ be an algorithm in{FF, BF, FFD, BFD} such that

A′(I ′) ≤ αOPT(I ′) + β

for any instanceI ′ of the classic bin packing problem and letA the corresponding algorithm in
{SFF, SBF, SFFD, SBFD}. Let I = (L, s, c, d, ∆, B) be an instance for the CCSBP problem
andP the packing produced by the algorithmA for the instanceI.

We divide the proof in two cases, according to the values ofNs(P) andOPTs(I).
CASE 1: Ns(P) < OPTs(I). In this case, we have

A(I)(1/2) ≤ s(L) + Ns(P)d

< s(L) + OPTs(I)d

≤ OPT(I), (4.4)
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where inequality (4.4) holds from Fact 4.1.2. That is,

A(I) ≤ 2OPT(I). (4.5)

CASE 2: Ns(P) ≥ OPTs(I). In this case, we can follow the proof of Theorem 4.2.2 and obtain
inequality (4.2). That is,

A(I)(1/2) ≤ s(L) + (αOPTs(I) + Cβ)d. (4.6)

Since on average each shelf generated by the algorithmA is filled by at least∆/2 (not including
the shelf division), we have

OPT(I) ≥ s(L)

≥ Ns(P)(∆/2)

≥ OPTs(I)∆/2 = OPTs(I)dr/2.

That is,OPTs(I)d ≤ (2OPT(I))/r. Therefore, from inequality (4.6), we have

A(I)(1/2) ≤ s(L) + (αOPTs(I) + Cβ)d.

= s(L) + OPTs(I)d + (α− 1)OPTs(I)d + Cβd.

≤ OPT(I) +
α− 1

r
(2OPT(I)) + Cβd.

≤ (1 +
2(α− 1)

r
)OPT(I) + Cβd.

That is,

A(I) ≤ (2 +
4(α− 1)

r
)OPT(I) + 2βC. (4.7)

The theorem follows from inequalities (4.5), (4.7) and theorem 4.2.1.
The following proposition shows that the previous theorem presents an asymptotic perfor-

mance bound that is tight for the algorithms SFF and SBF, whend is very small compared to
∆.

Proposition 4.2.1 The asymptotic performance bound of the algorithmsSFF and SBF is at
least 2, even when there is only one class.

Proof. Let In = (L, s, c, d, ∆, B) be an instance withL = (e1, . . . , e2n), ε = 1/n, d = ε/2,
B = 1, ∆ = 1/2 ands(ei) = 1/2 − ε wheni is odd ands(ei) = ε otherwise. Notice that
d = ∆/n. Also assume that all items have a same class. The SFF and SBF algorithms applied
over this instance generatesn shelves, each one containing one item of size1/2 − ε and one
item of sizeε. The final packing generated by these algorithms hasn bins, each one containing
one shelf. An optimal packing withn/2 + 1 bins can be obtained in such a way thatn/2 bins
have two shelves each, one shelf with an item of size1/2 − ε, and the other shelf with two
items, one item of size1/2− ε and another of sizeε. The last bin contains the remaining items
of sizeε.
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4.3 An Asymptotic Polynomial Time Approximation Scheme

In this section we present an APTAS for the CCSBP problem whenthe number of different
classes is bounded by a constantC.

The algorithm is presented in Figure 4.2 and is denoted byASBPε. It considers two cases:
Whenε ≥ d + ∆, it uses an algorithm denoted byASBP′

ε and in the other case, it uses an
algorithm denoted byASBP′′

ε . Notice that the algorithmASBP′′
ε receives as input a rescaled

instance so that the maximum shelf capacity is 1.

ALGORITHM ASBPε(L, s, c, d,∆, B)

Input: List of itemsL, each iteme ∈ L with sizese and classce, maximum capacity
of a shelf∆, shelf divisions of sized, bins of capacityB = 1.

Output: Shelf packingP of L.
Subroutines:AlgorithmsASBP′

ε andASBP′′
ε .

1. If ε ≥ d + ∆ then

2. P ← ASBP′
ε(L, s, c, d,∆, B)

3. else

4. Scale the sizesd, ∆, B andse, for eache ∈ L, proportionally so that∆ = 1.

5. // The condition to enter in this case is now equivalent toε ≤ (d + ∆)/B.

6. P ← ASBP′′
ε(L, s, c, d,∆, B).

7. ReturnP.

Figure 4.2: AlgorithmASBPε.

The intuition to consider these two cases is that in the first case, we can pack shelves almost
optimally because the maximum size of a shelf is bounded byǫ, and then the bins can be filled
by at least(1− ǫ). In the second case, sinceǫ < d+∆, we can bound by a constant the number
of shelves used in each bin of an optimal solution. Then an enumeration step can be done to
guess the shelves that are used in an optimal solution and an almost optimal shelf packing can
be generated for large items. Small items are packed later using a linear programming strategy.
In the following two subsections we show that algorithmsASBP′

ε andASBP′′
ε are APTAS.

4.3.1 The algorithmASBP′ε

In this section we show that the algorithmASBP′
ε is an APTAS for its corresponding case. This

algorithm uses two subroutines: One is the FF algorithm and the other is an APTAS for the
one dimensional bin packing problem presented by Fernandezde la Vega and Lueker [3]. We
consider the version of this APTAS presented by Vazirani [10], which we denote by FLε, for
which the following statement holds.
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Theorem 4.3.1 For anyε > 0, there exists a polynomial time algorithmFLε to pack a list of
itemsL, each iteme ∈ L with sizese ∈ [0, ∆], into bins of capacity∆ such thatFLε(L) ≤

(1 + ε) OPT∆(L) + 1, whereOPT∆(L) is the minimum number of bins of capacity∆ to pack
L.

The algorithmASBP′
ε is presented in Figure 4.3. Given an instanceI, the algorithmASBP′

ε

first packs all items of the instance into bins of size∆ using the algorithm FLε. The algorithm
ASBP′

ε considers each one of these bins of size∆ as a shelf, where the size of a shelf is its total
items size plus the sized of a shelf division. The algorithmASBP′

ε packs these shelves into
bins of size 1 using the algorithm FF.

ALGORITHM ASBP′
ε(L, s, c,∆, d,B)

Input: List of itemsL, each iteme ∈ L with sizese and classce, maximum capacity
of a shelf∆, shelf divisions of sized, bins of capacityB = 1 andε ≥ d + ∆.

Output: Shelf packingP of L.
Subroutines:Algorithms FLε and FF.

1. Let Lc be the set of items of classc in L.

2. For each classc ∈ [C] let Pc
∆ be the packing ofLc obtained by the algorithm FLε

using bins of capacity∆.

3. LetP∆ be the union of the packingsPc
∆, for eachc ∈ [C].

4. Consider each binD ∈ P∆ as a shelf with size
∑

e∈D se + d.

5. Let S be the set of shelves obtained fromP∆.

6. LetP be the packing obtained with the algorithm FF to pack the shelves ofS into
unit bins.

7. ReturnP.

Figure 4.3: AlgorithmASBP′
ε whereε ≥ d + ∆.

The following statement holds for the algorithmASBP′
ε.

Lemma 4.3.2 The algorithmASBP′
ε, is an APTAS for theCCSBPproblem when the given

instanceI is such thatB = 1 andε ≥ d + ∆.

Proof. In step 2, the algorithm obtains a packingPc
∆ of items of classc in L (items inLc) into

bins of capacity∆ using the algorithm FLε. By Theorem 4.3.1, we have

|Pc
∆| ≤ (1 + ε)OPT∆(Lc) + 1. (4.8)

The algorithm then considers each bin inP∆ as a shelf and obtains a shelf packingP using
the algorithm FF to pack these shelves into unit bins. Sinceε ≥ d + ∆, all bins ofP, except
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perhaps the last, must be filled by at least1− ε. So,

(ASBP′
ε(L)− 1)(1− ε) ≤ s(L) + d|P∆|

≤ s(L) + d

C
∑

c=1

((1 + ε)OPT∆(Lc) + 1)

≤ (1 + ε)(s(L) + d

C
∑

c=1

OPT∆(Lc)) + dC

≤ (1 + ε)(s(L) + dOPTs(I)) + dC (4.9)

≤ (1 + ε)OPT(I) + C

where inequality (4.9) is valid from Fact 4.1.2. Also noticethat d < 1. Therefore, for any
0 < ε < 1/3 we have

ASBP′
ε(L) ≤

1 + ε

1− ε
OPT(I) +

C

1− ε
+ 1

≤ (1 + 3ε)OPT(I) +
3C

2
+ 1.

Notice that the running time of the algorithmASBP′
ε only depends on the running times of

algorithms FLε and FF, and the value ofC. Let TFL(n, ǫ) andTFF(n, ǫ) be the running times of
algorithms FLε and FF respectively. The running time of algorithmASBP′

ε is O(C TFL(n, ǫ) +

TFF(n, ǫ)). Since the algorithms FLε and FF have polynomial time complexity inn for fixed ε,
the complexity time of algorithmASBP′

ε is also polynomial inn for fixed ε.

4.3.2 The algorithmASBP′′ε

Now, assume that the algorithmASBPε obtains a shelf packing with the algorithmASBP′′
ε .

Throughout this section, we consider thatse, d, ∆ andB is the rescaled instance, such that
∆ = 1. Notice that, the equivalent condition to enter in this caseis

ε <
d + ∆

B
=

d + 1

B
. (4.10)

Notice that the maximum number of shelves completely filled packed in a bin is at most
⌈

B
d+∆

⌉

which from (4.10) is at most1
ε
+1. Observe that if there is any bin with more than2

ε
+2

shelves of a same class, it has at least two shelves of this class with total size at most∆. In
this case, these two shelves can be combined into only one shelf. Without loss of generality we
consider that each bin, in a solution for the CCSBP problem, contains at most2

ε
+ 2 shelves of

a same class.
In Figure 4.4 we present the algorithmASBP′′

ε . The algorithm first obtains a pair(P1, P)

whereP1 ∪P
′, for eachP ′ ∈ P, is a packing of big items (items with size at leastε2). This pair
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is obtained by the subroutine ALR. For each packingP1 ∪ P
′, P ′ ∈ P, the algorithmASBP′′

ε

uses the subroutine SMALL to pack the items with size less than ε2 into the packingP ′. At
least one of the generated packings uses at most(1 + O(ε))OPT(I) + O(1) bins as will be
shown latter. The algorithm returns the packing with the smallest number of bins.

ALGORITHM ASBP′′
ε(L, s, c, d,∆, B)

Input: List of itemsL, each iteme ∈ L with sizese and classce, maximum capacity
of a shelf∆ = 1, shelf divisions of sized, bins of capacityB andε ≤ (d +

∆)/B.

Output: Shelf packingP of L.
Subroutines:Algorithms ALR and SMALL.

1. Let G be the set of itemse ∈ L with sizese ≥ ε2 andS the setL \G.

2. Let (P1, P) be a pair obtained from the algorithm ALR applied over the list
G.

3. For eachQ ∈ P do

4. let Q̂ be the packing obtained using the algorithm SMALL to packS into
Q.

5. LetP be a packingP1 ∪ Q̂ whereQ ∈ P and|Q̂| is minimum.

6. ReturnP.

Figure 4.4: AlgorithmASBP′′
ε .

In the next subsections we present the subroutines used by the algorithmASBP′′
ε . The first

subroutine called ALR is used to generate a set of packings of big items. On the next subsection
we present an algorithm called SMALL used to pack small items(items with size smaller than
ǫ2) in the packings of the big items generated by the algorithm ALR. In the last subsection we
present the analysis of the algorithmASBP′′

ε .

Generating Packings for the Big Items

In this section, we present the algorithm ALR used to pack items with size at leastǫ2 of a given
input instanceI. This algorithm generates a set of packings such that at least one can be used to
pack the small items, such that the resulting packing has size at most(1+O(ε))OPT(I)+O(1).
This algorithm uses the linear rounding technique, presented by Fernandez de la Vega and
Lueker [3], and considers only items with size at leastε2. The algorithm ALR returns a pair
(P1, P), whereP1 is a packing for a list of very big items andP is a set of packings for the
remaining items.

We use the following notation in the description of the linear rounding technique: Given two
lists of itemsX andY , let X1, . . . , XC andY1, . . . , YC be the partition ofX andY respectively
in classes, whereXc andYc have only items of classc for eachc ∈ [C]. We writeX � Y if
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there is an injectionfc : Xc → Yc for eachc ∈ [C] such thats(e) ≤ s(f(e)) for all e ∈ Xc.
Given two listsL1 andL2 we denote byL1‖L2 the concatenation of these lists.

The algorithm ALR uses three subroutines: AALL, SFF, and AR. The algorithm SFF was
presented in Section 4.2. In what follows we present the algorithms AALL and AR.
Algorithm AALL: This is an algorithm used as subroutine to generate all possible packings with
at most2

ε
+ 2 shelves of a same class, when the size of each item is bounded from below by a

constant and the number of distinct sizes in each class is upper bounded by a constantt. The
algorithm may generate empty shelves (used latter to pack small items). The following lemma
guarantees the existence of such an algorithm.

Lemma 4.3.3 Given an instanceI = (L, s, c, d, ∆, B), with ∆ = 1, where the number of
distinct items sizes in each class is at most a constantt, the number of different classes is
bounded by a constantC and each iteme ∈ L has sizese ≥ ε2, then there exists a polynomial
time algorithm that generates all possible shelf packings of L with at most2

ε
+ 2 shelves of a

same class in each bin.

Proof. The number of items in a shelf is bounded byp = 1/ε2. Given a class, the number of
different shelves for it is bounded byr′ =

(

p+t+1
p

)

and so, the number of different shelves is
bounded byr = Cr′. Since the number of shelves in a bin is bounded byq = C(2

ε
+ 2), the

number of different bins is bounded byu =
(

q+r
q

)

. Notice thatu is a (large) constant since all
the valuesp, q, r andu depends only onε, C andt which are constants.

Therefore, the number of all feasible packings is bounded by
(

n+u
n

)

, which is bounded by
(n + u)u, which in turn is polynomial inn.

Notice that the complexity time of the algorithm AALL is O(nO(2C/ε)O(1/ε2)t

).

Algorithm AR: Given two listsX andY such thatX � Y and a packingPY of Y , there exists
an algorithm, which we denoted by AR (Replace), with input(PY , X), that obtains a packing
PX for X such that|PX | = |PY | as the next lemma guarantees.

Lemma 4.3.4 If X andY are two lists withX � Y , thenOPT(X) ≤ OPT(Y ). Moreover,
if PY is a shelf packing ofY then there exists a polynomial time algorithmAR that givenPY

obtains a shelf packingPX of X such that|PX | = |PY |.

Proof. The algorithm AR sorts the listsXc andYc for eachc ∈ [C] in non-increasing order of
items size and then replaces in this order, each item ofYc in the packingPY by an item ofXc.
The possible remaining items ofYc are removed.

For any instanceX, denote byX the instance with precisely|X| items with size equal to
the size of the smallest item inX. Clearly,X � X.

The algorithm ALR is presented in Figure 4.5. It consists in the following: LetG1, . . . , GC

be the partition of the input listG into classes1, . . . , C and letnc = |Gc| for each classc.
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The algorithm ALR partition each listGc into groupsG1
c , G

2
c , . . . , G

kc
c . Let G1 = ∪C

c=1G
1
c . The

algorithm generates a packingP1 of G1 usingO(ε)OPT(I)+1 bins and a setP with polynomial
number of packings for the items inG \G1. The packingP1 is generated by the algorithm SFF
and the set of packingsP is generated using the algorithms AALL and AR.

ALGORITHM ALR(G)

Input: List G with n items, each iteme ∈ G with sizese ≥ ε2; maximum capacity
of a shelf∆ = 1; shelf divisions of sized and bins of capacityB.

Output: A pair (P1, P), whereP1 is a packing andP is a set of packings, whereP1∪P
′

is a packing ofG for eachP ′ ∈ P.

Subroutines:Algorithms AALL, SFF and AR.

1. PartitionG into listsGc for each classc = 1, . . . , C and letnc = |Gc|.

2. Partition each listGc into kc ≤ ⌈1/ε3⌉ groupsG1
c , G

2
c , . . . , G

kc
c , such that

G1
c � G2

c � · · · � Gkc
c ,

where|Gj
c| = qc = ⌊ncε

3⌋ for all j = 1, . . . , kc − 1,

and|Gkc
c | ≤ qc.

3. Let G1 = ∪C
c=1G

1
c .

4. LetP1 be a packing ofG1 obtained by the algorithm SFF.

5. Let Q be the set of all possible packings obtained with the algorithm AALL

over the list(G1
1‖ . . . ‖G

k1−1
1 ‖ . . . ‖G1

C‖ . . . ‖G
kC−1
C ).

6. Let P be the set of packings obtained with the algorithm AR over each pair
(Q, G2

1‖ . . . ‖G
k1
1 ‖ . . . ‖G

2
C‖ . . . ‖G

kC
C ), whereQ ∈ Q.

7. Return(P1, P).

Figure 4.5: Algorithm to obtain packings for items with sizeat leastε2.

Denote byTALL, TR andTSFF the time complexity of algorithms AALL, AR, and SFF re-
spectively. The time complexity of steps 1–3 of algorithm ALR is bounded byO(n log n). The
overall time complexity of algorithm ALR is O(n log n + TSFF + TALL + TALLTR). SinceTALL,
TR andTSFF have polynomial time complexity inn for fixedε, the time complexity of algorithm
ALR is also polynomial inn for fixed ε.

The following statement holds for the packingP1.

Lemma 4.3.5 The packingP1 for the items inG1 is such that

|P1| ≤ 4ε OPT(I) + 1.

Proof. First, consider the total items size packed in a binT of some shelf packing. From Fact
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4.1.1 any optimum solution must satisfy

OPT(I) ≥
s(L)

⌈B/(d + ∆)⌉∆
=

s(L)

⌈B/(d + 1)⌉
≥

1

2

s(L)

B/(d + 1)
. (4.11)

Notice that
∑C

c=1 nc = n. The algorithm SFF packs at least⌊B/(d + ∆)⌋ shelves in each
bin, each shelf with at least one item. This means that each bin has at least⌊B/(d + ∆)⌋ items,
except perhaps the last, each item with size at leastε2 and at most 1. Since the groupG1 has at
mostnε3 items, the number of bins in the shelf packingP1 can be bounded as follows.

|P1| ≤

⌈

nε3

⌊B/(d + ∆)⌋

⌉

=

⌈

nε3

⌊B/(d + 1)⌋

⌉

≤ 2
nε3

B/(d + 1)
+ 1 ≤ 2

ε s(L)

B/(d + 1)
+ 1

≤ 4ε OPT(I) + 1, (4.12)

where the inequality (4.12) is valid from (4.11).

Packing the Small Items

In this section we present an algorithm to pack the small items. If we only consider the big
items, at least one of the packings generated by the algorithm ALR has basically the same
configuration of an optimal packing. That is, one of the generated packings has approximately
the same number of bins and approximately the same shelves (including empty shelves that are
used only for small items) of an optimal packing. Therefore the algorithm can guess how the
small items are packed into the shelves of this packing, leaving only a small fraction of small
items to be packed in new extra bins. Notice that a first approach to deal with the CCSBP
problem, would be to produce the packing of the big items and then try to pack small items
greedily. In the classic bin packing problem this approach works, since after packing the small
items in the bins, each bin is filled by at least(1 − ǫ) of its capacity, except perhaps the last
bin. In the CCSBP problem this strategy may not work, since after packing the small items, the
packing could use more shelves. This way, each bin would not be filled with items by at least
(1 − ǫ) of its capacity, since each bin also contains shelf divisions. To pack small items in the
shelves generated by the algorithm ALR we use a linear programming strategy. This approach
has an easier and clearer analysis leading to the APTAS.

The algorithmASBP′′
ε uses a subroutine denoted by SMALL to pack small items (size less

thanε2) into a given packing of big items. LetP = {P1, . . . , Pk} be a shelf packing of a list of
itemsL and assume that we have to pack a setS of small items, with size at mostε2, intoP. The
packing of the small items is obtained from a solution of a linear program. LetN ic

1 , . . . , N ic
nic

be
the shelves of classc in the binPi of the packingP. For each shelfN ic

j , define a non-negative
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variablexic
j . The variablexic

j indicates the total size of small items of classc that is to be packed
in the shelfN ic

j . Consider the following linear program denoted by LPS:

max

k
∑

i=1

C
∑

c=1

nic
∑

j=1

xic
j

s(N ic
j ) + xic

j ≤ ∆ ∀ i ∈ [k], c ∈ [C], j ∈ [nic], (1)
C

∑

c=1

nic
∑

j=1

(s(N ic
j ) + xic

j + d) ≤ B ∀ i ∈ [k], (2)

t
∑

i=1

nic
∑

j=1

xic
j ≤ s(Sc) ∀ c ∈ [C], (3)

xic
j ≥ 0 ∀ i ∈ [k], c ∈ [C], j ∈ [nic] (4)

whereSc is the set of small items of classc in S.
Constraint (1) guarantees that the amount of space used in each shelf is at most∆ and

constraint (2) guarantees that the amount of space used in each bin is at mostB. Constraint (3)
guarantees that variablesxic

j are not greater than the total size of small items.
Given a packingP, and a setS of small items, the algorithm SMALL first solves the linear

program LPS, and then packs small items in the following way:For each variablexic
j it packs,

while possible, the small items of classc into the shelfN ic
j , so that the total size of the packed

small items is at mostxic
j . The possible remaining small items are grouped by classes and

packed using the algorithm SFF into new bins. The complexitytime of algorithm SMALL
is polynomial inn, since the linear program LPS can be solved in polynomial time and the
algorithm SFF also has polynomial time.

The following lemma is valid for the algorithm SMALL.

Lemma 4.3.6 Let P be a shelf packing of a list of itemsL, where each bin ofP has at most
2
ε

+ 2 shelves of a same class,G be the set of items inL with size at leastε2 andS be the set
L \ G. LetG′ be a list of items withG′ � G andP̂ be a packing of the itemsG′ ∪ S obtained
fromP as follows:

1. LetP1 be the packing obtained fromP removing the items ofS.

2. LetP2 be the packing ofG′ using the algorithmAR over the pair(P1, G
′).

3. LetP̂ be the packing obtained applying the algorithmSMALL over the pair(P2, S).

Then, we have|P̂| ≤ (1 + 8Cε)|P|+ C + 1.

Proof. Notice that|P2| = |P| and for each shelfNj in a bin ofP, its corresponding shelfN ′
j

in P2 is such thats(N ′
j) ≤ s(Nj). If |P̂| = |P| then the lemma follows. So assume that the

algorithm SMALL uses additional bins to pack the items ofS.
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Given a binE, denote byns(E) the number of shelves inE, nsc(E) the number of shelves
of classc in E, ss(E) the total size of small items inE andssc(E) the total size of small items
of classc in E.

Consider the linear program LPS. An optimum solution for LPSleads to an optimal frac-
tional packingP∗ of the small items such that|P∗| = |P|. Consider a binP ∗

i of P∗ andP̂i the
corresponding bin in̂P. We first prove that the following inequality is valid,

ss(P ∗
i )− ss(P̂i) ≤ 4Cε. (4.13)

To prove (4.13), notice thatnsc(P
∗
i ) = nsc(P̂i) for each classc. Given a shelfN ic

j and
the corresponding variablexic

j , the algorithm SMALL packs a set of itemsT ic
j in N ic

j such that
xic

j − s(T ic
j ) ≤ ε2 since a small item has size at mostε2. Since each bin inP∗ has at most2

ε
+ 2

shelves of a same class, we have for each classc ∈ [C]

ssc(P̂i) ≥
nic
∑

j=1

(xic
j − ε2) = ssc(P

∗
i )− nsc(P

∗
i )ε2

≥ ssc(P
∗
i )− (

2

ε
+ 2)ε2 ≥ ssc(P

∗
i )− 4ε.

Since the above inequalities are valid for each class we can conclude the proof of (4.13). From
(4.13), we know that the total size of small items packed in additional bins by SMALL with the
algorithm SFF, is at most4Cε|P∗| = 4Cε|P|. Denote byQ̂ the set of additional bins. Each
shelf generated by the algorithm SFF is filled by at least∆ − ε2, except perhaps inC shelves.

Therefore, the number of shelves in̂Q is at most
⌈

4Cε|P|
1−ε2

⌉

+ C ≤ 8Cε|P| + C + 1. Since

each additional bin has at least one shelf, the number of binsin Q̂ is at most8Cε|P| + C + 1.
Therefore, the number of bins in̂P is at most(1 + 8Cε)|P|+ C + 1.

Analysis of the Algorithm ASBP′′
ε

In this section we conclude the analysis of the algorithmASBP′′
ε . First, letTLR andTS be the

time complexities of algorithms ALR and SMALL, respectively. Notice that the time complex-
ity of algorithmASBP′′

ε is dominated by steps 2–4, that have time complexityO(TLR +TLRTS).
Since the time complexity of algorithms ALR and SMALL is polynomial for fixedε, the time
complexity of algorithmASBP′′

ε is also polynomial. The following lemma concludes the anal-
ysis of the algorithmASBP′′

ε .

Lemma 4.3.7 The algorithmASBP′′
ε , is an APTAS for theCCSBPproblem when the given

instanceI is such that∆ = 1, ε ≤ (d + ∆)/B and the number of different classes is bounded
by some constantC.
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Proof. Given an instanceI = (L, s, c, d, ∆, B), with ∆ = 1, let G be the set of items inL with
size at leastε2 andS the setL \G.

The items inG are packed by the algorithm ALR. It first partitionsG into listsGc for each
classc and then it partitions each listGc into groupsG1

c � G2
c � . . . � Gkc

c . From Lemma
4.3.5 the following inequality is valid for the listG1 = ∪C

c=1G
1
c .

|P1| ≤ 4ε OPT(I) + 1. (4.14)

The packing of the items inG2
1‖ . . .‖Gk1

1 ‖ . . . ‖G2
C‖ . . .‖GkC

C is obtained from the set of all

possible packings ofG1
1‖ . . .‖Gk1−1

1 ‖ . . .‖G1
C‖ . . . ‖GkC−1

C . Notice that

G1
1‖ . . .‖Gk1−1

1 ‖ . . .‖G1
C‖ . . . ‖GkC−1

C � G2
1‖ . . . ‖Gk1

1 ‖ . . .‖G2
C‖ . . . ‖GkC

C .

LetO be an optimum shelf packing ofI,O1 the packing obtained fromO without the items
of S but with the possible empty shelves andO2 the packing ofO1 rounding down each item
size to the corresponding item in

G1
1‖ . . .‖Gk1−1

1 ‖, . . . , ‖G1
C‖ . . . ‖GkC−1

C .

Clearly,O2 ∈ P, whereP is the set of packings generated by the algorithm AALL. Let Ô be a
packing obtained from the algorithm AR over the pair

(O2, G
2
1‖ . . . ‖Gk1

1 ‖, . . . , ‖G
2
C‖ . . . ‖GkC

C ).

If Q is a packing obtained applying the algorithm SMALL over the pair (Ô, S), we have from
Lemma4.3.6 the following result.

Q ≤ (1 + 8Cε)|O|+ C + 1 = (1 + 8Cε)OPT(I) + C + 1 (4.15)

Since the algorithmASBP′′
ε obtains a packingP that uses at most the number of bins inP1∪Q,

the theorem follows from inequalities (4.14) and (4.15).

From lemmas 4.3.2 and 4.3.7, the following statement holds.

Theorem 4.3.8 The algorithmASBPε is an APTAS for theCCSBPproblem.

4.4 Concluding Remarks

In this paper we consider the CCSBP problem, a class constrained bin packing problem with
non-null shelf divisions. Although this problem has many practical applications, to our knowl-
edge, this is the first paper to present approximation results for it. We first presented hybrid
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versions of the First Fit (Decreasing) and Best Fit (Decreasing) algorithms for the bin packing
problem to the CCSBP problem. When the number of different classes of items is bounded by a
constantC, we prove that the versions of the First Fit and Best Fit have asymptotic performance
bound3.4 and the versions of the First Fit Decreasing and Best Fit Decreasing have asymptotic
performance bound2.445. We also presented an APTAS for this same case whose running time
is

O(nO(2/ε)O(1/ε2)C/ε3

).

This algorithm is more of theoretical (rather than practical) interest since it has a high running
time (yet polynomial). When the number of classes is not bounded by a constant we show that
the algorithm SFFD has absolute performance bound3.
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Capítulo 5

Artigo: A Note on Dual Approximation
Algorithms for Class Constrained Bin
Packing Problems

E. C. Xavier1 F. K. Miyazawa2

Abstract

In this paper we present a dual approximation scheme for the class constrained shelf bin packing
problem. In this problem, we are given bins of capacity1, andn items ofQ different classes,
each iteme with classce and sizese. The problem is to pack the items into bins, such that items
of different classes must be packed in different shelves, inside the bin, that are separated by non-
null shelf divisions. We also present a dual approximation scheme for the class constrained bin
packing problem. In this problem, items must be packed in such a way that each bin contains at
mostC different classes and has total items size at most1. A dual approximation scheme may
produce infeasible packings but only within a small tolerance.

Key Words: Bin Packing, Approximation Algorithms.

5.1 Introduction

In this paper we study class constrained bin packing problems, that are generalizations of the
well known NP-hard bin packing problem. We first consider theclass constrained shelf bin

1Corresponding author: para@ic.unicamp.br — Instituto de Computação — Universidade Estadual de Camp-
inas, Caixa Postal 6176 — 13084–971 — Campinas–SP — Brazil — Phone (+55)(19) 3788-5882.

2fkm@ic.unicamp.br — Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176
— 13084–971 — Campinas–SP — Brazil — Phone (+55)(19) 3788-5882.
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packing (CCSBP) problem. In this problem we are given a tupleI = (L, s, c, Q, d, ∆), where
L = (a1, . . . , an) is a list of n items, each itemai ∈ L with size0 < sai

≤ 1 and class
cai
∈ {1, . . . , Q}, d is the size of a shelf division and∆ is the maximum size of a shelf. We are

also given a set of bins, each one with capacity1.

Given a list or set of itemsS we denote bys(S) the total size of items inS, i.e. s(S) =
∑

e∈S se.

A shelf packingP of an instanceI for theCCSBP problem is a packing of the items in a set
of binsP = {P1, . . . , Pk}, where the items packed in a binPi ∈ P are partitioned into shelves
{Si

1, . . . , S
i
qi
} such that for each shelfSi

j we have thats(Si
j) ≤ ∆, all items inSi

j are of the same
class and

∑qi

j=1(s(S
i
j) + d) ≤ 1. The problem is to find a shelf packing that uses the minimum

number of bins.

We also consider the class constrained bin packing problem,which we denote byCCBP.
In this problem we are given a tupleI = (L, s, c, C, Q) whereL = (a1, . . . , an) is a list of
n items, each itemai ∈ L with size0 < sai

≤ 1 and classcai
∈ {1, . . . , Q}, and a set of

bins, each one with capacity1 andC compartments. A packing for instanceI is a set of bins
P = {P1, . . . , Pk} such that the number of different classes of items packed in each binPi is
at mostC and the total items size in each bin is at most1. The problem is to find a packing of
instanceI that uses the minimum number of bins.

In both problems we assume thatQ, the number of different classes in the input instance, is
bounded by a constant.

Given an algorithmA for theCCBP or CCSBP problem and an instanceI, we denote by
A(I) the number of bins used by the algorithm to pack this instance. We denote byOPT(I)

the number of bins used by an optimum solution to pack the instanceI. In both notations the
problem considered will be clear from the context. Given an integert, we denote by[t] the set
{1, . . . , t}.

In [5], Hochbaum and Shmoys presented the concept of dual approximation algorithms
where one has to find an infeasible optimal solution, and the quality of the algorithm is measured
by how infeasible is the generated solution. There are some cases where the restrictions of
the problem are flexible in practice and the concept of dual approximation algorithms can be
applied.

A dual polynomial time approximation scheme (dual PTAS) fortheCCSBP problem is an
algorithm that, for all instancesI, produces solutions that use at mostOPT(I) bins, each bin
with size at most(1 + O(ǫ)) and each shelf of the bin with size at most(1 + O(ε))∆. A dual
PTAS for theCCBP problem is an algorithm that, for all instancesI, produces solutions that
use at mostOPT(I) bins, each bin with size at most(1 + O(ǫ)). In both casesε is a fixed
parameter given to the algorithm.

Packing problems with class constraints have many applications in multimedia storage sys-
tems, resource allocation [15, 11, 4, 7, 14, 16, 13, 3, 19] andin manufacturing systems [6, 9, 1].
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The CCSBP problem appears in the iron and steel industry [2, 8, 10, 17, 18].
The CCSBP problem admits an asymptotic polynomial time approximation scheme [17]. A

knapsack version of this problem also admits a PTAS [18]. This paper is the first one to present
a dual PTAS for the CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice that adual approximation
scheme for theCCBP problem was first presented by Shachnai and Tamir [12] also considering
that the number of different classes in the input instance isbounded by a constant. The com-
plexity time of their algorithm isO(n16Q/ε2

). In their paper they presented a dual PTAS using
techniques that group small items together. They also said:“We cannot adopt the technique
commonly used for packing, where we first consider large items and then add the small items”.
In this paper we show how to adopt the traditional technique and obtain a dual PTAS with an
easier analysis, also considering thatQ is a fixed constant. Although the easier analysis, the
complexity time of our algorithm isO(TnO(2QQ(log1+ε 1/ε)1/ε)), whereT is the complexity time
to solve a linear program (see Section 5.3).

In section 5.2 we present a dual PTAS for the CCSBP problem using traditional techniques,
and linear programming to pack small items. In section 5.3 weuse these ideas to obtain a dual
PTAS for the CCBP problem. The analysis of it is easier than the one presented by Shachnai
and Tamir [12].

5.2 A dual PTAS for the CCSBP Problem

In this section we present a dual PTAS for the CCSBP problem.
Let I = (L, s, c, Q, d, ∆) be an instance for theCCSBP problem. We first present a dual

PTAS for the case where the maximum size of a shelf plus the shelf divisor satisfy∆ + d ≤ ε.
Hochbaum and Shmoys [5] presented a dual PTAS, which we denote byAHS, for the classi-

cal bin packing problem. Consider an algorithm that constructs a list of shelvesS in a straight-
forward manner: For each class, it packs the items of this class using the algorithmAHS con-
sidering shelves as bins, each one with size∆. Since the algorithmAHS is a dual PTAS the
number of generated shelves by the algorithm is at most the number of shelves used in any op-
timal solution, which we denote byOPT(I)s. Moreover each generated shelf has size at most
(1 + ε)∆.

Given the list of shelvesS, consider another algorithm that packs the shelves in the following
manner: It packs shelves (including the shelf divisors) in abin until for the first time the total
size of packed shelves becomes greater than 1. Then it proceeds with a new bin. It is easy to
prove the following result for this algorithm.

Theorem 5.2.1 The presented algorithm is a dual PTAS for theCCSBP problem restricted to
instances where∆ + d ≤ ε.
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Proof. Notice that the algorithm packs all items in at mostOPT(I)s shelves and each shelf has
its size increased by a factor of at mostε. The total size of items and shelf divisors that the
algorithm has to pack into bins is

s(L) + dOPT(I)s ≤ OPT(I).

Since the algorithm generated bins with size greater than 1,the algorithm packs all shelves in
at mostOPT(I) bins. Since each shelf has size at most2ε, each generated bin has size at most
(1 + 2ε).

On the remaining of this section we assume that∆ + d ≥ ε. Notice that the maximum
number of shelves completely filled, that can be packed in a bin is at most

⌈

1
d+∆

⌉

, that is at
most 1

ε
+ 1. Observe that if there is any bin with more than2

ε
+ 2 shelves of a same class, it has

at least two shelves of this class with total size at most∆. In this case, these two shelves can be
combined into only one shelf. Without loss of generality we assume that each bin in a solution
for theCCSBP problem, contains at most2

ε
+ 2 shelves of a same class.

Throughout the remaining of this section, we assume thatse for eache ∈ L, d, ∆ and the
size of the bins are rescaled, such that∆ = 1. We denote byB the new size of the bins.

Let Lb be the list of items with size greater than or equal toε2 (big items) and letLs be
the remaining items inL (small items). We round down each item inLb as follows: each
item e ∈ Lb with size in the interval[ε2(1 + ε2)i, ε2(1 + ε2)i+1) has its size rounded down to
ε2(1 + ε2)i, for i ≥ 0. The rounded items have at mostM = ⌈log(1+ε2) 1/ε2⌉ different sizes.

Lemma 5.2.2 Let I = (L, s, c, Q, d, ∆) be an instance of theCCSBP problem whereL =

Lb ∪Ls, ∆ = 1, the number of distinct items sizes inLb is at most a constantM , the number of
different classes is bounded by a constantQ, each iteme ∈ Lb has sizese ≥ ε2 andLs = L\Lb.
Then there exists a polynomial time algorithm that generates all possible shelf packings ofL,
removing small items of the packing, with at most2

ε
+ 2 shelves of a same class in each bin.

Moreover, each bin of each generated packing has an indication of the possible shelves that
may be used by further small items.

Proof. The maximum number of big items that can be packed in a shelf is bounded byp = 1/ε2.
Given a class, the number of different shelves for it is bounded byr′ =

(

p+M+1
p

)

, including a
empty shelf that can be used latter to pack only small items. The number of different shelves
can be bounded byr = Qr′. Since the number of shelves in a bin is bounded byq = Q(2

ε
+ 2),

the number of different bins is bounded byu =
(

q+r
q

)

. Notice thatu is a (large) constant since
all the valuesp, q, r andu depends only onε, Q andM which are constants.

Therefore, the number of all feasible packings is bounded by
(

n+u
n

)

, which is bounded by
(n + u)u, which in turn is polynomial inn.

In each generated packing, we then consider the original sizes of the big items, and in
this case, the total size of each shelf increases by a factor of at mostε2. Since the maximum
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number of shelves in a bin is bounded byQ(2
ε

+ 2), the size of each bin increases to at most
B + Q(2

ε
+ 2)ε2.

The algorithm generates a set, which we denote byP, of all possible packings of the rounded
big items. For each of these packings we then consider the bigitems with their original size. For
each packing inP, the algorithm then packs small items using a solution from alinear program.
Let P = {P1, . . . , Pk} be a shelf packing of a list of itemsLb and suppose we have to pack a
list Ls of small items, with size at mostε2, intoP. The packing of the small items is obtained
from a solution of a linear program. LetNi ⊆ {1, . . . , Q} be the set of possible classes that
are packed in the binPi and letSic

1 , . . . , Sic
nic

be the shelves of classc ∈ Ni in the binPi of the
packingP. For each shelfSic

j , define a non-negative variablexic
j . The variablexic

j indicates the
total size of small items of classc that is to be packed in the shelfSic

j . Denote bys(Sic
j ) the

total size of big items already packed in the shelfSic
j . Consider the following linear program

denoted by LPS1:

max
k

∑

i=1

∑

c∈Ni

nic
∑

j=1

xic
j

s(Sic
j ) + xic

j ≤ (1 + ε2)∆ ∀ i ∈ [k], c ∈ Ni, j ∈ [nic], (1)
∑

c∈Ni

nic
∑

j=1

(s(Sic
j ) + xic

j + d) ≤ (1 + xε2)B ∀ i ∈ [k], (2)

k
∑

i=1

nic
∑

j=1

xic
j ≤ s(Lc

s) ∀ c ∈ [Q], (3)

xic
j ≥ 0 ∀ i ∈ [k], c ∈ [Ni], j ∈ [nic] (4)

(LPS1)

whereLc
s is the set of small items of classc in Ls.

Constraint (1) guarantees that the amount of space used in each shelf is at most(1 + ε2)∆

and constraint (2) guarantees that the amount of space used in each bin is at most(1 + xε2)B,
wherex = Q(2

ε
+ 2). Constraint (3) guarantees that variablesxic

j are not greater than the total
size of small items. The number of variables in LPS1 is bounded byO(nQ2/ε) and the number
of constraints is bounded byO(nQ2/ε + n + Q).

Given a packingP, and a listLs of small items, the algorithm first solves the linear program
LPS1, and then packs small items in the following way: For each variablexic

j the algorithm
packs, while possible, small items of classc into shelfSic

j of the binPi, so that the total size of
the packed small items is at mostxic

j + ε2.
The algorithm returns a packing that uses the minimum numberof bins and that packs all

items in bins of size at most(1 + (2
ε

+ 2)2ε2Q)B.
SinceQ and ε are constants, the size ofP is bounded by a polynomial inn. Since the

complexity time to solve LPS1 is polynomial, the presented algorithm has a polynomial time
complexity. Now we conclude with the following theorem.
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Theorem 5.2.3 The presented algorithm is a dual PTAS for theCCSBP problem when∆+d ≥

ε.

Proof. Let O = {P ∗
1 , . . . , P ∗

k } be an optimal packing for an instanceI of theCCSBP problem
(notice thatOPT(I) = k). Round down the big items according to the rounding we have
presented and remove the small items ofO obtaining another packingO′. ClearlyO′ ∈ P and
has an indication of the shelves of small items that were packed on it. When the algorithm packs
the big items with their original size, the size in each shelfof O′ increases by at mostε2. Since
in the linear programming formulation we consider the size of each shelf as(1 + ε2), there is
enough room to pack all small items. So the variablesx sums to the total size of small items. We
also consider the size of each bin in the linear programming formulation as(1+ (2

ε
+2)ε2Q)B,

so there is enough room to pack all shelves.
During the packing of the small items we increase the size of each shelf by at mostε2. Since

the maximum number of shelves in a bin is(2
ε
+ 2)Q then the total size of each bin is increased

to at mostB + (2
ε

+ 2)2ε2Q ≤ (1 + (2
ε

+ 2)2ε2Q)B.

5.3 A dual PTAS for the CCBP Problem

In this section we present a dual PTAS for theCCBP problem using the same ideas of the
previous section. This dual PTAS has an easier analysis thanthe one presented by Shachnai and
Tamir [12].

Let Lb be the set of items inL with size at leastε (big items) and letLs be the remaining
items inL (small items). We round down each item inLb as follows: each iteme ∈ Lb with
size in the interval[ε(1+ ε)i, ε(1+ ε)i+1) has its size rounded down toε(1+ ε)i, for i ≥ 0. The
rounded items have at mostM = ⌈log(1+ε) 1/ε⌉ different sizes.

It is not hard proof the following lemma that is similar to Lemma 5.2.2.

Lemma 5.3.1 LetI = (L, s, c, C, Q) be an instance of theCCBP problem whereL = Lb∪Ls,
the number of distinct items sizes inLb is at most a constantM , the number of different classes
is bounded by a constantQ, each iteme ∈ Lb has sizese ≥ ε, andLs = L \ Lb. Then there
exists a polynomial time algorithm that generates all possible packings ofL removing the small
items of the packing. Moreover, each bin of each generated packing has an indication of the
possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is bounded by y = 1/ε. The number
of distinct types of big items is bounded byMQ. The number of different configurations of bins
is bounded byr′ =

(

y+MQ+1
y

)

, including the empty bin. If we also consider additional classes
to pack small items in each configuration, the number of different configurations is bounded by
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r = r′2Q, which is a constant. Notice that we only consider configurations that satisfy the class
constraints.

The number of all feasible packings is bounded by
(

n+r
n

)

, which is bounded by(n + r)r,
which in turn is polynomial inn.

We then consider the original size of the items in each of the generated packings. In this
case, the size of each bin increases by at most a factor ofε.

The algorithm generates a set, which we denote byP, of all possible packings of the big
items. For each one of these packings the algorithm packs thesmall items in the following way:
Let P = {P1, . . . , Pk} be a packing of the list of itemsLb and suppose we have to pack a list
Ls of small items, with size at mostε, intoP. The packing of the small items is obtained from
a solution of a linear program. LetNi ⊆ {1, . . . , Q} be the set of possible classes that may be
used to pack the small items in the binPi of the packingP. For each classc ∈ Ni, define a
non-negative variablexi

c. The variablexi
c indicates the total size of small items of classc to be

packed in the binPi. Denote bys(Pi) the total size of big items already packed in the binPi.
Consider the following linear program denoted by LPS2:

max

k
∑

i=1

∑

c∈Ni

xi
c

s(Pi) +
∑

c∈Ni

xi
c ≤ (1 + ε) ∀ i ∈ [k] (1)

k
∑

i=1

xi
c ≤ s(Lc

s) ∀ c ∈ [Q], (2)

xi
c ≥ 0 ∀ i ∈ [k], c ∈ [Ni], (3)

(LPS2)

whereLc
s is the set of small items of classc in Ls.

Constraint (1) guarantees that the items packed in each bin satisfy its capacities and con-
straint (2) guarantees that the total use of variablesxi

c is not greater than the total size of small
items for each classc. In this linear program, the number of variables is bounded by nQ and
the number of constraints is bounded byn + Q.

Given a packingP, and a listLs of small items, the algorithm first solves the linear program
LPS2, and then packs small items in the following way: For each variablexi

c, it packs, while
possible, the small items of classc into the binPi, so that the total size of the packed small
items is at mostxi

c + ε.
The algorithm returns a packing that uses the minimum numberof bins and that packs all

items in bins of size at most(1 + (C + 1)ε). The number of packings in the setP can be
bounded byT1 = O(n2QQ(log1+ε 1/ε)1/ε

). Let T2 be the worst complexity time to solve a linear
program LPS2. The complexity time of the entire algorithm can be bounded byO(T1T2), which
is polynomial sinceQ andε are constants and the complexity timeT2 is polynomial.
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We conclude with the following theorem.

Theorem 5.3.2 The presented algorithm is a dual PTAS for theCCBP problem.

Proof. Let O = {P ∗
1 , . . . , P ∗

k } be an optimal packing for an instanceI of theCCBP problem.
Round down the big items according to the rounding we have presented and remove the small
items ofO obtaining another packingO′. ClearlyO′ ∈ P and has an indication of the classes
of small items that were packed on it. When the algorithm packs the big items with their
original size, the size of each bin inO′ increases by at mostε. Since in the linear programming
formulation we consider the size of each bin as(1 + ε), there is enough room to pack all small
items. So the variablesx sums to the total size of small items.

During the packing of the small items we increase the size of each bin by at mostε for each
class in the bin. So the total size of each bin is increased to at most(1 + (C + 1)ε).
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Capítulo 6

Artigo: The Class Constrained Bin Packing
Problem with Applications to
Video-on-Demand

E. C. Xavier2 F. K. Miyazawa2

Abstract

In this paper we present approximation results for a class constrained bin packing problem that
has applications to Video-on-Demand Systems. In this problem we are given bins of capacityB
with C compartments, andn items ofQ different classes, each itemi ∈ {1, . . . , n} with classci

and sizesi. The problem is to pack items into bins, where each bin contains at mostC different
classes and has total items size at mostB. We present several approximation algorithms for
offline and online versions of the problem. The presented results are the best known to the
author’s knowledge.

Key words: Bin Packing, Video-on-Demand.

6.1 Introduction

In this paper we study the class constrained version of the well known bin packing problem,
which we denote byCCBP (Class Constrained Bin Packing). In this problem we are given
a tupleI = (L, s, c, C, Q) whereL = (a1, . . . , an) is a list of items, each itemai ∈ L with

1A preliminary version of this paper appeared as an extended abstract in COCOON 2006, LNCS 4112, pp.
439–448, 2006.

2Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 —
Campinas–SP — Brazil, {eduardo.xavier,fkm}@ic.unicamp.br.
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size0 < sai
≤ B and classcai

∈ {1, . . . , Q}, and a set of bins, each one with capacityB

andC compartments. A packingP of L is a partition of the items into bins, where each bin
has total items size at mostB and the number of different classes in each part is at mostC.
The problem is to find a packing ofL into the minimum number of bins. In the online version
of theCCBP problem the items must be packed in the order(a1, . . . , an), where each itemai

must be packed without knowledge of further items. We consider that1 < C < Q, otherwise
the CCBP problem can be solved as the original bin packing, since ifC = 1 then items of
different classes must be packed in different bins and ifC ≥ Q then the class constraints are
irrelevant. We also consider the version of this problem with bins of different sizes. In this
case we haveT different bin sizes. The input instance is a tupleI = (L, s, c, w, C, Q) where
w : {1, . . . , T} → R+ is a function of bins size. We assume w.l.o.g that for eachi ∈ {1, . . . , T},
w(i) ≤ B. In this case, the problem is to pack all items into bins such that the total size
of used bins is minimized. This problem is denoted by VCCBP (Variable Class Constrained
Bin Packing). Packing problems with class constraints havemany applications in multimedia
storage systems, resource allocation [23, 19, 8, 13, 22, 9, 21, 7] and in operations research like
manufacturing systems [12, 17, 5, 26, 27].

6.1.1 Notation

In the online case, the bins used to pack the items are classified asopenor closed. An empty
bin is declared open when it receives its first item, and remains so until it is declared closed.
Only open bins may receive items. Once a bin is closed, it cannot be declared open again. We
consider the bounded and unbounded space versions for the online CCBP problem. In thel-
bounded space problem an algorithm must keep at any time during its execution at mostl open
bins. In the unbounded version an algorithm may keep an unbounded number of open bins.

Given an algorithmA for the CCBP problem and an instanceI, we denote byA(I) the
number of bins used by the algorithm to pack this instance. Wedenote byOPT(I) the number
of bins used by an optimum (offline) solution to pack the instance I. The algorithmA has
an absolute approximation factorα, if for every I it satisfiesA(I) ≤ αOPT(I). It has an
α approximation factor if for everyI, the algorithm produces a solution such thatA(I) ≤

αOPT(I) + β whereβ is a constant. Given an algorithmAε, for someε > 0, and an instance
I for some problemP we denote byAε(I) the value of the solution returned by algorithm
Aε when executed on instanceI. We say thatAε, for ε > 0, is an asymptotic polynomial
time approximation scheme (APTAS) for the problem CCBP if there exist constantst andβ

such thatAε(I) ≤ (1 + tε)OPT(I) + β for any instanceI. An online algorithmA for a
minimization problem is said to have a competitive ratioα if there exists a constantβ such that
A(I) ≤ αOPT(I) + β for any instanceI.

Let I be an instance of theCCBP problem andL be the list of items inI. We write that
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a ∈ I with the same meaning ofa ∈ L, and we denotes(I) = s(L) =
∑

a∈L s(a). Given an
integerM , we denote by[M ] the set{1, . . . , M}.

Given two sequencesLa = (a1, . . . , an) andLb = (b1, . . . , bm), we denote the concatenation
of these two lists byLa‖Lb, i.e,La‖Lb = (a1, . . . , an, b1, . . . , bm). Given a packingP we denote
by |P| the number of bins inP.

Throughout this paper, we use the terms color and class with the same meaning. We say
that a bin iscoloredif it contains items ofC different classes. In this case, this bin cannot pack
any other item of a different class. A bin is said to befull if the total size of the items packed
inside it is equal toB.

6.1.2 Related Work

A special case of the CCBP problem is the Bin Packing problem,which is one of the most
studied problems in the literature. Some of the most famous algorithms for the bin packing
problem are the algorithms FF, BF, FFD and BFD, with asymptotic performance bounds17/10,
17/10, 11/9 and11/9, respectively. We refer the reader to Coffmanet al. [2] for a survey on
approximation algorithms for bin packing problems. Fernandez de la Vega and Lueker [6] pre-
sented an APTAS for the bin packing problem. The online bin packing is also a well studied
problem. There are many online algorithms presented in the literature for the bin-packing prob-
lem. The algorithms FF, NF, and BF are online and were investigated by Ullman [24], Johnson
[10] and Johnsonet al. [11]. Subsequent papers proposed algorithms with better approximation
ratios that pack items according to interval sizes. Yao [28], and Lee and Lee [15] presented
the Harmonic and Refined Harmonic algorithms with competitive ratio1.692 and1.636 respec-
tively. To our knowledge the best online algorithm, with a competitive ratio of1.58889, was
presented by Seiden [18]. The best lower bound for this problem is1.54014 due to van Vliet
[25]. Recently the class-constrained versions of packing problems have obtained attention. In
[5, 4], Dawandeet al. claimed to present an approximation scheme for the offlineVCCBP

problem when the number of different classesQ in the input instance is bounded by a constant.
In [20], Shachnai and Tamir presented a dual polynomial timeapproximation scheme for the
offline class constrained bin packing problem (CCBP). They also consider that the number of
different classes in the input instance is bounded by a constant. In this case, given an instance
I, the problem is to find a packing of the items in at mostOPT(I) bins, each bin with size
at most(1 + O(ε))B. In [19], Shachnai and Tamir presented theoretical resultsfor a Multiple
Knapsack problem with class constraints where all items have unit size. They introduce this
problem with applications to video-on-demand servers. Subsequently to this work, Golubchik
et al. [8] presented an approximation scheme to the problem. Later, Kashyap and Khuller [13],
also presented approximation schemes to the problem, but they consider that the class require-
ment of items are not equal to all classes. Shachnai and Tamirin [23], presented algorithms
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for the onlineCCBP problem when all items have equal size. In this case they provide a lower
bound of2 to the problem and also algorithms that get a competitive ratio of 2.

6.1.3 Results

In this paper we generalize the work presented by Shachnai and Tamir [23], since we consider
the onlineCCBP problem where items can have different sizes. We show that the bounded
space onlineCCBP problem cannot have a constant competitive ratio. Moreoverif any item of
the instance have size at leastε < B we show that there is no algorithm with competitive ratio
better than O(1/Cε). For the unbounded space problem we present an online algorithm with
competitive ratio in[2.666, 2.75]. We also present some results for the offline problem. When
all items have equal size, we present an(1 + 1/C)-approximation algorithm. When items
have size at mostB/m, for some integerm, we show an algorithm with approximation factor
(1 + 1/C + 1/ min{C, m}). Notice that we consider that the number of different classes Q is
part of the input in these cases. We implemented these practical algorithms and we also present
in this paper some experimental results for them. The experiments show that the algorithms
generate solutions of high quality and can be used in practice. The VCCBP problem was first
considered by Dawandeet al. [5, 4] where a tentative of an APTAS was considered whenQ

is bounded by a constant. We observed that their algorithm does not lead to an APTAS as
claimed. First of all, they do a linear rounding step of the list of itemsL and then obtain an
optimal packing for the new list. Doing this they do not guarantee a packing for the original
items because of the class constraints. To pack the small items they use a First Fit strategy, and
claim that each bin (at most a constant number of bins), is filled by at least(1−O(ε)), but this is
also not true due to the class constraints. In this paper we show the points where their algorithm
fails and present an APTAS for the VCCBP problem for fixedQ. In the linear rounding step we
separate items by colors and generate all possible packingsfor the rounded items. To pack the
small items we use another strategy.

Organization: In Section 6.2 we present the application of the CCBP problemto data place-
ment of videos. In Section 6.3, motivated by the video-on-demand systems applications, we
present practical approximation algorithms for the CCBP problem considering that all items
have equal size. In Section 6.4, we present lower bounds for the competitive ratio of any al-
gorithm for the bounded space onlineCCBP problem. In this section, we also present online
algorithms, one of them with competitive ratio in[2.666, 2.75]. In Section 6.5 we present an
APTAS for theVCCBP problem whenQ is bounded by a constant. In Section 6.6 we show
experimental results of the practical algorithms shown in Section 6.3.
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6.2 Applications of theCCBPProblem to Data Placement on
Video-on-Demand Servers

The first work to consider packing problems with class constraints as a data placement problem
was the one of Shachnai and Tamir [19]. They considered the knapsack version of theCCBP

problem. In this caseN bins are given, and the objective is to pack the maximum number of
items satisfying the class constraints in each bin. Supposewe have a server of videos with
N disks, each diskj ∈ {1, . . . , N} with storage capacityCj and load capacityBj . That
is, each diskj can storeCj movies and can attend at mostBj simultaneously requests for
videos. The problem is to construct a server such that, basedon expected requests for movies
(computed by movies popularity), the number of attended requests is maximized. The total
load capacity of the server isBT =

∑N
j=1 Bj . The movies considered to be stored in the

server areF1, F2, . . . , Ff with popularity parametersp1, p2, . . . , pf , where
∑f

i=1 pi = 1. Given
these popularity parameters we compute expected requests for each movie at any time. These
expected requests are, for eachi, defined asri = BT pi. Notice that

∑f
i=1 ri = BT (we suppose

that eachri is an integer).
Consider for example that we have a server with two hard disks. Disk 1 hasC1 = 2 and

B1 = 4 and disk2 hasC2 = 2 andB2 = 8. There are three moviesF1, F2 andF3, with
popularity parametersp1 = 1/4, p2 = 1/4 andp3 = 1/2. Computing the expected requests one
obtainr1 = 3, r2 = 3 andr3 = 6. One optimal solution is given in Figure 6.1. One copy of
movieF1 is done in disk 1, a copy of movieF2 is done in disk 1 and 2, and a copy of movieF3

is done in disk 2. Notice that not all load capacity of the disks can be used. We call a perfect
placement when all load capacity is used, i.e, all requests are allocated.

Figure 6.1: An optimal solution for the given video server.

This problem was shown to beNP -hard by Shachnai and Tamir [19]. Golubchiket al. [8]
show that even if all disks are equal, i.e, have the same load and store capacities, the problem
remainsNP -hard.

We can also consider the following problem: given a set of requests for a set of movies,
construct a server using the minimum number of disks. This problem isNP -hard since, given
an instance for the data placement withN disks, a perfect placement exists, if and only if we
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can find a packing for all requests using at mostN disks. When all disks are equal, we can see
this data placement problem as a special case of the CCBP problem. In this case we have an
instanceI = (L, s, c, C, Q), where each itemi ∈ L is a request for a load of classci ∈ Q (the
movie type). All items have the same size andC is the capacity of the disks, i.e, the number of
different movies that the disk can store. That is, we want to construct a video server storing the
videos and distributing all the requests minimizing the number of used disks.

6.3 Practical Approximation Algorithms

In this section we consider the problem where all items have unit size. As we saw, this problem
is NP -hard and has applications in the data placement problem forvideo-on-demand. In this
case, we can consider that items are given as a list of setsU1, . . . , UQ, where each setUi hasni

items of unit size with classi. Each bin packs at mostB items of at mostC different sets. The
problem is to pack all sets of items in the minimum number of bins. We say that a set of items
is totally packedin a bin if all of its items are packed in the bin, otherwise we say that a set is
partially packed. We also say that a bin packs entirelyC sets, ifC sets are totally packed in the
bin.

We adapt here, an algorithm known as Moving-Window (MW) firstpresented by Shachnai
and Tamir [19] and also used later by Golubchiket al. [8] and Kashyap and Khuller [13]. In
these previous works the algorithm was considered for the knapsack version of the problem,
where one must have to pack the maximum number of items in a given number of bins.

Moving-Window (MW): The algorithm keeps a vectorR = (R[1], R[2], . . . , R[Q]) repre-
senting non-packed items in such a way thatR[i] is the number of remaining items to be packed
of some setUj . The vector is maintained in non-decreasing order of the valuesR[i] during all
the execution of the algorithm. If at any given moment, it is packed part of the items represented
by R[i], then the vector must be reordered.

In any iteration of the algorithm, it tries to packC different sets creating a new bin. For
that, the algorithm keeps a window ofC sets. At first, the window goes fromR[1] to R[C]. If
∑C

i=1 R[i] ≥ B then the algorithm packs the corresponding sets ofR[1], R[2], . . . , R[j], where
j ≤ C is the first index such that

∑j
i=1 R[i] ≥ B. Notice thatR[j] may be partially packed. The

totally packed sets are removed from the vector. If
∑C

i=1 R[i] < B then the algorithm moves
the window to the right, until that for the first time the window hasC sets such that their sizes
are greater than or equal toB. If this is the case, theC sets are packed and the vectorR is
reordered (if the last considered set was partially packed). Then the algorithm restarts. If in
some iteration, the window reaches the end of the vectorR, i.e, theC largest sets have total size
smaller thanB, then the algorithm generates bins by packing entirelyC sets in each bin, with
exception perhaps in the last bin that can pack less thanC sets.

Let B1, . . . , BN be the bins created by the algorithmMW in the order they were created.
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Let NF be the number of full bins andNC be the number of bins that are not full which we call
colored. LetN = NF + NC . Notice that binsB1, . . . , BNF

, are the full bins since when the
algorithm creates the first non-full bin, when the window reaches the end ofR and theC largest
sets have total size smaller thanB, then all other generated bins becomes non-full havingC

different sets each except perhaps the last.

Lemma 6.3.1 If any of the firstNF bins produced by the algorithmMW packs less thanC
different sets (classes), then the algorithm produces an optimal solution.

Proof. Let Bi be the first bin, among the firstNF bins, that packs less thanC different sets.
In this case, the window must start fromR[1] and goes untilR[j′] for somej′ ≤ C − 1. The
vectorR is ordered such thatR[j′] ≤ R[j′ + 1] ≤ . . . ≤ R[Q]. Therefore, anyC − 1 remaining
sets have total size greater thanB. That is, even if the setR[j′] was partially packed, all other
created bins must be full, because the remaining items of a partially packed set withC − 1 sets
have total size greater thanB.

This way, we consider that for each of theNF first bins, the algorithm packs, in each itera-
tion, exactlyC different sets and that at most one of these sets is partiallypacked. Clearly, for
the remainingNC bins, all of them packs totallyC different sets except perhaps the last bin.

Let OPT(I) be the number of bins used by an optimal solution to pack instanceI. We
assume thatNF ≤ OPT(I) − 1, otherwise the algorithm generated an optimal solution. We
have the following result.

Lemma 6.3.2 After theMW algorithm has created the firstOPT(I) bins, there exists at most
NF sets to be packed.

Proof. Notice that the number of different sets must satisfyQ ≤ OPT(I)C. Since each one
of the full bins packsC different sets, where one of these sets may be partially packed, then
the algorithm partially packs at mostNF sets. These partially packed sets can be seen as new
sets that are considered by the algorithm during its execution. That is, we can assume that the
algorithm packs at mostQ+NF different sets. Also remember that each one of theNC colored
bins packs entirelyC different sets. Since each one of the firstOPT(I) bins packsC different
sets andQ ≤ OPT(I)C we conclude that it remains at mostNF sets that are packed in extra
colored bins.

With this result we can give the approximation factor of theMW algorithm.

Theorem 6.3.3 The MW algorithm has an approximation factor of(1 + 1
C

) for the CCBP
problem when all items are equal sized.

Proof. Let I be an instance for the CCBP problem where all items have unit size. From Lemma
6.3.2, after the algorithm has generated the firstOPT(I) bins, it remains at mostNF sets to be
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packed. Since each one of the generated bins packing these sets is colored, each bin entirely
packsC different sets and then, the number of extra bins created canbe bounded by

⌈

NF

C

⌉

≤
OPT(I)− 1

C
+ 1 =

OPT(I)

C
− 1/C + 1.

We can bound the number of generated bins byOPT(I) + OPT(I)/C + 1.

Proposition 6.3.1 The bound of Theorem 6.3.3 is tight.

Proof. Consider that the input instanceI consists ofN(C − 2) big sets with2p + 2 items each,
and2N small sets withp items each. The bin capacity isB = (C − 2)(2p + 2) + 2p + 2 items.
Notice that(C − 2) big sets with two small sets does not fill the bin capacity. When theMW

algorithm is executed over this instance, the first generated bin packs one small set,(C − 2)

big sets entirely and another big set partially. The remaining items of the last packed big set
becomes a small set withp items. Notice that theMW algorithm generatesN(C − 2)/(C − 1)

bins by packing big sets and one small set that is a residual part of a big set. After that, remains
2N small sets that are packed in more2N/C bins. WhenN andC increase enough, the number
of bins tends toN + N/C. An optimal pack of this instance usesN bins. In this packing, each
bin packs(C − 2) big sets and two small sets.

Notice that theMW algorithm is based in a heuristic that tries to packC different sets in
each bin. But the way the algorithm works, it tends to pack small and large sets in different bins.
A good heuristic is to pack large and small sets together, in such a way that each generated bin
has a good use of its capacity, while trying to packC different sets in each bin. For that, we
propose a new algorithm that we call Modified-Moving-Window(MW′).

Modified-Moving-Window ( MW′): This algorithm is similar to theMW algorithm in such
a way that it also keeps a window of sizeC over a vectorR = (R[1], R[2], . . . , R[Q]) that is
maintained ordered in non-decreasing order of the valuesR[i]. The algorithm also moves a
window of sizeC until the total size of the sets in the window containsB or more items.
In the MW′ algorithm, we consider that the vectorR is a circular list. At first, the window
consists of the setsR[1], . . . , R[C]. If the total size of these sets is greater than or equal to
B, then the algorithm packs the setsR[1], . . . , R[j], wherej ≤ C is the first index such that
∑j

i=1 R[i] ≥ B, with the last setR[j] probably partially packed. If the total size of these sets
is smaller thanB then instead of doing a move to the right, as in the originalMW algorithm,
the algorithm performs a move to the left and considers the setsR[Q], R[1], . . . , R[C − 1]. The
algorithm performs moves to the left until the total size of theC sets are greater than or equal
to B. In this case it packs theC sets and restarts. If the algorithm performsC moves to the left,
and then considers the largestC sets, and this sets have total size less thanB, then the algorithm
generates a packing like the originalMW algorithm, by packing entirelyC sets in each bin.

It is not hard to prove similar results to Lemma 6.3.1 and Lemma 6.3.2 to theMW′ algo-
rithm. Using the same arguments of Theorem 6.3.3 we can provethe following result.
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Theorem 6.3.4 TheMW′ algorithm has an approximation factor of(1 + 1
C

) for the CCBP
problem where all items are equal sized.

Notice that this bound is tight since the algorithmMW′ generates the same solution gener-
ated by the algorithmMW for the instance presented in Proposition 6.3.1. The advantage of the
MW′ algorithm is to try to pack small sets with large ones trying to guarantee a good filling of
the bins, since it tries to pack the maximum number of small sets with large sets. To see this,
consider for example an instanceI that consists of2n small sets, each one with one item,n large
sets with5 items each andn medium sets with2 items each. SupposeB = 7 andC = 3. The
MW algorithm first generatesn bins by packing two medium sets and part of another large set.
After that, it generates2n/3 new bins to pack the small sets. TheMW′ algorithm first generates
n bins such that each one packs two small sets and a large set. The remaining medium sets are
packed inn/3 bins.

Another simple approach used to solve the problem is to use similar ideas of the well known
FFD, (BFD) algorithms (see Coffmanet al. [2])

Algorithm FFD: The algorithm first sorts the setsU1, . . . , UM in non-increasing order of
their size and then apply the FF algorithm in the list obtained concatenating these sets.

Theorem 6.3.5 The FFD algorithm has an approximation factor equal to 2 for theCCBP

problem when all items have unit size.

Proof. Let B1, . . . , BN be the bins created by the algorithm,NF be the number of full bins
andNC be the number of colored bins. Clearly,NF ≤ OPT and each bin that is not full must
be colored except perhaps the last generated bin. Also notice that two different bins that are
colored cannot have items of a same color. SinceCNC/C ≤ ⌈Q/C⌉ ≤ OPT we get that
NC ≤ OPT. Then we can bound the number of generated bins byN ≤ 2OPT + 1.

Since this algorithm does not try to optimize the class usagein the packing, it can generate
poor quality packings. In fact, we show in the next proposition that the bound of Theorem 6.3.5
is tight.

Proposition 6.3.2 The bound of Theorem 6.3.5 is tight.

Proof. Let I = (L, s, c, C, Q) be an instance to theCCBP problem where all items have unit
size. Let the size of the bins beB = C2. Suppose the input list of items consists of one big set
with C3 items andC2 small sets with one item each. The FFD algorithm first packs the big set
in C3/C2 bins and the small sets inC2/C bins giving a total of2C bins. An optimal solution
usesC bins packing in each binC2 − (C − 1) items of the big set andC − 1 small sets. The
remainingC(C − 1) items of the big set, andC small sets can be packed in 2 extra bins.

Now we consider the case where items in each set may have different sizes. This case
is also interesting for applications of the data-placementproblem to video-on-demand servers.
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Suppose that users have different network access speeds. Inthis case, requests for load resources
may have different sizes. This case can be mapped to the case in the CCBP problem where items
have different sizes. Also notice that even if the items havedifferent sizes, in practical instances
it is expected that the size of the item is not too large. So, suppose that the maximum size of
an item is an integer bounded byB/m for somem ≥ 1. Problems with this restriction are also
called parametric packing problems [16, 3]. Given an integer m, we denote this version of the
problem as Parametric Class Constrained Bin Packing (CCBPm) problem.

Let I be an instance of theCCBPm problem where each item has size bounded byB/m.
Consider that the input instanceI consists of setsU1, . . . , UQ. We now present an algorithm to
pack this instance. Although items may have different sizes, consider that each item with sizes
greater than 1 is broken intos unit size pieces. Now apply theMW algorithm for this modified
instance. Now consider this packing for the original items.For each full bin it may happen
that the last item packed is fractionally packed. For each bin where this happens, remove the
item of the bin. Notice that there are at mostNF items removed of the generated packing. For
these remaining items, generate new bins packing at leastmin{m, C} items in each bin except
perhaps in the last bin.

Theorem 6.3.6 There exists an algorithm for theCCBP problem where each item has size at
mostB/m, for somem ≥ 1, with approximation factor equal to(1 + 1/ min{m, C}+ 1/C).

Proof. From Theorem 6.3.3, the packing generated when items are fractionally packed uses at
most(1 + 1/C)OPT(I) + 1 bins. Notice that the number of items fractionally packed inthis
packing is bounded byNF , since the firstNF bins are the only ones that are full. TheseNF

extra items can be packed in at most⌈NF / min{m, C}⌉ extra bins.

6.4 The OnlineCCBP Problem

From now on, we consider that the capacity of the bin isB = 1, and each iteme has size
0 < se ≤ 1. In this section we consider the online class constrained bin packing problem.
In this case each item in the list of itemsL = (a1, . . . , an), is packed without knowledge of
subsequent items in the list. In subsection 6.4.1 we presentlower bounds for any bounded
space algorithm, in subsection 6.4.2 we present and analyzean algorithm based in the First-
Fit strategy and finally in subsection 6.4.3 we present another online algorithm with better
competitive ratio.

6.4.1 Lower bounds for bounded space algorithms

In this section we present inapproximability results for the bounded space onlineCCBP prob-
lem. In this case, the basic strategy is to compare the resultobtained by the algorithm with the
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optimum offline packing.

Theorem 6.4.1 Let l be a constant, then thel-bounded space onlineCCBP problem does not
admit an algorithm with constant competitive ratio.

Proof. Let A be an algorithm for thel-bounded space onlineCCBP problem. Consider an
instanceI, such that|L| = n2l, Q = nl, andn is divisible byC. The list L havenl dif-
ferent classes and all items have size1/Cn. Consider thatL = L1‖ . . .‖Ln, where each
Li = (a1, . . . , anl) is a sequence ofnl items where eachaj has classj.

Let ti be the time immediately after the algorithm has packed the list Li. At time t1 the
algorithmA can have at mostl open bins. Since each item of the first sequence is of a different
class, the algorithm uses at leastnl/C bins to packL1, where at leastnl/C − l of these bins
are closed. When the packing of the listL2 starts, the algorithm has at mostl open bins that can
pack at mostlC items of the sequenceL2. To pack this sequence, the algorithm uses at least
(ln− lC)/C bins. This is also valid for the other sequencesL3, . . . , Ln.

Therefore, to pack the listL, the algorithmA uses at least

n(nl/C)− (n− 1)l = n2l/C − (n− 1)l

bins.
Since all items have size1/Cn, an optimal offline solution can use at mostln/C bins, by

packingCn items in each bin. Therefore, the competitive ratio must be at least

lim
n→∞

n2l/C − (n− 1)l

nl/C
= n.

In Theorem 6.4.1, items may have arbitrary small sizes. If all items have size at leastε,
for some constantε, we may also obtain an inapproximability result using similar arguments.
Notice that in this case, any simple algorithm has a competitive ratio of1/ε.

Theorem 6.4.2 Let l and ε < 1 be constants and consider instances for theCCBP problem
where each item has size at leastε. Then the online CCBP problem does not admit an algorithm
with competitive ratio better thanO(1/Cε).

Proof. Suppose that1/ε dividesn and we have the same instance presented in Theorem 6.4.1,
modified such that all items have size equal toε. In this case any algorithm uses at leastn2l/C−

(n− 1)l bins. An optimal offline solution packs items of a given classin nε bins. To packL an
optimal offline algorithm uses at mostn2lε bins.

Therefore, the competitive ratio is at least

lim
n→∞

n2l/C

n2lε
−

nl − l

n2lε
=

1

Cε
.
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Given these negative results, for the remaining of this section we only consider the un-
bounded space onlineCCBP problem.

6.4.2 The First-Fit Algorithm

Given an online algorithmA for the bin-packing problem, we can obtain an online algorithm
A∗ for the onlineCCBP problem in a straightforward manner. To pack the next iteme, the
algorithmA∗ works as follows: Letce be the class of the iteme, B be the list of bins in the
order they were opened. LetBe be the list of bins ofB, in the same order ofB, where each bin
has at least one item of classce or has items of at mostC − 1 different classes. The iteme is
packed with algorithmA into the bins ofBe.

One of the most famous algorithm for the bin-packing problemis the First-Fit (FF) algo-
rithm. This algorithm packs the next item into the first bin, in the order they were opened, that
has sufficient space for the item.

In this section we show that the competitive ratio of the algorithm FF∗ is in [2.7, 3]. We note
that the upper bound was previously shown by Dawandeet al. [4]. Notice that the algorithm
FF∗ is online, since it only looks for the item it is packing and itis unbounded since it keeps
all bins opened. In fact it closes a bin only if the bin is full.This algorithm is used in other
algorithms of subsequent sections.

Lemma 6.4.3 Let I be an instance for the onlineCCBP problem such that every item has size
at mostε. LetP be the set of bins generated by the algorithmFF∗, applied over the instanceI,
that are filled by less than1− ε. Then: (i) Each bin inP, which is not the last generated bin, is
colored. (ii) There is no items of a same color in two different bins ofP.

Proof. Let B1 be a bin inP, Bl the last bin created by the algorithm FF∗ andal an item packed
in Bl. SinceB1 is filled with less than1− ε ands(al) ≤ ε, al was not packed inB1 because it
must be colored.

Now suppose there are two different binsB1 andB2 in P that are filled with less than1− ε

and there are itemsai ∈ Bi, i = 1, 2 with the same class. Without loss of generality, consider
thatB1 was opened first. Since the maximum size ofa2 is ε and the algorithm FF∗ tries to pack
an item into the bins in the order they were opened, satisfying the size and class constraints, the
itema2 would be packed in the binB1. That is, a contradiction.

The result of the next theorem can be found in the work of Dawande et al. [4]. The idea
to prove this theorem is to consider separately bins that arefilled by at least half of its capacity
and bins that are not. In the first case the number of bins is bounded by2OPT(I). In the later
case using Lemma 6.4.3 we can prove that all bins are colored,except perhaps the last, and then
using the fact that⌈Q/C⌉ ≤ OPT(I), we can bound the number of used bins byOPT(I) + 1.
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Theorem 6.4.4 The algorithmFF∗ has a competitive ratio3 for the onlineCCBP problem.

Now, we show that the algorithm FF∗ cannot have a competitive ratio better than2.7. We
first give an intuitive lower bound of2.666 and then we present the lower bound of2.7.

Theorem 6.4.5 There is an instanceIn with n items,n ≥ 1, for the onlineCCBP problem such
thatFF∗(In)/OPT(In)→ 2.666 asn→∞.

Proof. Let I be an instance with an input list of itemsL = La‖Lb‖Lc‖Ld. Let C be the
maximum number of classes allowable in each bin. The listLa = (a1, . . . , a(C−1)6N ) is such
that each itemai has classi, i = 1, . . . , (C − 1)6N and each item has sizeα, which is a very
small value. This list is followed by a listLb = (b1, . . . , b6N ), where each itembi has class
r = 6N(C − 1) + 1, and size1/7 + ε. In the listLc = (c1, . . . , c6N) each itemci has size
1/3 + ε and classr. Finally, in the listLd = (d1, . . . , d6N) each itemdi has size1/2 + ε and
classr.

The FF∗ algorithm packs the listLa in 6N(C−1)
C

bins, the listLb in N bins, the listLc in
3N bins and the listLd in 6N bins. The Figure 6.2 presents the different bins in the packing
generated by the FF∗ algorithm.

C

Items size: α 1/7 + ǫ 1/2 + ǫ1/3 + ǫ

Figure 6.2: The bins generated by the FF∗ algorithm.

An optimal (offline) solution uses at most6N bins. This packing is obtained by packing one
item ofLd, one item ofLc, one item ofLb andC − 1 items of the listLa in only one bin.

This gives a lower bound of

lim
N,C→∞

(C−1)6N
C

+ 10N

6N
= 2.666.

The previous lower bound can be improved using an intricate instance presented by Johnson
et al. [11] that provides a lower bound of1.7 for the FF algorithm in the bin packing problem.
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Theorem 6.4.6 The competitive ratio of the algorithmFF∗ is at least2.7.

Proof. Consider an instanceI such that each bin can pack at mostC different classes. The input
list L is the concatenation of four lists:L = La‖Lb‖Lc‖Ld. In the listLa = (a1, . . . , a5N(C−1)),
each itemai has classi, for i = 1, . . . , 5N(C − 1), and each item has sizeα, which is a very
small value. The listLa is followed by an instance similar to the one presented by Johnsonet
al. [11] that provides a lower bound of1.7 for the FF algorithm in the bin packing problem. In
the listLb = (b1, . . . , b5N) each itembi has size1/7 + yi, whereyi ∈ R, for i = 1, . . . , 5N . In
the listLc = (c1, . . . , c5N) each itemci has size1/3 + wi, wherewi ∈ R, for i = 1, . . . , 5N . In
the listLd = (d1, . . . , d5N) each itemdi has size1/2 + ε. All items in the listsLb, Lc andLd

have class5N(C − 1) + 1.
The algorithm FF∗ generates a packing as the one presented in the proof of the Theorem

6.4.5, except that it packs only five items of the listLb per bin. That is,

FF∗(I) ≥
5N(C − 1)

C
+ N + 2.5N + 5N.

An optimal solution can use5N +2 bins (see [11]), packing one item of each listLb, Lc and
Ld andC − 1 items of the listLa.

Therefore, the competitive ratio of the algorithm FF∗ is at least

lim
N,C→∞

5N(C − 1)/C + 8.5N

5N + 2
= 2.7.

6.4.3 A2.75-competitive algorithm

In this section we present an algorithm, which we denote byAC (Figure 6.3), with competitive
ratio in the interval(2.666, 2.75]

To prove the competitive ratio of the algorithmAC , we use the following lemma (the proof
can be found in [16]).

Lemma 6.4.7 SupposeX, Y, x, y are real numbers such thatx > 0 and0 < X < Y < 1. Then

x + y

max{x, X x + Y y}
≤ 1 +

1−X

Y
.

Theorem 6.4.8 AlgorithmAC has a competitive ratio of2.75.

Proof.
Let Li the list of items packed inPi, for i = 1, 2, 3.
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ALGORITHM AC(L, s, c, C, Q)

1. LetPi ← ∅, for i = 1, 2, 3.

2. For eache ∈ L do

3. if s(e) ∈ (1
2
, 1] thenk ← 1.

4. if s(e) ∈ (1
3
, 1

2
] thenk ← 2.

5. if s(e) ∈ (0, 1
3
] thenk ← 3.

6. LetP ′
k the sublist of bins inPk having items of classc(e) or

with at mostC − 1 classes, preserving the order of the bins inPk.

7. If possible pack the iteme into the binsP ′
k using the algorithm FF∗.

Otherwise, packe into a new empty bin inPk.

8. ReturnP1‖P2‖P3.

Figure 6.3: AlgorithmAC .

Note that all bins ofP1 have exactly one item with size greater than1
2
. In fact we cannot

pack more than one item ofL1 per bin. Therefore,

|P1| ≤ OPT(I) (6.1)
1

2
|P1| ≤ s(L1). (6.2)

The packingP2 has exactly two items per bin, except perhaps the last, each item with size
at least1

3
. Therefore,

(|P2| − 1)
2

3
≤ s(L2). (6.3)

Let P ′
3 the set of bins inP3 that are filled by at least2

3
andP ′′

3 the remaining bins (i.e.,
P ′′

3 = P3 \ P
′
3). The following is valid

(|P ′
3|)

2

3
≤ s(L′

3). (6.4)

whereL′
3 is the set of items packed inP ′

3. Let NA = |P1| andNB = |P2| + |P
′
3| − 1. Since

OPT(I) ≥ s(I) ≥ s(L1) + s(L2‖L
′
3) from inequalities (6.2)–(6.4) we have

OPT(I) ≥ s(I) ≥ s(L1) + s(L2‖L
′
3)

≥
1

2
NA +

2

3
NB. (6.5)

From inequalities (6.1) and (6.5) we have

OPT(I) ≥ max{NA,
1

2
NA +

2

3
NB}. (6.6)



6.5. An APTAS for Bounded Number of Classes 63

From Lemma 6.4.7 we have that

|P1|+ |P2|+ |P
′
3| ≤

NA + NB

max{NA, 1
2
NA + 2

3
NB}

OPT(I) + 1 (6.7)

≤ 1.75 OPT(I) + 1. (6.8)

Now, consider the packingP ′′
3 . Using a similar argument used in Lemma 6.4.3, we have

|P ′′
3 | − 1 ≤

Q

C
≤ OPT(I). (6.9)

The proof can be completed summing the inequalities (6.8) and (6.9).

AC(I) = |P1|+ |P2|+ |P
′
3|+ |P

′′
3 |

≤ 1.75 OPT(I) + OPT(I) + 2 = 2.75 OPT(I) + 2.

Notice that the same instance used to prove a lower bound for the algorithm FF∗ in Theorem
6.4.5 can be used to prove a lower bound for theAC algorithm.

Theorem 6.4.9 There is an instanceI for the onlineCCBP problem such that
AC(I)/OPT(I) ≥ 2.666.

6.5 An APTAS for Bounded Number of Classes

In this section we present an APTAS for the offline VCCBP problem. The input instance for
this problem is a tupleI = (L, s, c, w, C, Q) wherew : {1, . . . , T} → R+ is a function of bins
size. The problem is to find a pack of all items minimizing the total size of used bins. In this
section we consider that the maximum size of a bin is 1 and thatthe number of different classes
Q in the input instance, is bounded by a constant.

In subsection 6.5.1 we present the algorithm of Dawande, Kalagnanam and Sethuraman
[5, 4] and show in what points their algorithm failed to be an APTAS. In subsection 6.5.2
we present an APTAS for the VCCBP problem. Given anε, we will show an algorithmA
that runs in polynomial time and produces a packing for a given instance such thatA(I) ≤

(1− O(ε))OPT + β, whereβ is a constant.

As was noticed by Dawandeet al. [5, 4], we only use bins such that their size are at leastε,
since this condition does not affect too much the cost of the solution, i.e, the algorithm remains
an APTAS.
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6.5.1 The Algorithm of Dawande, Kalagnanam and Sethuraman

In this section we give a brief description of the algorithm of Dawandeet al. [5, 4] and present
the points where their algorithm fails.

Let I = (L, s, c, w, C, Q) be an instance for the VCCBP problem and letLb be the items in
L with size at leastε2 (big items) and letLs be the remaining items inL (small items).

Letn = |Lb|. The algorithm sorts the listLb in non-increasing order of size and partition this
list into groups (lists)L1, . . . , LM , each one with⌈nε2⌉ items except perhaps the last list that
can has less than⌈nε2⌉ items. Call the first item in each group as the group-leader. Let L′

i be
the list having|L′

i| = |Li| items, where each item has size equal to the size of the group-leader
of Li. Let L′ = L′

1‖ . . .‖L′
M .

For the listL′ it is possible to generate all configurations of bins in constant time since the
number of different items size is bounded by a constantM , the number of different item colors
is also bounded by a constantQ and the maximum number of items that can be packed in a bin
is 1/ε2. Let t = MQ. Given an item size and an item color, denote bydi the number of items
of this typei ∈ [t].

Let N be the total number of bin configurations. Letxj be a variable that represents the
number of times a configurationj ∈ [N ] is used in a solution,aij be the coefficient that rep-
resents the number of times an item typei ∈ [t] is used in configurationj andwj the size of
the bin used in configurationj. The next step of the algorithm is to solve the following linear
program:

min
N

∑

j=1

wjxj

N
∑

j=1

aijxj ≥ di ∀ i ∈ [t] (1)

xj ≥ 0 ∀ j ∈ [N ]. (2)

(LP)

The algorithm solves this linear program and generates an integer solution by rounding up
the variablesx. The solution is a packing for the listL′ that is used to generate a packing for
the listLb.

The next step of the algorithm is to pack the small items in thesolution provided by the
linear program. To do this, it uses the FF∗ algorithm.

Dawandeet al. [5, 4] claimed that this algorithm is an APTAS for the VCCBP problem.

The listLb was partitioned into listsL1‖ . . . ‖LM . Let L′′
i be a list having|L′′

i | = |Li| items,
where each item has size equal to the group-leader of the listLi+1, for i = 1, . . . , M − 1, and
L′′

M be an empty list. LetL′′ = L′′
1‖ . . . ‖L′′

M . ClearlyOPT(L′′) ≤ OPT(Lb).
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Dawandeet al. claimed that the following relation is valid

OPT (L′) ≤ OPT (L′′) + ⌈nε2⌉ ≤ OPT (Lb) + ⌈nε2⌉,

given the argument thatL′ andL′′ differ only in their first and last groups. This way, given a
packing for the listL′′ it is easy to construct a packing for the listL′

2‖ . . . ‖L′
M . Since|L′

i| =

|L′′
i−1|, for i = 2, . . . , M , and their items size are the same, although this seems to be true, notice

that the color of items ofL′
i andL′′

i−1 may be different. Then, it is not clear how to construct a
packing forL′

2‖ . . . ‖L′
M given a packing forL′′.

Let B be the number of bins used by their algorithm. After packing the small items using
the first-fit strategy, they claimed that at leastB − ⌈Q

C
⌉ bins have residual capacity at mostε.

This is also not true. Suppose all small items have differentcolors from the big items. It is easy
to construct examples where optimal packings for the big items given by the linear program
have all bins withC different colors and the residual space is larger than a given ε. This way no
small item will be packed in the bins given as solution by the linear program and then, all these
bins will have residual capacity greater thanǫ.

6.5.2 An APTAS for theVCCBP Problem

In this section we present an APTAS for theVCCBP problem. In the next subsection we show
how to pack big items doing a linear rounding for each different color. The algorithm to pack
the big items generates a polynomial number of packings for the big items, and also provide
information of how to pack small items. In the following subsection, we present an algorithm to
pack the small items that is based in the solution of a linear program. The algorithm generates
a polynomial number of packings such that at least one is veryclose to the optimal.

Packing Big Items with Linear Rounding

Let Lb be the items inL with size at leastε2 (big items) and letLs be the remaining items in
L (small items). In this section we show how to do the linear rounding for the big items and
generate a packing for them.

The algorithm that packs the listLb, which we denote by ALR, uses the linear rounding
technique, presented by Fernandez de la Vega and Lueker [6],and considers only items with
size at leastε2. The algorithm ALR returns a pair(PB, P), wherePB is a packing for a list of
very big items andP is a set of packings for the remaining items ofLb.

For the use of the linear rounding technique, we use the following notation: Given two lists
of itemsX andY , let X1, . . . , XQ andY1, . . . , YQ be the partition ofX andY respectively in
colors, whereXc andYc have only items of colorc for eachc ∈ [Q]. We writeX � Y if there
is an injectionfc : Xc → Yc for eachc ∈ [Q] such thats(e) ≤ s(f(e)) for all e ∈ Xc.
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For any instanceX, denote byX the instance with precisely|X| items with size equal to
the size of the smallest item inX. Clearly,X � X.

The Algorithm also uses the variant of the First-Fit (FF∗) that we presented in section 6.4.2.
The algorithm ALR is presented in Figure 6.4. It consists in the following: LetL1, . . . , LQ

be the partition of the input listLb into colors1, . . . , Q and letnc = |Lc| for each colorc. The
algorithm ALR sorts each listLc in non-increasing order of size and then partition the listLc

into at mostM = ⌈1/ε3⌉ groupsL1
c , L

2
c , . . . , L

M
c , whereLc = L1

c‖ . . .‖LM
c . Each group has

⌊ncε
3⌋ items except perhaps the last list (with the smallest items)that can have less than⌊ncε

3⌋

items.
Let LB = ∪Q

c=1L
1
c . The algorithm generates a packingPB of the listLB with cost at most

O(ε)OPT(I) and a setP with a polynomial number of packings for the items inLb \ LB. The
packingPB is generated by the algorithm FF∗ with bins of size1.

The algorithm generates a set of packingsQ, of polynomial size, for the list(L1
1‖ . . .‖LM−1

1

‖ . . . ‖L1
Q‖ . . . ‖LM−1

Q ). This can be done in polynomial time as the next lemma guarantees.

Lemma 6.5.1 Given an instanceI = (Lb, s, c, w, C, Q), where the number of distinct items
sizes of each color is at most a constantM , the number of different colors is bounded by a
constantQ and each iteme ∈ Lb has sizese ≥ ε2, then there exists a polynomial time algorithm
that generates all possible packings ofLb. Moreover, each bin of each generated packing has
an indication of the possible colors that may be used by further small items.

Proof. The number of items in a bin is bounded byy = 1/ε2. The number of distinct type
of items is bounded byMQ. The number of different configurations of bins is bounded by
r′ =

(

y+MQ+1
y

)

. If we want to indicate the colors of small items that should be packed in each
configuration, the number of different configurations will be r = r′2Q, which is a constant.
Notice that we only generate configurations that satisfy thecolor constraints.

For each given configuration, we pack it with the smallest binthat has enough space to pack
the configuration. The number of all feasible packings is bounded by

(

n+r
n

)

, which is bounded
by (n + r)r, which in turn is polynomial inn.

SinceLi
c � Li+1

c , i = 1, . . . , M −1 for each colorc, it is easy to construct a packing for the
list L2

1‖ . . .‖LM
1 ‖ . . . ‖L2

Q‖ . . .‖LM
Q , given a packing for the list

(L1
1‖ . . .‖LM−1

1 ‖ . . . ‖L1
Q‖ . . .‖LM−1

Q ).

The following is valid for the packingPB of the listLB.

Lemma 6.5.2 w(PB) ≤ QεOPT(I).

Proof. Notice that the algorithm FF∗ packs at least one item per bin and since|LB| ≤ Qnε3 and
each item has size at leastε2, we have|LB| ≤ QεOPT(I).
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ALGORITHM ALR(Lb)

Input: List Lb with n items, each iteme ∈ Lb with sizese ≥ ε2.

Output: A pair (PB , P), wherePB is a packing andP is a set of packings, wherePB ∪ P
′ is a

packing ofLb for eachP ′ ∈ P.

1. PartitionLb into listsLc for each colorc = 1, . . . , Q and letnc = |Lc|.

2. Sort each listLc in non-increasing order of items size.

3. Partition each listLc into M ≤ ⌈1/ε3⌉ groupsL1
c , L

2
c , . . . , L

M
c , such that

Li
c � Li+1

c , i = 1, . . . ,M − 1

where|Li
c| = qc = ⌊ncε

3⌋ for all i = 1, . . . ,M − 1,

and|LM
c | ≤ qc.

4. Let LB = ∪Q
c=1L

1
c .

5. LetPB be a packing ofLB obtained by the algorithm FF∗ with bins of size1.

6. Let Q be the set of all possible packings over the list
(L1

1‖ . . . ‖L
M−1
1 ‖ . . . ‖L1

Q‖ . . . ‖L
M−1
Q ), according to Lemma 6.5.1.

7. Let P be the set of packings for the items in(L2
1‖ . . . ‖L

M
1 ‖ . . . ‖L

2
Q‖ . . . ‖L

M
Q ), using the

packingsQ ∈ Q.

8. Return(PB , P).

Figure 6.4: Algorithm to obtain packings for items with sizeat leastε2.

Packing the small items

Observe that algorithm ALR generates a packing for very big items that costs at mostQεOPT(I),
and a setP of packings for the remaining big items. For a given packingP ∈ P, the algorithm
marked colors of small items that should be packed in each binof P. To pack the small items
we use a solution given by a linear program.

Let P = {B1, . . . , Bk} be a packing of the list of itemsLb and suppose we have to pack a
list Ls of small items, with size at mostε2, intoP. The packing of the small items is obtained
from a solution of a linear program. LetNi ⊆ [Q] be the set of possible colors that may be
used to pack the small items in the binBi of the packingP. For each colorc ∈ Ni, define a
non-negative variablexi

c. The variablexi
c indicates the total size of small items of colorc to be

packed in the binBi. Denote bys(Bi) the total size of items already packed in the binBi and
by w(Bi) the capacity of binBi. Consider the following linear program denoted by LPS:
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max

k
∑

i=1

∑

c∈Ni

xi
c

s(Bi) +
∑

c∈Ni

xi
c ≤ w(Bi) ∀ i ∈ [k] (1)

k
∑

i=1

xi
c ≤ s(Sc) ∀ c ∈ [C], (2)

(LPS)

whereSc is the set of small items of colorc in S.
The constraint (1) guarantees that the items packed in each bin satisfy its capacities and

constraint (2) guarantees that variablesxi
c is not greater than the total size of small items.

Given a packingP, and a listLs of small items, the algorithm first solves the linear program
LPS, and then packs small items in the following way: For eachvariablexi

c it packs, while
possible, the small items of colorc into the binBi, so that the total size of the packed small
items is at mostxi

c. The possible remaining small items are packed using the algorithm FF∗

into new bins of size1. The algorithm to pack small items has polynomial time, since the linear
programLPScan be solved in polynomial time.

The small items that are packed into new bins use at most
⌈

(s(Ls)−
∑k

i=1

∑

c∈Ni
xi

c)

(1− ε2)
+
|P|ε2Q

(1− ε2)

⌉

+ ⌈Q/C⌉

new bins, since each bin is filled by at least(1− ε2) except perhaps by at most⌈Q/C⌉ bins.
The algorithm packs the small items in each packingP ∈ P. In the end, the algorithm

generates another set of packingsP′ for all items. At least one of the generated packings has
cost at most(1 + O(ε))OPT(I) + β, for a constantβ. The algorithm returns the packing with
smallest cost.

Now we prove that the presented algorithm is an APTAS for theVCCBP.

Theorem 6.5.3 Let I = (L, s, c, w, C, Q), be an instance for theVCCBP problem. The pack-
ingP returned by the algorithm satisfyw(P) ≤ (1+O(ε))OPT(I)+β, whereβ is a constant.

Proof. LetO be an optimal packing for instanceI. LetO′ be the packing without the small items
and with the big items rounded according to the linear rounding of algorithm ALR. Assume that
each bin ofO′ has an indication of the colors of small items used in the corresponding bin of
O. Clearly the packingO′ ∈ Q except that it can use smaller bins than the ones used inO.

When the algorithm generates a packingP for the listL2
1‖ . . .‖LM

1 ‖ . . . ‖L2
Q‖ . . .‖LM

Q using

the packingO′ with items(L1
1‖ . . .‖LM−1

1 ‖ . . .‖L1
Q‖ . . .‖LM−1

Q ), it is true thatw(P) ≤ w(O)

since inP we probably use bins of smaller size for each given configuration of big items.
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LetP = {B1, . . . , Bk}. Notice that we must have

w(O) ≥ w(P) + (s(Ls)−
k

∑

i=1

∑

c∈Ni

xi
c).

The total size of small items that are packed into new bins is at most

(s(Ls)−
k

∑

i=1

∑

c∈Ni

xi
c) + |P|ε2Q.

The algorithm packs small items in bins of size1 obtaining a new packingP ′. The total cost
of the packingP ′ is

w(P ′) ≤ w(P) + ⌈
(s(Ls)−

∑k
i=1

∑

c∈Ni
xi

c)

(1− ε2)
+
|P|ε2Q

(1− ε2)
⌉+ ⌈Q/C⌉ (6.10)

≤
w(O)

(1− ε2)
+
|P|ε2Q

(1− ε2)
+ ⌈Q/C⌉+ 1 (6.11)

≤
w(O)

(1− ε2)
+

εQw(O)

(1− ε2)
+ ⌈Q/C⌉+ 1. (6.12)

The last inequality follows from the fact that|P| ≤ |O| and the smallest size of a bin isε. Using
this result, Lemma 6.5.2 and the fact thatQ is bounded by a constant we conclude the proof.

6.6 Experimental Results of the Practical Algorithms

In this section we provide experimental results for the algorithms MW, MW′ and FFD pre-
sented in Section 6.3. As we mentioned, these algorithms were developed motivated by the data
placement problem in video servers. This problem is a special case of theCCBP problem. All
these algorithms were implemented in C and we made a series ofpractical tests with them.

The instance set is constructed in some way to represent the real problem. A movie in
MPEG format uses about 2Gbytes of space, and requires a transference rate of3Mbits/sec
(384Kbytes/sec) [1]. Suppose that the server uses disks of 100Gbytes of capacity with trans-
ference rate of60Mbytes/sec. In this case, each disk have storage capacityC = 50 and load
capacityB = 160.

We callsingle-diskserver, the systems that are constructed in such a way that a entire copy
of a movie is done in one disk. But most video servers usesstriped-disks[1]. In this case, a
video is broken into several pieces and each one of these pieces is stored in a different disk. This
is done to increase the number of requests that can be attended by the system and to balance
the load capacity of the disks. Suppose for example that eachdisk have transference rate of
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60Mbytes/sec and storage capacity of 100Gbytes. Theoretically a disk can support 160 users
simultaneously. If we strip the movie along 3 disks, and assume that users requests over the time
are distributed uniformly among the three parts of the movie, then the striped-disk can support
480 simultaneously users requests to this movie. For our purposes, we can view each striped-
disk as one disk with storage capacity equal to 300Gbytes andload capacity equal to 480. In
practice it is better to use striped-disks to balance requests. Consider for example, a single-disk
server where a copy of a movieA is in disk1 and a copy of a movieB is in another disk2, and
there are 320 requests for the movieA and none to the movieB. The system becomes unable to
attend160 requests to the movieA. In a striped-disk system, where the first half part of movie
A is stored in disk1 while the last half part is stored in disk2, it can attend more users if their
requests are distributed along the movie in such a way that requests are divided through the two
disks.

We generate classes of instances represented by a tuple(Q, N, T ). The valueQ corresponds
to the number of different movies (different classes) and weconsider thatQ ∈ {250, 500, 1000}.
The valueN is the number of requests to the movies (number of items), andwe assume that
N ∈ {5000, 10000, 20000}. Finally the valueT corresponds to the system type, whereT is
equal toSC for single-disk system orST for striped-disk system. In the single-disk system, we
haveC = 50 andB = 160, and in the striped-disk system, we haveC = 150 andB = 480.

The requests for movies are generated using the Zipf distribution [14]. This distribution was
used previously to generate data for video-on-demand systems [1]. This distribution have the
property that the generated data have locality properties.In movie servers it is expected that
recent movies are the most requested ones. It is expected that most of the requests goes to a
small subset of movies in the server. The Zipf distribution have this property. Letδ be a small
positive number. The probability that then-th movie amongQ movies will be requested ispn

given as
pn =

c

n(1+δ)

where

c =
1

∑Q
i=1(1/i

(1+δ))
.

As δ increases, the distribution becomes more localized and asδ decreases the distribution
becomes more uniformly. ConsideringQ = 1000, if δ = 0.0, then80% of the requests are to
approximately20% of the movies. Ifδ = 1.0, then80% of the requests are to approximately
0.3% of the movies. Whenδ = −1.0 we get the uniform distribution where each movie have
the same probability1/Q to be requested.

We present some experimental results in Tables 6.1 and 6.2. All results were obtained
in a few seconds. In the tests of these tables, we generate data usingδ ∈ {0.0, 0.5, 1.0}, N ∈

{5000, 20000} andQ ∈ {250, 500, 1000}. The lower bound is given bymax{⌈Q/C⌉, ⌈N/B⌉}.
In Table 6.1 we consider single-disk system, and in Table 6.2we consider the striped-disk sys-
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tem. We also performed tests withN = 10000 but we do not present the results here since
we get similar results to the tests withN = 5000 andN = 10000. We observe that the FFD
algorithm generate good results and it becomes better for the striped-disk system. But in com-
parison with theMW andMW′ algorithms it performs worse, since these algorithms generated
optimal solutions to all tests. TheMW andMW′ shows to be very effective algorithms to be
used in practical instances to construct video-on-demand servers.

Single-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

FFD 32 FFD 34 FFD 42
δ = 0.0 MW 32 32 MW 32 32 MW 33 33

MW′ 32 MW′ 32 MW′ 33
FFD 34 FFD 39 FFD 48

δ = 0.5 MW 32 32 MW 33 33 MW 36 36
MW′ 32 MW′ 33 MW′ 36
FFD 35.8 FFD 40.6 FFD 50

δ = 1.0 MW 33 33 MW 34 34 MW 37.2 37.2
MW′ 33 MW′ 34 MW′ 37.2

Single-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

FFD 125 FFD 125 FFD 127
δ = 0.0 MW 125 125 MW 125 125 MW 126 126

MW′ 125 MW′ 125 MW′ 126
FFD 126 FFD 129.4 FFD 138

δ = 0.5 MW 126 126 MW 126 126 MW 128 128
MW′ 126 MW′ 126 MW′ 128
FFD 128 FFD 133 FFD 143

δ = 1.0 MW 126 126 MW 128 128 MW 131 131
MW′ 126 MW′ 128 MW′ 131

Table 6.1: Performance of the algorithms for Single-Disk.
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Striped-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

FFD 11 FFD 12 FFD 14
δ = 0.0 MW 11 11 MW 11 11 MW 11 11

MW′ 11 MW′ 11 MW′ 11
FFD 12 FFD 13 FFD 16

δ = 0.5 MW 11 11 MW 11 11 MW 12 12
MW′ 11 MW′ 11 MW′ 12
FFD 12 FFD 14 FFD 17

δ = 1.0 MW 11 11 MW 12 12 MW 13 13
MW′ 11 MW′ 12 MW′ 13

Striped-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Delta Algorithm Result Lower Bound Algorithm Result Lower Bound Algorithm Result Lower Bound

FFD 42 FFD 42 FFD 43
δ = 0.0 MW 42 42 MW 42 42 MW 42 42

MW′ 42 MW′ 42 MW′ 42
FFD 42 FFD 43 FFD 46

δ = 0.5 MW 42 42 MW 42 42 MW 43 43
MW′ 42 MW′ 42 MW′ 43
FFD 43 FFD 45 FFD 48

δ = 1.0 MW 42 42 MW 43 43 MW 44 44
MW′ 42 MW′ 43 MW′ 44

Table 6.2: Performance of the algorithms for Striped-Disk.

In Figures 6.5 to 6.9 we present graphics of the results of thealgorithms varying the disk
storage capacity. The results are given in they-axis and the storage capacity of the bin is given
in thex-axis. In all these tests we consider the load capacityB = 160, the number of different
moviesQ = 250 and the number of requests equal to5000. In Figure 6.5 (resp. 6.6, 6.7,
6.8, and 6.9) we useδ equal to1.0 (resp. 0.5, 0.0, −0.5 and−1). In the graphics theMW′

algorithm is denoted byMW2. The lower bound is given bymax{⌈Q/C⌉, ⌈N/B⌉}. Notice
that the problem becomes easier as the distribution of requests becomes uniformly, i.e, the value
of δ decreases. Whenδ = −1.0 all algorithms generates solutions almost equal to the lower
bound. Another point is that the problem is harder when the capacity is small, as one could
expect. When the capacity becomes equal to approximately10 the algorithmsMW andMW′

produces optimal solutions. When we consider the capacity greater than100, the algorithm
FFD generates optimal solutions (forδ equal to1 and 0.5). The MW′ algorithm generates
better solutions than theMW algorithm in several instances forδ equal to1.0, 0.5, 0.0 and
−0.5. Generally the solutions generated by the algorithmMW′ uses 2 or 1 less disks than
MW. Most of these better solutions were obtained with capacities between2 and8. It is also
interesting to notice that theMW algorithm generates a better solution than theMW′ algorithm
in one test, the one withδ = −1 and capacity equal to8. In this case the solution found by the
MW′ algorithm uses34 disks while the solution generated by theMW algorithm uses33 disks.
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Figure 6.5: Results withδ = 1.
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Figure 6.6: Results withδ = 0.5.

6.7 Conclusions and Future Work

In this paper we present approximation algorithms for the online and offline class-constrained
bin packing problem. The problem is motivated by applications in the data-placement problem
to video-on-demand servers and applications in the cuttingand packing area. For the online
problem we provide lower bounds for any bounded space algorithm and we also present an
algorithm for the unbounded version with approximation factor 2.75. For the offline problem we
present practical approximation algorithms for two special cases of the problem, with conditions
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Figure 6.7: Results withδ = 0.
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Figure 6.8: Results withδ = −0.5.

already considered in the literature: when all items have the same size and the parameterized
version of the problem. We also perform several tests with these practical algorithms. For the
instances we considered representing practical ones, the algorithmsMW andMW′ obtained
optimal solutions. At last, we present an APTAS for the special case where the number of
different classes of the input instance is bounded by a constant.



6.8. Bibliography 75

 0

 50

 100

 150

 200

 250

 0  5  10  15  20

R
es

ul
t

Storage Capacity

"lower"
"ffd"

"mw"
"mw2"

Figure 6.9: Results withδ = −1.
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Capítulo 7

Artigo: A Note on the Approximability of
Cutting Stock Problems

G. Cintra2 F. K. Miyazawa3 Y. Wakabayashi4 E. C. Xavier5

Abstract

Cutting stockproblems andbin packingproblems are basically the same problems. They differ
essentially on the variability of the input items. In the first, we have a set of items, each item
with a given multiplicity; in the second, we have simply a list of items (each of which we may
assume to have multiplicity 1). Many approximation algorithms have been designed for packing
problems; a natural question is whether some of these algorithms can be extended to cutting
stock problems. We define the notion of “well-behaved” algorithms and show that well-behaved
approximation algorithms for one, two and higher dimensional bin packing problems can be
translated to approximation algorithms for cutting stock problems with the same approximation
ratios. The results we show include the existence of an asymptotic approximation scheme for
the one-dimensional cutting stock problem and an algorithmwith an asymptotic performance
bound of2.077 for the two-dimensional cutting stock problem.

Key words: bin packing, cutting stock, approximation algorithm.
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7.1 Introduction

Cutting stock problems are of great interest, both from a theoretical and a practical point-of-
view. Their applications go from packing of items into boxesor containers, to cutting of fabrics,
hardboards, glasses, foams, etc. The exact computational complexity status of these problems
is unknown. It seems that the decision versions of these problems may not be included in NP
and that we can only assume that they lie somewhere belowEXPSPACE.

In this paper we show that some approximation algorithms forbin packing problems give
rise to approximation algorithms for cutting stock problems. More precisely, according to the
typology proposed by Wäscher, Haussner and Schumann [18], the problems we consider here
are theSingle Bin-Size Bin Packing(which we abbreviate by SBSBP) and theSingle Stock-Size
Cutting Stock(which we abbreviate by SSSCS). Ind-dimensionalSBSBP problems, we are
given a listL of n items, where each itemi ∈ L is a d-dimensional parallelepiped, and we
are asked to pack the elements ofL into a minimum number of unit-capacityd-dimensional
parallelepipeds. The items have to be packed orthogonally and oriented in all dimensions.
Furthermore, no two items can overlap in the packing. Ind-dimensionalSSSCS problems,
we are given additionally a (positive integer) demanddi (multiplicity) for each itemi ∈ L.
Therefore, SBSBP problems can be considered particular cases of SSSCS problems, where all
demands are equal to 1. Note, however, that although an instanceI for a SSSCS problem can be
trivially translated to an instanceI ′ for the corresponding SBSBP problem, the size ofI ′ may
be exponential in the size ofI. This means that such a trivial translation is not a good approach
to tackle SSSCS problems.

We denote by1SSSCS, 2SSSCS and3SSSCS the one, two and three-dimensional SSSCS
problems, respectively; and by1SBSBP, 2SBSBP and 3SBSBP the corresponding SBSBP
problems. For the latter, several approximation algorithms have appeared in the literature [12,
7, 3, 1, 13, 6, 4, 5]. Curiously, despite the similarity of theproblems, we did not find refer-
ences to approximation algorithms for SSSCS problems. Pioneering works on these problems
were carried out by Gilmore and Gomory [9, 10, 11] in the earlysixties, and since them many
contributions have appeared [14, 15, 16, 17]. We refer the reader to Cheng et al. [2] for a survey.

In this note we discuss how to extend some approximation algorithms for SBSBP problems
to approximation algorithms for SSSCS problems through thenotion of “well-behaved” algo-
rithm. In Section 7.3 we consider the1SSSCS problem. We define the concept of well-behaved
algorithm and show that any well-behaved algorithm for the1SBSBP problem can be trans-
lated to an algorithm for the1SSSCS problem. In Section 7.4 we mention how to obtain similar
results for higher dimensional SSSCS problems. We assume that the reader is familiar with the
algorithms for the1SBSBP problem we mention here:NF (Next Fit),FF (First Fit),BF (Best
Fit), NFD (Next Fit Decreasing),FFD (First Fit Decreasing),BFD (Best Fit Decreasing), and
HM (Harmonic).
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7.2 Notation

An instanceI = (L, s, d) of the1SSSCS problem consists of a listL of elements, in which each
elemente ∈ L has sizese ∈ (0, 1] and demandde ∈ Z+; thuss = (se)e∈L andd = (de)e∈L.
Thenumber of itemsin the instanceI, which we denote by‖I‖, is the sum

∑

e∈L de. That is,
the number of items is at least the number of elements ofL. Thedemandde of an elemente
indicates that there is a multiplicity ofde itemsof the element of sizese. We say that an itemi
corresponding to an elemente ∈ L is an item oftypee. That is, in the instanceI there arede

items of typee.
For any structureT , we denote by〈T 〉 the size in bits of the representation ofT . Givenk

lists Q1, . . . , Qk, whereQi = (ai
1, . . . , a

i
ni

), we denote byQ = Q1‖ . . . ‖Qk theconcatenation
of these lists, defined as the listQ = (a1

1, . . . , a
1
n1

, . . . , ak
1, . . . , a

k
nk

). The number of elements of
a list or a setS is denoted by|S|.

If L = (a1, . . . , an) thenexpand(L, s, d) denotes the listL′ = (s1
1, . . . , s

1
d1

, . . . , sn
1 , . . . , s

n
dn

),
wheresi

j = s(ai), for 1 ≤ j ≤ di. Given an instanceL′ of the1SBSBP problem, we denote by
condense(L′) the triple(L, s, d), whereL′ = expand(L, s, d) and|L| is minimum.

For a given instanceI = (L, s, d), a one-dimensional binB can be represented (or de-
scribed) by a pair(LB, dB), whereLB ⊆ L, 0 ≤ dB(e) ≤ d(e) for eache ∈ LB. We say that
such a pair(LB, dB) is abin typefor I. Clearly,〈B〉 is bounded by a polynomial in〈I〉.

Theeq-partition(equal partition) of a listQ is the list(Q1, . . . , Qk), wherek is minimum
and (i)Q = (Q1‖ . . . ‖Qk); (ii) e′ = e′′ for e′, e′′ ∈ Qi, 1 ≤ i ≤ k. This definition also applies
to lists whose items are bins.

7.3 One-dimensional Single Stock-Size Cutting Stock Prob-
lem

The one-dimensional single stock-size cutting stock (1SSSCS) problem can be defined as fol-
lows:

Problem 1 (1SSSCS) Given an instanceI = (L, s, d) as defined above, find a packing of the
items inI into the minimum number of unit-capacity bins.

A natural approach to obtain approximation algorithms for the1SSSCS problem is to adapt
known algorithms for the1SBSBP problem. As we mentioned before, the naive approach that
transforms a given instanceI for the1SSSCS problem into the listexpand(I) and applies an
algorithm for the1SBSBP problem on this list is flawed as bothexpand(I) and the size of
the packing that is produced may be exponential in the size ofI. Of course, expansions ofI
may be easily avoided, so the main concern is whether we can adapt the algorithms so as to



7.3. One-dimensional Single Stock-Size Cutting Stock Problem 81

produce solutions withshort descriptions(that is, descriptions that are polynomial in the size
of I). Putting in a more general setting, we would like to addressthe following question: which
properties should an algorithm for the1SBSBP problem satisfy in order to be transformable
into an algorithm for the1SSSCS problem that produces a packing with a short description?
In what follows, we define the notion of well-behaved algorithm, and give an answer to this
question.

Definition 7.3.1 An algorithmA′ that receives an input listL′ for the 1SBSBP problem is
well-behaved if it satisfies the following two properties:

P1. STABLE ORDER PROPERTY. The algorithm packs consecutively the equal-sized items that
are consecutive in the input listL′. More precisely, if(L′

1, . . . , L
′
p) is an eq-partition ofL′

then the algorithm packs the items of eachL′
i consecutively. Formally, we may consider

that the algorithm behaves as follows:

1.1. Take(L′′, s, d) := condense(L′).

1.2. TakeL := expand(L′′′, s, d), whereL′′′ is a permutation ofL′′.

1.3. Pack the items following the order given byL.

P2. GROUPING PROPERTY. To pack an item, the algorithm does the following.

2.0 Suppose(L1, . . . , Lp) is an eq-partition ofL, whereL is the list mentioned in the
previous property. The algorithmA′ packs first the listL1.

2.1 Before packing the first item of a listLi,

2.1.1. let B = (B1, B2, . . . , Bk) be the list of existing non-empty bins, in the order
they were generated.

2.1.2. Let (B1, . . . ,Bq) be the eq-partition ofB.
Each listBj = (B1

j , . . . , B
nj

j ) is said to be a group.

2.1.3. LetBq+1 be a group with sufficiently many empty bins.
// New bins are obtained from this group.

2.2. To pack the first iteme ∈ Li,

2.2.1. the algorithm packse into a binBt
j ∈ Bj , for somej, such that eitherj ≤ q

or (j = q + 1 andt = 1).

2.2.2. NowBt
j becomes the current bin andBj the current group.

2.3 While the listLi is non-empty, to pack the next iteme ∈ Li,

2.3.1. if possible, packse into the current binBt
j .

2.3.2. If A′ fails in the previous step andBt+1
j ∈ Bj thenA′ packse into Bt+1

j .
Now,Bt+1

j becomes the current bin.
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2.3.3. If A′ fails in the previous step,A′ packse into a binB1
j′, for some groupBj′ .

Now,B1
j′ becomes the current bin andBj′ the current group.

It is not hard to check thatNF, FF, BF, HM, NFD, FFD, andBFD are well-behaved
algorithms. Now using this fact, and the concept of a short description of a packing, defined
below, we can derive our first result.

Definition 7.3.2 Let I = (L, s, d) be an instance for the1SSSCS problem andP a packing of
I. AdescriptionofP is a listD of pairs(B, bB), whereB = (LB, dB) is a bin type forI andbB

is the multiplicity of the bin typeB in the packingP; and if Be is the number of items of typee
in the binB, then

∑

(B,bB)∈L bBBe = de for anye ∈ L. We say thatD is a short descriptionif
the bin typesB are all distinct and〈D〉 is polynomially bounded in〈I〉.

Theorem 7.3.1 Let I be an instance for the1SSSCS problem andA′ an algorithm for the
1SBSBP problem. IfA′ is well-behaved, then there exists a polynomial time algorithmA that
produces a packing that is precisely the packing produced byA′ on the listexpand(I), differing
possibly only on the description of the packing.

Proof. Let I = (L, s, d), andL′ be the permutation ofexpand(I ) that is obtained as a conse-
quence of the stable order property P1, after applyingA′ toexpand(I ). Assume that(L1, . . . , Lk)

is the eq-partition ofL′.
Let (B1, . . . ,Bq) be an eq-partition of the bins generated by algorithmA′ for the items

L1‖ . . .‖Li and letBq+1 be a list of sufficiently many empty bins. Clearly, the algorithmAmay
use a short description of(B1, . . . ,Bq). Now, consider the packing of the items of the listLi+1.
To pack the first item ofLi+1, the algorithm chooses a binBt

j of a groupBj = (B1
j , . . . , B

nj

j ),
wherej ≤ q + 1, and tries to pack the items ofLi+1 in the bins(Bt

j, . . . , B
nj

j ), consecutively.
If it fails to pack all items ofLi+1 in these bins, it continues in the same fashion moving to the
first bin of another group.

Suppose thatBi1 , . . . ,Bim is the sequence of groups in the listB = (B1, . . . ,Bq+1) (of bins)
in which the algorithmA′ has packed the items ofLi+1, in the order the packing has occurred.
SinceA′ is a well-behaved algorithm, it packs the items in consecutive bins of each group. First
suppose thatm > 1. In this case, after packing the items ofLi+1 in the groupBi1 , the number
of different bins increases by at most 1 (note that the packing of the items may start in any of
the bins of the group). After packing items ofLi+1 in the groupsBi2 , . . . ,Bim−1 , the number of
different bins does not increase. After packing the remaining items ofLi+1 in the groupBim ,
the number of bins increases by at most2. Therefore, the number of different bins after packing
the whole listLi+1 increases by at most 3. Whenm = 1, the number of different bins increases
by at most 2.

Notice that with a simple calculation, the algorithmA can figure out how many items of
Li+1 can be packed in a bin of a groupBj and how many bins of this group it uses to pack



7.4. Two and Higher Dimensional Single Stock-Size Cutting Stock Problems 83

these items. After packing all the listsL1, . . . , Lk, we can conclude that the number of different
bins is at most3k. This shows that (mimicking the behavior of algorithmA′) we may design a
polynomial time algorithmA that produces a packing that has a short description.

Denote byNFcs, FFcs, BFcs, HMcs, NFDcs, FFDcs andBFDcs the algorithmsNF, FF, BF,
HM, NFD, FFD andBFD, respectively, adapted for the1SSSCS problem that generate pack-
ings with short descriptions.

Corollary 7.3.2 The algorithmNFcs (respectivelyNFcs, FFcs, BFcs, HMcs, NFDcs, FFDcs and
BFDcs) has asymptotic performance bound2 (respectively1.7, 1.7, 1.691 . . ., 1.691 . . ., 11/9

and11/9). The bound forHMcs holds whenM →∞.

Considering the same ideas of short descriptions presentedfor the well-behaved algorithms,
we may also convert the AFPTAS of Fernandez de la Vega and Lueker [7] into an AFPTAS for
the1SSSCS problem. That is, the following result holds.

Theorem 7.3.3 There exists anAFPTAS for the1SSSCS problem.

7.4 Two and Higher Dimensional Single Stock-Size Cutting
Stock Problems

An instanceI = (L, w, h, d) for the 2SSSCS problem consists of a list of elementsL, each
elemente ∈ L with width we ∈ (0, 1], heighthe ∈ (0, 1] and demandde ∈ Z+. Most of the
notation we used in the context of the1SSSCS problem can be extended easily to the context of
2SSSCS, as for example,expand(L, w, h, d), condense(L), etc. For this problem we can also
define the concept of well-behaved algorithm. Although better definitions may be given, we
present a simple definition ofwell-behaved algorithmfor the2SSSCS problem, as this can be
extended easily to higher dimensions.

Definition 7.4.1 An algorithmA that receives an input listL′ for the problem2SBSBP is well-
behaved if it satisfies the following properties:

Q1. STABLE ORDER PROPERTY. The behavior of the algorithm can be described as follows:

1.1. Take(L′′, w, h, d) := condense(L′).

1.2. TakeL := expand(L′′′, s, d), whereL′′′ is a permutation ofL′′.

1.3. Pack the items following the order given byL.

Q2. LEVEL ORIENTED PROPERTY. The strategy used by the algorithm to produce a packing
is the following:
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2.1 The algorithm generates a listL of levels using a well-behaved algorithm for the
1SBSBP problem.

2.2 The algorithm uses a well-behaved algorithm for the1SBSBP problem to pack the
levels ofL into unit-capacity two-dimensional bins.

Theorem 7.4.1 Let I be an instance for the2SSSCS problem andA′ an algorithm for the
2SBSBP problem. IfA′ is a well-behaved algorithm, then there exists a polynomialtime algo-
rithmA that produces a packing that is precisely the packing produced by the algorithmA′ on
the listexpand(I), differing possibly only on the description of the packing.

One of the most famous algorithm for the2SBSBP problem is the algorithmHFF (Hybrid
First Fit), presented by Chung, Garey and Johnson [3]. Theseauthors proved thatHFF has an
asymptotic performance bound of2.125, and later Caprara [1] proved that this algorithm has an
asymptotic performance bound of2.077 . . .. Frenk and Galambos [8] proved that the next fit
variant of the algorithmHFF, which we denote byHNF, has an asymptotic performance bound
of 3.382 . . .. The algorithm with the best known asymptotic performance bound for2SBSBP,
which we denote byHC, is due to Caprara [1] and has bound1.691 . . .. These three algorithms
are hybrid and use algorithms for the1SBSBP problem to pack items into levels and levels into
two-dimensional bins. Moreover, all algorithms for the1SBSBP problem used as subroutines
have a corresponding version for the1SSSCS problem, given by Corollary 7.3.2 or by Theorem
7.3.3.

Corollary 7.4.2 There exists an algorithmHNFcs (resp.HFFcs, HCcs) with asymptotic perfor-
mance bound3.382 . . . (resp.2.077 . . ., 1.691 . . .) for the2SSSCS problem.

Most of the ideas presented here can also be extended to higher dimensions. In particular,
the 4.84-approximation algorithms of Li and Cheng [13] and of Csirikand van Vliet [6] can
be translated to algorithms for the3SSSCS problem, as they generate packings that consist of
levels. We can prove that these algorithms are well-behavedand that the following holds.

Corollary 7.4.3 There exist algorithms for the problem3SSSCS with asymptotic performance
bound4.84.
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Abstract

We investigate several two-dimensional guillotine cutting stock problems. We restrict our at-
tention to the variants of these problems where the cuts arek-staged. We also consider the
variants in which orthogonal rotations are allowed. We firstpresent a dynamic programming
based algorithm for theRectangular Knapsack(RK). Using this algorithm we solved all in-
stances of the RK problem found at the OR–LIBRARY, includingone for which no optimal
solution was known. We also consider theTwo-dimensional Cutting Stock(2CS) problem. We
present a column generation based algorithm for this problem that uses the first algorithm above
mentioned to generate the columns. We also investigate a variant of this problem where the bins
have different sizes. At last, we study theTwo-dimensional Strip Packing(SP) problem. We
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also present a column generation based algorithm for this problem that uses the second algo-
rithm above mentioned where staged patterns are imposed. Inthis case we solve instances for
two-, three- and four-staged patterns. We report on some computational experiments with the
algorithms of this paper. The results indicate that these algorithms seem to be suitable for solv-
ing real-world instances. We give a detailed description (apseudo-code) of all the algorithms
presented here, so that the reader may easily implement these algorithms.

Key words: column generation, cutting stock, guillotine cutting, dynamic programming,
two-dimensional packing, strip packing

8.1 Introduction

Many industries face the challenge of finding solutions thatare the most economical for the
problem of cutting large objects to produce specified smaller objects. Very often, the large
objects (bins) and the small objects (items) are two-dimensional and have rectangular shape.
Besides that, a usual restriction for cutting problems is that in each object we may use only
guillotine cuts, that is, cuts that are parallel to one of the sides of the object and go from one
side to the opposite one; problems of this type are called two-dimensional guillotine cutting
problems. Another usual restriction for these problems arethe staged cuts. Ak-staged cutting
is a sequence of at mostk stages of cuts, each stage of which is a set of parallel guillotine cuts,
performed on the objects obtained in the previous stage. Clearly, the cuts in each stage must be
orthogonal to the cuts in the previous stage. We assume, without loss of generality, that the cuts
are infinitely thin.

In what follows, we define the problems we consider in this paper. In all of them, we assume
that at mostk stages of guillotine cuts are allowed, even if is is not explicitely mentioned.

In the Rectangular Knapsack(RK) problem we are given a rectangleB = (W, H) with
width W and heightH, and a list ofm items (types of rectangles), each itemi with width wi,
heighthi, and valuevi (i = 1, . . . , m). We wish to determine how to cut the rectangleB, so
as to maximize the sum of the values of the items that are produced. We assume that many
copies of the same item can be produced. We denote such an instance byI = (W, H, w, h, v).
Here, as well in the next problems, we assume thatw = (w1, . . . , wm), h = (h1, . . . , hm),
andd = (d1, . . . , dm) are lists. We use( ) to represent an empty list and the operator‖ to
concatenate lists.

TheTwo-dimensional Cutting Stock(2CS) problem is defined as follows. Given an unlim-
ited quantity of two-dimensional binsB = (W, H), with width W and heightH, and a list of
m items (small rectangles) each itemi with dimensions(wi, hi) and demanddi (i = 1, . . . , m),
determine how to cut the smallest number of binsB so as to producedi unities of each itemi.
An instance for the 2CS problem is denoted byI = (W, H, w, h, d).

We also consider the 2CS problem with variable bin sizes, that will be denoted by BPV.
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This problem is similar to the previous one: the difference is that we are now given a list of
two-dimensional bin typesB1, . . . , Bb, each bin typeBj with dimensions(Wj, Hj) and value
Vj (there is an unlimited quantity of them). We want to determine how to producedi unities of
each itemi, 1 ≤ i ≤ m, so as to minimize the sum of the values of the bins that are used. Such
an instance for this problem is denoted byI = (W, H, V, w, h, d), whereW = (W1, . . . , Wb),
H = (H1, . . . , Hb) andV = (V1, . . . , Vb).

TheTwo-dimensional Strip Packing(SP) problem is the following: given a two-dimensional
strip with width W and infinite height, and a list ofm items (rectangles), each itemi with
dimensions(wi, hi) and demanddi, 1 ≤ i ≤ m, determine how to producedi unities of each
item i from the strip, so as to minimize the height of the part of the strip that is used. We require
that the cuts bek-staged, and that in the first stage (in which horizontal cutsare performed) the
distance between any two subsequent cuts must be at mostH (a commom restriction in practice,
imposed by the cutting machines). An instance as above will be denoted byI = (W, H, w, h, d).

For all these problems, we consider variants with orthogonal rotations. Unless otherwise
stated, we assume that the items are oriented (that is, rotations of the items are not allowed).
The variants of these problems in which the items may be rotated orthogonally are denoted
by RKr, BPr, BPVr and SPr. We also assume that, in all instances the items have feasible
dimensions, that is, each of them fit into the given bin (or some bin type) or strip.

This paper focuses on algorithms for the problems above mentioned. They are classical
hard optimization problems, interesting both from theoretical as well as practical point-of-view.
Most of them have been largely investigated. In the next sections we discuss these problems
and mention some of the results that have appeared in the literature.

We call each possible way of cutting a bin acutting pattern(or simplypattern). To represent
the patterns (and the cuts to be performed) we adopt the convention that is generally used in this
context. We consider the Euclidean planeR2, with thexy coordinate system, and assume that
the width of a rectangle is represented in thex-axis, and the height is represented in they-axis.
We also assume that the position(0, 0) of this coordinate system represents the bottom left
corner of the bin. Thus a bin of widthW and heightH corresponds to the region defined by
the rectangle whose bottom left corner is at the position(0, 0) and the top right corner is at the
position(W, H). To specify the position of an itemi in the bin, we specify the coordinates of
its bottom left corner. Using these conventions, it is not difficult to define more formally what
is a pattern and how we can represent one.

A guillotine patternis a pattern that can be obtained by a sequence of guillotine cuts applied
to the original bin and to the subsequent small rectangles that are obtained after each cut (see
Figure 8.1).

Many practical applications have restrictions on the number of cutting stages to obtain the
final items, especially when the cost of the material to be cutis low compared to the industrial
cost involved in the cutting process. We say that a pattern isk-stagedif it is obtained after
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Figure 8.1: (a) Non-guillotine pattern; (b) Guillotine pattern.

performingk stages of cutting (an eventual additional stage is allowed in order to separate an
item from a wasted area). In Figure 8.1(b) we have a3-staged (guillotine) pattern (We consider
that the gray area is a wasted area). Following other papers in the literature (see [12, 13, 46]),
we assume that the first cutting stage is performed in the horizontal direction, for all problems
on staged patterns.

This paper is organized as follows. In Section 8.2, we focus on the Rectangular Knap-
sack (RK) problem, where we present dynamic programming based algorithms to obtain exact
solutions for it.

Section 8.3 is devoted to the Two-dimensional Cutting Stock(2CS) problem. We describe
two algorithms for it, both based on the column generation approach. One of them uses a
perturbation strategy to deal with the residual instances.We also consider the variant of the 2CS
problem in which orthogonal rotations are allowed. In Section 8.4 we study the BPV problem,
a variant of the 2CS problem where bins may have different sizes and values. In Section 8.5 we
study the Strip Packing (SP) problem. All algorithms based on the column generation approach
we present here make use of the exact algorithms of Section 8.2.

Finally, in Section 8.6 we report on the computational results we have obtained with the
presented algorithms, and in the last section we make some final remarks. The computational
tests show that the algorithms we describe here find solutions for medium size instances that
are very close to the optimum in small amount of time.

Observation: The results of this paper is an extension of the work done by Cintra [18],
where he presented column generation algorithms for the non-staged versions of the problems
RK, 2CS and BPV. In this paper we extend his work to consider staged patterns and also to the
SP problem. A paper containing the results presented here and the results presented by Cintra
[18] was submitted to a journal.

8.2 Thek-staged rectangular knapsack problem

TheRectangular Knapsack(RK) problem has been largely investigated since the sixties. Gilmore
and Gomory [27, 28] studied this problem (on guillotine cuts) and they also introduced in 1965
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the variant withk-staged cuts [29]. In 1972, Herz [31] presented a recursive algorithm to obtain
patterns, called canonical, making use of the so-calleddiscretization points. Christofides and
Whitlock [15] showed a dynamic programming approach to compute the discretization points.
Some papers also consider exact tree search procedures [7, 39] for this problem. Arenales
and Morábito [3] proposed an exact branch and bound algorithm using an and-or-graph search
approach for non-guillotine patterns.

Wang [47] proposed an algorithm that generates cutting patterns combining smaller pieces
of patterns. Beasley [5] proposed a dynamic programming approach using the discretization
points of Herz for both the non-staged and the staged versions of the problem. Recently, Belov
and Scheithauer [8] presented a branch and cut algorithm fora variant restricted to 2-staged
(oriented) patterns. Lodi and Monaci [36] also investigated the 2-staged version. For the variant
in which all items must be packed at most once, Jansen [33] obtained a(2 + ǫ)-approximation
algorithm.

We describe now the algorithms we implemented for the RK problem. For that, we present
first some concepts and results. We basically implement the recurrence formulas proposed
by Beasley (using dynamic programming) combined with the concept of discretization points
defined by Herz [31]. This approach seems to be very effective: we could solve an instance of
the OR-Library whose optimal solution was unknown.

Let I = (W, H, w, h, v) be an instance of the RK problem. We consider thatW , H, and the
entries ofw andh are all integer numbers. If this is not the case, we can obtainan equivalent
integral instance simply by multiplying the widths and/or the heights of the bin and of the items
by appropriate numbers.

A discretization point of the width(respectively of theheight) is a valuei ≤ W (respectively
j ≤ H) that can be obtained by an integer conic combination ofw1, . . . , wm (respectively
h1, . . . , hm).

We denote byP (respectivelyQ) the set of all discretization points of the width (respectively
height). Following Herz, we say that acanonical patternis a pattern for which all cuts are made
at discretization points.

We note that it suffices to consider only canonical patterns (for every pattern that is not
canonical there is an equivalent one that is canonical). To refer to them, the following functions
will be useful. For a rationalx ≤ W , let p(x) := max (i | i ∈ P, i ≤ x) and for a rational
y ≤ H, let q(y) := max (j | j ∈ Q, j ≤ y).

We denote byV (W, H, k,V), (respectivelyV (W, H, k,H)) the value of an optimal canoni-
cal guillotinek-staged pattern for a rectangle of dimensions(W, H) where the first stage of cut
is done in the vertical (horizontal) direction, i.e, the parametersH andV indicate the direction
of the first cutting stage: either horizontal or vertical. The recurrence formulas to calculate these
values are given in what follows. In this formula,v(w, h) denotes the value of the most valuable
item that can be cut in a rectangle of dimensions(w, h); it is 0 if no item can be cut in such a



92Capítulo 8. Artigo:Algorithms for Two-Dimensional Cutting Stock and Strip Packing Problems Using Dynamic

rectangle.

V (w, h, 0,V orH) = v(w, h)

V (w, h, k,V) = max{V (w, h, k − 1,H), (V (w′, h, k − 1,H) + V (p(w − w′), h, k,V) | w′ ∈ P, w′ ≤ w/2},

V (w, h, k,H) = max{V (w, h, k − 1,V), (V (w, h′, k − 1,V) + V (w, q(h− h′), k,H) | h′ ∈ Q, h′ ≤ h/2)}.

8.2.1 Discretization points

In this section we present, for completeness, an algorithm,called DDP (Discretization using
Dynamic Programming) to find the discretization points of the width (or height). The algorithm
is already known in the literature and a detailed description of this algorithm and other ones to
generate discretization points can be found in [18].

The presented algorithm finds the discretizations points ofthe width. To find the discretiza-
tion points of the height, it is only needed to consider the height of the items, inspite of the
width and to consider the height of the bin. The basic idea of this algorithm is to solve a knap-
sack problem in which every itemi has weight and valuewi (i = 1, . . . , m), and the knapsack
has capacityW . The well-known dynamic programming technique for the knapsack problem
(see [23]) finds optimal values of knapsacks with (integer) capacities taking values from1 to
W . It is easy to see thatj is a discretization point if and only if the knapsack with capacity j

has optimal valuej.

Input: W , w1, . . ., wm.
Output: a setP of discretization points.

P = {0}.
For j = 0 to W do cj = 0.
For i = 1 to m do

For j = wi to W

If cj < cj−wi
+ wi thencj = cj−wi

+ wi

For j = 1 to W

If cj = j thenP = P ∪ {j}.
ReturnP.

Algorithm 8.1: DDP

We note that the algorithm DDP requires timeO(mW ). The algorithm DDP is suited for
instances in whichW is not very large. In all the computational tests, presentedin Section 8.6,
we used the algorithm DDP to generate the discretization points.
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8.2.2 Thek-staged RK problem

In this section we present an exact algorithm to solve this problem and a variant where rotations
are allowed.

Let I = (W, H, w, h, v), with w = (w1, . . . , wm), h = (h1, . . . , hm) andv = (v1, . . . , vm),
be an instance of the problem RK.

We denote byP (respectivelyQ) the set of all discretization points of the width (respec-
tively height). We denote byv(w, h) the value of the most valuable item that can be cut (or be
obtained without any cut) from a rectangle of dimensions(w, h), or 0 if no item can be cut (or
be obtained).

We describe in the sequel the algorithm SDP (Algorithm 8.2) that solves the recurrence
formulas proposed for thek-staged RK problem. In the description of this algorithm we assume
that the first stage of cuts is done in the horizontal direction.

Let wmin (respectivelyhmin) be the minimum width (height) of the items in the instance.
Let P0 be the set of valuesi ∈ P such thati ≤W −wmin, and letQ0 be the set of valuesj ∈ Q

such thatj ≤ H − hmin. Let P1 = P0 ∪ {W}, and letQ1 = Q0 ∪ {H}. We can use the setsP1

andQ1 instead of the setsP andQ in the above recurrence and possibly obtain an improvement
in the time to solve it, since no item can be to the right (respectively to the top) of a vertical
(respectively horizontal) cut done in a position greater thanW − wmin (H − hmin).

We have designed the algorithm in such a way that a pattern corresponding to an optimal
solution can be easily obtained. For that, the algorithm stores in a matrix, for every rectangle
of width pi ∈ P1 and heightqj ∈ Q1, which is the direction (horizontal or vertical) and the
position of the first guillotine cut that has to be made in thisrectangle. In case no cut should be
made in the rectangle, the algorithm stores the item that corresponds to this rectangle.

When the algorithm SDP halts, we have thatV (k, i, j) contains the optimal value that can
be obtained ink stages for a rectangle with dimensions(pi, qj). Furthermore,guillotine(k, i, j)

indicates the direction of the first guillotine cut, andposition(k, i, j), stores the corresponding
position (in thex-axis or in they-axis) of the first guillotine cut. Ifguillotine(k, i, j) = nil ,
then no cut has to be made in this rectangle. In this case,item(i, j) (if nonzero) indicates which
item corresponds to this rectangle. The value of the optimalsolution will be inV (k, r, s), where
r = |P1| ands = |Q1|.

The algorithm calculates the best solutions for the1-staged problem and then uses this
information to calculate the best solutions of the2-staged problem and so forth. There may
be a stage in which no cut has to be made: that happens when the best solution of a given stage,
sayl, is the best solution of the previous stagel − 1. In this case, the value’P’ is stored in the
corresponding entry ofguillotine, indicating that the solution is given by the previous stage.

Consider thatr > s. The attributions of value to the variablet can be done inO(log r) time
by using binary search in the set of the discretization points. But we can use a vectorX (resp.
Y ), of sizeW (resp.H), and letXi (resp.Yj) containp(i) (resp.q(j)). Once the discretization
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Input: An instanceI = (W, H, w, h, v, k) of thek-staged RK problem.
Output: An optimalk-staged solution forI.

Let p1 < . . . < pr, be the points inP1.
Let q1 < . . . < qs, be the points inQ1.
For i = 1 to r

For j = 1 to s

V (0, i, j) = max ({vf | 1 ≤ f ≤ m, wf ≤ pi andhf ≤ qj} ∪ {0}).
item(0, i, j) = max ({f | 1 ≤ f ≤ m, wf ≤ pi, hf ≤ qj andvf = V (1, i, j)} ∪ {0}).
guillotine(0, i, j) = nil.

If k is even thenA = ’H’ else A = ’V’
For l = 1 to k

For i = 2 tor

For j = 2 tos

V (l, i, j) = V (l − 1, i, j)

guillotine(l, i, j) =’P’
If A = ’V’ then

n = max (f | 1 ≤ f ≤ s andqf ≤ ⌊
qj

2
⌋).

Fory = 1 ton

t = max (f | 1 ≤ f ≤ s andqf ≤ qj − qy).
If V (l, i, j) < V (l − 1, i, y) + V (l, i, t) then

V (l, i, j) = V (l−1, i, y)+V (l, i, t), position(l, i, j) = qy andguillotine(l, i, j) =

’H’.
Else

n = max (f | 1 ≤ f ≤ r andpf ≤ ⌊
pi

2
⌋).

Forx = 1 ton

t = max (f | 1 ≤ f ≤ r andpf ≤ pi − px).
If V (l, i, j) < V (l − 1, x, j) + V (l, t, j) then

V (l, i, j) = V (l−1, x, j)+V (l, t, j), position(l, i, j) = px andguillotine(l, i, j) =

’V’.
If A = ’V’ then A = ’H’ else A = ’V’.

Algorithm 8.2: SDP

points are calculated, it requires timeO(W + H) to determine the values in the vectorsX and
Y . Using these vectors, each attribution to the variablet can be done in constant time and leads
to an implementation of the algorithm DP, using DDP as a subroutine, with time complexity
O(mW + mH + (k

2
)( r2s

2
) + (k

2
)( rs2

2
)). In any case, the amount of memory required by the

algorithm SDP isO(krs + W + H). We use this strategy in our implementation.
We can also use the algorithm SDP to solve thek-staged RKr problem, in which orthogonal
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rotations of the items are allowed. For that, for each itemi in I, of widthwi, heighthi and value
vi, we add another item of widthhi, heightwi and valuevi, wheneverwi 6= hi, wi ≤ H and
hi ≤W . We denote the corresponding algorithm for this case by SDPr.

8.3 The 2CS problem

We focus now on theTwo-dimensional Cutting Stock(2CS) problem. Gilmore and Gomory [27,
28, 29] in the early sixties were the first to propose the use ofthe column generation approach
for this problem. They proposed thek-staged pattern version and also considered the BPV
problem, the variant of 2CS with bins of different sizes.

Alvarez-Vales, Parajon and Tamarit [2] also presented a column generation approach for the
2CS problem. They used the dynamic programming algorithm presented by Beasley and also
some meta-heuristic procedures. Puchinger and Raidl [42] investigated the 3-staged version:
they applied the column generation approach using either a greedy heuristic or an evolutionary
algorithm to generate columns.

Riehme, Scheithauer and Terno [44] designed an algorithm for the 2CS problem withex-
tremely varying order demands. Their algorithm is also based on the column generation ap-
proach and is restricted to a2-staged problem. Vanderbeck [46] also proposed a column gen-
eration approach for a cutting stock problem with several different restrictions. The solution
must be3-staged and unused parts of some stock can be used later as a new stock. The problem
involves other practical restrictions.

For the special case in which the demands are all equal to1 (also known as bin packing
problem) Chung, Garey and Johnson [16] presented the first approximation algorithm for this
problem, called HFF (Hybrid First Fit), shown to have asymptotic performance bound at most
2.125. Later, Caprara [11] proved that HFF has asymptotic performance bound at most2.077;
and he also presented an1.691-approximation algorithm (this is the best known result forthis
problem). We observe that the algorithm HFF is a2-staged algorithm, and therefore may be
used as a subroutine to anyk-staged problem fork ≥ 2. These results are for the oriented case.
When orthogonal rotations are allowed, Miyazawa and Wakabayashi [38] presented a 2.64-
approximation algorithm. For the particular case in which all bins are squares and rotations
are allowed, Epstein [25] presented a2.45-approximation algorithm. In [19], we have shown
that some of the approximation algorithms for the bin packing problem can be modified for the
cutting stock problem. In this case the algorithms are of polynomial time and preserve the same
approximation factor of the original algorithms.

The column generation algorithms we presented in this section were developed by Cintra
[18], but for completeness we also present these algorithmshere.

To discuss the column generation approach, let us first formulate the 2CS problem as an
ILP (Integer Linear Program). LetI = (W, H, w, h, d) be an instance for the 2CS problem.
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Represent each patternj for the instanceI as a vectorpj, whosei-th entry indicates the number
of times itemi occurs in this pattern. The 2CS problem consists then in deciding how many
times each pattern has to be used to meet the demands and minimize the total number of bins
that are used.

Let n be the number of all possible patterns forI, and letP denote anm× n matrix whose
columns are the patternsp1, . . . , pn. If we denote byd the vector of the demands, then we have
the following ILP formulation: minimize

∑n
j=1 xj subject toPx = d andxj ≥ 0 andxj integer

for j = 1, . . . , n. (The variablexj indicates how many times the patternj is selected.)
The well-known column generation method proposed by Gilmore and Gomory [27] consists

in solving the relaxation of the above ILP, shown below. The idea is to start with a few columns
and then generate new columns ofP , only when they are needed.

minimize x1 + . . . + xn

subject to Px = d (8.1)

xj ≥ 0 j = 1, . . . , n.

We can use the algorithm SDP (for the RK problem) to generate new columns (withk-staged
guillotine patterns). Ifyi is the dual value corresponding to each itemi, 1 ≤ i ≤ m, then we
want a pattern that maximizes

∑m
i=1 yizi, wherezi is the number of times itemi is used in the

pattern. We describe in the sequel the algorithm SimplexCG2 that solves (8.1) (Algorithm 8.3).

Input: An instanceI = (W, H, w, h, d) of the 2CS problem.
Output: An optimal solution for (8.1), where the columns ofP are patterns forI.
Subroutine: The algorithm SDP for the RK problem.

1 Let x = d andB be the identity matrix of orderm.
2 SolveyTB = 1IT .
3 Generate a new columnz executing the algorithm SDP with parametersW, H, w, h, y.
4 If yTz ≤ 1, returnB andx and halt (x corresponds to the columns ofB).
5 Otherwise, solveBw = z.
6 Let t = min (

xj

wj
| 1 ≤ j ≤ m, wj > 0).

7 Let s = min (j | 1 ≤ j ≤ m,
xj

wj
= t).

8 For i = 1 to m do
8.1Bi,s = zi.
8.2 If i = s thenxi = t; otherwise,xi = xi − wit.

9 Go to step 2.

Algorithm 8.3: SimplexCG2

We implemented this algorithm using subroutine SDP described in Section 8.2.
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We describe now a procedure to find an integer solution from the solutions obtained by
SimplexCG2. The procedure is iterative. Each iteration starts with an instanceI of the 2CS
problem and consists basically in solving (8.1) with SimplexCG2 obtainingB and x. If x

is integral, we returnB andx and halt. Otherwise, we calculatex∗ = (x∗
1, . . . , x

∗
m), where

x∗
i = ⌊xi⌋ (i = 1, . . . , m). For this new solution, possibly part of the demand of the items is not

fulfilled. More precisely, the demand of each itemi that is not fulfilled isd∗
i = di−

∑m
j=1 Bi,jx

∗
j .

Thus, if we taked∗ = (d∗
1, . . . , d

∗
m), we have a residual instanceI∗ = (W, H, w, h, d∗) (we may

eliminate fromI∗ the items with no demand).
If somex∗

i > 0 for somei ∈ {1, . . . , m}, part of the demand is fulfilled by the solution
x∗. In this case, we returnB andx, we letI = I∗ and start a new iteration. Ifx∗

i = 0 for all
i ∈ {1, . . . , m}, no part of the demand is fulfilled byx∗. We solve then the instanceI∗ with the
algorithm M-HFF (Modified HFF) that corresponds to the algorithm HFF modified to consider
demands for the items, see [19]. We present in what follows the algorithm CG (Algorithm 8.4)
that implements the iterative procedure we have described.

Note that, in each iteration, either part of the demand is fulfilled or we go to step 4. Thus,
after a finite number of iterations the demand will be met (part of it eventually in step 4). In
fact, it is easy to prove that step 3.6 of the algorithm CG is executed at mostm times (see [18]).

We observe that the algorithm M-HFF can be implemented to runin polynomial time,
see [19]. As its asymptotic performance bound is at most2.077 (see [11]), we may expect
that using M-HFF we produce solutions of good quality.

Input: An instanceI = (W, H, w, h, d) of the 2CS problem.
Output: A solution forI.

1 Execute the algorithm SimplexCG2 with parametersW, H, w, h, d obtainingB andx.
2 For i = 1 to m dox∗

i = ⌊xi⌋.
3 If x∗

i > 0 for somei, 1 ≤ i ≤ m, then
3.1ReturnB andx∗

1, . . . , x
∗
m (but do not halt).

3.2For i = 1 to m do
3.2.1For j = 1 to m dodi = di − Bi,jx

∗
j .

3.3Let m′ = 0, w′ = ( ), h′ = ( ) andd′ = ( ).
3.4For i = 1 to m do

3.4.1If di > 0 thenm′ = m′ + 1, w′ = w′‖(wi), h′ = h′‖(hi) andd′ = d′‖(di).
3.5 If m′ = 0 then halt.
3.6Let m = m′, w = w′, h = h′, d = d′ and go to step 1.

4 Return the solution of algorithm M-HFF executed with parametersW, H, w, h, d.

Algorithm 8.4: CG

We note that the algorithm CG can be used to solve the variant of 2CS, called BPr, in which
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orthogonal rotations of the items are allowed. For that, before we call the algorithm SDP, in step
3 of SimplexCG2, it suffices to make the transformation explained at the end of Section 8.2.2.
We will call SimplexCGr

2 the variant of SimplexCG2 with this transformation. It should be
noted however that the algorithm M-HFF, called in step 6 of CG, does not use the fact that the
items can be rotated.

We use a simple algorithm for the variant of BPr in which all items have demand 1. This
algorithm, calledFirst Fit Decreasing Height using Rotations(FFDHR), has asymptotic ap-
proximation bound at most 4, as have been shown by Cintra in [18]. Substituting the call to
M-HFF with a call to FFDHR, we obtain the algorithm CGR, that is a specialized version of
CG for the BPr problem.

We also tested another modification of the algorithm CG (and of CGR). This is the fol-
lowing: when we solve an instance, and the solution returnedby SimplexCG2 rounded down is
equal to zero, instead of simply submitting this instance toM-HFF (or FFDHR), we use M-HFF
(or FFDHR) to obtain agoodpattern, and update the demands; if there is some item for which
the demand is not fulfilled, we go to step 1. Thegoodpattern used is the one with the largest
occupated area of the bin.

Note that, the basic idea is toperturb the residual instances whose relaxed LP solution,
rounded down, is equal to zero. With this procedure, it is expected that the solution obtained
by SimplexCG2 for the residual instance has more variables with value greater than 1. The
algorithm CGp, described in what follows (Algorithm 8.5), incorporates this modification.

Input: An instanceI = (W, H, w, h, d) of 2CS.
Output: A solution forI.

1 Execute the algorithm SimplexCG2 with parametersW, H, w, h, d obtainingB andx.
2 For i = 1 to m dox∗

i = ⌊xi⌋.
3 If x∗

i > 0 for somei, 1 ≤ i ≤ m, then
3.1ReturnB andx∗

1, . . . , x
∗
m (but do not halt).

3.2For i = 1 to m do
3.2.1For j = 1 to m dodi = di − Bi,jx

∗
j .

3.3Let m′ = 0, w′ = ( ), h′ = ( ) andd′ = ( ).
3.4For i = 1 to m do

3.4.1If di > 0 thenm′ = m′ + 1, w′ = w′‖(wi), h′ = h′‖(hi) andd′ = d′‖(di).
3.5 If m′ = 0 then halt.
3.6Let m = m′, w = w′, h = h′, d = d′ and go to step 1.

4 Return a pattern generated by the algorithm M-HFF, executedwith parameters
W, H, w, h, d, that has the smallest wasted area, and update the demands.

5 If there are demands to be fulfilled, go to step 1.

Algorithm 8.5: CGp
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It should be noted that with this modification we cannot guarantee anymore that we have to
make at mostm + 1 calls to SimplexCG2. It is however, easy to see that the algorithm CGp in
fact halts, as each time step 1 is executed, the demand decreases strictly. After a finite number
of iterations the demand will be fulfilled and the algorithm halts.

8.4 The 2CS problem with bins of different sizes

In this section we adapt the algorithm CG for the BPV problem.Let I = (W, H, V, w, h, d) be
an instance of the BPV, whereW = (W1, . . . , Wb), H = (H1, . . . , Hb) andV = (V1, . . . , Vb)

are lists of sizeb indicating the height, width, and value of each bin typei, 1 ≤ i ≤ b. We
can also represent each patternj of the instanceI as a vectorpj , whosei-th entry indicates the
number of times itemi occurs in this pattern. The BPV problem consists then in deciding how
many times each pattern has to be used to meet the demands and minimize the total value of the
bins that are used. Letn be the number of all possible patterns forI, and letP denote anm×n

matrix whose columns are the patternsp1, . . . , pn. If we denote byd the vector of the demands,
then the following is an ILP formulation for the BPV problem:minimize

∑n
j=1 Vjxj subject to

Px = d andxj ≥ 0 andxj integer forj = 1, . . . , n. (The variablexj indicates how many times
patternj is selected andVj is the value of the bin type used in patternj). The following is the
corresponding relaxed formulation.

minimize V1x1 + . . . + Vnxn

subject to Px = d (8.2)

xj ≥ 0 j = 1, . . . , n.

In this case, we can also use the algorithm SDP to produce guillotine patterns. Ifyi is the
dual value corresponding to each itemi, 1 ≤ i ≤ m, then we want a pattern that maximizes
∑m

i=1 yizi, wherezi is the number of times itemi is used in the pattern. But in this case we
have to solve the SDP problem to each possible bin sizej, and a columnj enters in the basis if
∑m

i=1 yizi > Vj.
The algorithms of this section are an extension of the algorithms of the previous section. A

more detailed description of these algorithms was done by Cintra [18].
We describe in the sequel the algorithm SimplexCG3 that solves (8.2) (Algorithm 8.6). In

this algorithm, we have a vectorf of sizem that indicates the bin associated with each column
of the matrixB. This way, we can reconstruct a solution considering the vector f , and the
entries ofB, guillotine andposition. In the algorithm SimplexCG3 we used subroutine SDP to
solve the RK problem.
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Input: An instanceI = (W, H, V, w, h, d) of the BPV problem.
Output: An optimal solution for (8.2), where the columns ofP are the patterns forI.
Subroutine: The algorithm SDP for the RK problem.

1 Let f be a vector of sizem wherefi is the smallest index of j such thatwi ≤Wj andhi ≤ Hj .
2 Let x = d andB be the identity matrix of orderm.
3 SolveyTB = V T

B .
4 For i = 1 to b do

4.1Generate a new columnz executing the algorithm SDP with parametersWi, Hi, w, h, y.
4.2 If yT z > Vi, go to step 6.

5 ReturnB, f andx and halt (x corresponds to the columns ofB).
6 SolveBw = z.
7 Let t = min (

xj

wj
| 1 ≤ j ≤ m, wj > 0).

8 Let s = min (j | 1 ≤ j ≤ m,
xj

wj
= t).

9 Let fs = i

10 For i = 1 to m do
10.1Bi,s = zi.
10.2If i = s thenxi = t; otherwise,xi = xi − wit.

11 Go to step 3.

Algorithm 8.6: SimplexCG3

The algorithm CGV (Algorithm 8.7) that solves the BPV problem using the algorithm
SimplexCG3 is very similar to the algorithm CG of Section 8.3, and therefore we omit the
details.

We also considered the variants of the algorithm CGV, when wemay have orthogonal rota-
tions, and when the residual instance is solved with aperturbationmethod. In the latter case,
to generate a pattern we use a bin for which the fractionVi

Hi Wi
(for i = 1, . . . , b) attains the

minimum value.

8.5 The SP problem and the column generation method

The strip packing problem is mostly considered in the literature for the special case in which
the demands are all equal to1. Many approximation algorithms have been proposed for this
problem. Coffman, Garey, Johnson and Tarjan [21] presentedthe algorithms NFDH and FFDH
for the oriented case with asymptotic performance bounds 2 and 1.7, respectively. Algorithms
with better performance bounds were obtained by Baker, Brown and Katseff [4] and also by
Kenyon and Rémila [34]:5/4 and(1 + ǫ). Recently, a PTAS for the SP problem with rotations
was obtained by Jansen and van Stee [32]. In 2005, Seiden and Woeginger [45] presented an
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Input: An instanceI = (W, H, V, w, h, d) of BPV.
Output: A solution forI.

1 Execute the algorithm SimplexCG2 with parametersB, w, h, d obtainingB, b andx.
2 For i = 1 to m dox∗

i = ⌊xi⌋.
3 If x∗

i > 0 for somei, 1 ≤ i ≤ m, then
3.1ReturnB, b andx∗

1, . . . , x
∗
m (but do not halt).

3.2For i = 1 to m do
3.2.1For j = 1 to m dodi = di − Bi,jx

∗
j .

3.3Let m′ = 0, h′ = ( ), w′ = ( ) andd′ = ( ).
3.4For i = 1 to m do

3.4.1If di > 0 thenm′ = m′ + 1, w′ = w′‖(wi), h′ = h′‖(hi) andd′ = d′‖(di).
3.5 If m′ = 0 then halt.
3.6Let m = m′, w = w′, h = h′, d = d′ and go to step 1.

4 Let V ∗ = min ( Vi

Hi Wi
| i = 1, . . . , b) andj = min (i | Vi

Hi Wi
= V ∗).

5 Return the solution of algorithm M-HFF executed with parametersWj , Hj, w, h, d.

Algorithm 8.7: CGV

analysis of the quality of ak-stage guillotine strip packing versus a globally optimum packing.
They showed that fork = 2 no algorithm can guarantee any bounded asymptotic performance
ratio. Whenk = 3 (resp.k = 4) an asymptotic performance ratio arbitrarily close to1.69103

(resp.1) can be obtained. Although some of the approximation algorithms above have bounds
very close to1, most of these results are more of theoretical relevance. Other approaches include
genetic algorithms [40], branch and bound and integer linear programming models [35, 37].

All algorithms for the SP problem mentioned above consider that each item has demand1.
Although the column generation approach can be easily applied to the problem SP, it is less
investigated under this approach. One of the main advantages of this approach is the possibility
to consider larger values of demands, as this case has many industrial applications.

Let I = (W, H, w, h, d) be an instance of the SP problem. We consider that the first cut
stage is done in the horizontal direction of the strip; furthermore, two subsequent cuts must be
at a distance at mostH. We callH-patterna pattern corresponding to a packing between two
subsequent horizontal cuts (that has to be at a maximum distanceH).

Let p1, p2, . . . , pn be the set of all possibleH-patterns. Denote byHi the height of theH-
patternpi and letP be the matrix whose columns are the patternsp1, p2, . . . , pn. In this case, the
following is an ILP formulation for the SP problem: minimize

∑n
j=1 Hjxj subject toPx = d

andxj ≥ 0 andxj integer forj = 1, . . . , n. To solve this ILP we can use the same approach
we used for the problem BPV. In fact, we can reduce the SP problem to the BPV problem. For
that, note that eachH-pattern with heightHi corresponds to a bin with dimensions(W, Hi) and
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value preciselyHi.

Let Q = {q1, . . . , qs} be the set of all discretization points of the heightH (this will be the
maximum height of the bins).

For 2-staged cutting patterns, we can considerH as the maximum height of an item, that
is, H = max(h1, . . . , hm). In this case,Q is the set of the heights of the items. If there ares

different heights, we haveH-patterns (bins) with widthWi = W and heightHi, for 1 ≤ i ≤ s.

The algorithm we propose to solve the SP problem, called CGS,uses basically the algorithm
CGV with two modifications. First, the residual instance is solved with the algorithm FFDH.
Second, every call to the algorithm SimplexCG3 solves only one instance of the RK problem,
consisting of a knapsack of size(W, H).

We note that, looking at the entries ofV , guillotine andposition produced by algorithm
SDP (algorithm for the staged RK problem) we can obtain solutions for each height inQ: we
just have to access positions(W, hi) of these variables, for eachhi ∈ Q, 1 ≤ i ≤ s. This last
modification is very important, ass can be very large and solving instances of the RK problem
for each of thes different bins would consume a lot of time. We did not use thisidea for the
BPV problem since it is not always better to solve only instances of RK with the largest bin
dimensions.

Note that, in the BPV problem, the instances may consist of bins of different widths. Con-
sider, for example, an instance consisting ofx bins: one bin with size(r, r2), another one with
size(r2, r) and some otherx − 2 bins with dimensions smaller thanr, for some integerr. If
we call the algorithm DP for a bin of dimensions(r2, r2) and assume that the number of dis-
cretization points is linearly proportional to the dimensions of the bin, then the algorithm will
consume timeO(kr6). But if we solve for each of the bins, the algorithm will consume time
O(kxr5).

The reader should note that the first cutting phase is done automatically by the column
generation algorithm by choosing the best bins in a solution. Therefore, the algorithm SDP is
called with the first cutting phase in the vertical directionand one cutting phase less than the
number of stages of the instance.

We implemented the algorithm CGS and its variant CGSr (for the orthogonal rotation case)
and CGSp with a perturbed residual instance. In the algorithm CGSp a good way to perturb the
instance is to generate a level by the algorithm FFDH with minimum wasted area (considering
the height of the level). When rotations are allowed we use analgorithm, which we denote by
FFDHR2, to generate a perturbed instance. This algorithm works like the algorithm FFDH, but
if an item cannot be packed in any of the existing levels then the algorithm tries to pack it in the
other orientation before creating a new level.
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8.6 Computational results

In the next subsections we present the computational results obtained with the implementations
of the algorithms we have described. All algorithms were implemented in C language. The
computational tests were run on a computer with processor Intel Pentium IV, clock of 1.8GHz,
memory of 512Mb and operating systemLinux using the LP solver CLP (COIN-OR Linear
Program Solver) [22].

For all problems we have performed computational tests considering staged guillotine pat-
terns with and without orthogonal rotations. Following other papers in the literature (see
[12, 13, 46]), we assume that the first cutting stage is performed in the horizontal direction.

8.6.1 Computational results for the RK problem

The performance of the algorithm SDP was tested with the instances of RK available in the
OR-LIBRARY1 (see Beasley [7] for a brief description of this library). Weconsidered the 13
instances of RK, calledgcut1,. . .,gcut13available in this library. For all these instances, with
exception of instancegcut13, optimal solutions had already been found [5]. We considered the
the SDP algorithm with the number of stagesk ∈ {2, 3, 4}.

In [20], Cintra and Wakabayashi already found an optimal solution for instancegcut13, but
considering non-staged patterns. Using the algorithm SDP we found optimal solutions for the
instancegcut13for the staged patterns considered. We notice that the solution found with3-
staged patterns already corresponds to an optimal solutionwithout restriction on the number
of stages. This solution was found in less than 22 seconds andis shown in Figure 8.2. In all
these instances the value of each item is precisely its area.Caprara and Monaci [14] and Fekete
and Schepers [26] could not find an optimal solution for this instance in 1800 seconds in recent
machines (a Pentium III 800MHz and Pentium IV 2.8GHz with 1Gbof memory, respectively).
We recall that their approaches are for the more general setting in which the cuts need not be
guillotine. We note that, in this general case, our approachcan be used to obtain a lower bound.

Since the algorithm solves all instances of the OR-LIBRARY in a few seconds, we construct
other four instances (gcut14 – gcut17) based on the available instances. We join the items
instancegcut13with the items of instancesgcut9, gcut10, gcut11andgcu12, obtaining the new
instances. For each one of these new instances we considereda knapsack with size (3500,3500).
In Table 8.1 we give some information about the instances.

The computational results are shown in Table 8.2. The column“Waste” shows —for each
solution found— the percentage of the area of the bin that does not correspond to any item. The
column “Time” indicates the time required to solve the instance; the entry0 indicates that the

1http://mscmga.ms.ic.ac.uk/info.html
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Figure 8.2: The optimal solution forgcut13found by the algorithm SDP with3-staged patterns.
The small squares have dimensions(378, 200) and the squares in the bottom have dimensions
(555, 496) and(555, 755).

time required is less than0.000001 seconds. On the average, the waste for 2-staged patterns was
less than 1% larger than the waste for 4-staged patterns. Thespace utilization comparing 3- and
4-staged patterns are very close. The solutions that differs in waste are the solutions of instances
gcut8, gcut14, gcut15, gcut16andgcut17. Moreover, all solutions found with 4-staged patterns
of instancesgcut1throughgcut13also correspond to optimal solutions for the unrestricted case
as one can compare to the results in [20].

To run tests for the case in which orthogonal rotations are allowed, we considered the in-
stancesgcut1,. . .,gcut17, and named them correspondingly asgcut1r,. . .,gcut17r(meaning that
rotations are allowed). The performance algorithm SDP for these instances is presented in table
8.3. We remark that, comparing with the problem without rotations, for some instances the time
increased and the waste decreased (on the average less than 1%), as one would expect.

For these instances, we can also note that the solutions with4-staged patterns correspond
to optimal solutions for the unrestricted case (see [20]) except for instancegcut14r. The dif-
ferences on space utilization from the 3-staged to the 4-staged patterns are also very small,
differing in the instancesgcut3r, gcut8r, gcut14r, gcut15randgcut16r.
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Quantity Dimensions
Instance of items of the bin r s

gcut1 10 (250, 250) 28 9
gcut2 20 (250, 250) 39 52
gcut3 30 (250, 250) 81 42
gcut4 50 (250, 250) 85 84
gcut5 10 (500, 500) 19 27
gcut6 20 (500, 500) 34 42
gcut7 30 (500, 500) 66 33
gcut8 50 (500, 500) 97 136
gcut9 10 (1000, 1000) 31 11
gcut10 20 (1000, 1000) 29 55
gcut11 30 (1000, 1000) 69 109
gcut12 50 (1000, 1000) 155 124
gcut13 32 (3000, 3000) 1457 2310
gcut14 42 (3500, 3500) 2390 2861
gcut15 52 (3500, 3500) 2422 2933
gcut16 62 (3500, 3500) 2559 2943
gcut17 82 (3500, 3500) 2676 2953

Table 8.1: Instances information.

Quant. 2-staged 3-staged 4-staged
of Dimensions Optimal Time Optimal Time Optimal Time

Inst. items of the bin Solution Waste (sec) Solution Waste (sec) Solution Waste (sec)

gcut1 10 (250, 250) 56460 9.66% 0 56460 9.66% 0 56460 9.66% 0
gcut2 20 (250, 250) 60076 3.878% 0 60536 3.142% 0 60536 3.142% 0
gcut3 30 (250, 250) 60133 3.787% 0 61036 2.342% 0 61036 2.342% 0
gcut4 50 (250, 250) 61698 1.283% 0 61698 1.283% 0.01 61698 1.283% 0
gcut5 10 (500, 500) 246000 1.600% 0 246000 1.600% 0 246000 1.600% 0
gcut6 20 (500, 500) 235058 5.977% 0 238998 4.401% 0 238998 4.401% 0
gcut7 30 (500, 500) 242567 2.973% 0 242567 2.973% 0 242567 2.973% 0.017
gcut8 50 (500, 500) 245758 1.697% 0 245758 1.697% 0 246633 1.347% 0.071
gcut9 10 (1000, 1000) 971100 2.890% 0 971100 2.890% 0 971100 2.890% 0
gcut10 20 (1000, 1000) 982025 1.798% 0 982025 1.798% 0 982025 1.798% 0
gcut11 30 (1000, 1000) 974638 2.536% 0 980096 1.990% 0 980096 1.990% 0
gcut12 50 (1000, 1000) 977768 2.223% 0.01 979986 2.001% 0 979986 2.001% 0.01
gcut13 32 (3000, 3000) 8906216 1.042% 21.82 8997780 0.025% 32.98 8997780 0.025% 43.72
gcut14 42 (3500, 3500) 12216788 0.271% 124.55 12239634 0.085% 175.96 12242100 0.064% 264.41
gcut15 52 (3500, 3500) 12215614 0.281% 137.21 12239904 0.082% 189.53 12242100 0.064% 289.98
gcut16 62 (3500, 3500) 12210837 0.320% 177.21 12243100 0.056% 239.24 12244511 0.045% 371.60
gcut17 82 (3500, 3500) 12232948 0.139% 223.13 12246422 0.029% 290.07 12246694 0.027% 456.00

Table 8.2: Performance of the algorithm SDP for 2-, 3- and 4-staged patterns.
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Qty. 2-staged 3-staged 4-staged
of Dimensions Optimal % Time Optimal % Time Optimal % Time

Inst. items of the bin Solution Waste (sec) Solution Waste (sec) Solution Waste (sec)

gcut1r 10 (250, 250) 58136 6.982 0 58136 6.982 0 58136 6.982 0
gcut2r 20 (250, 250) 60611 3.022 0 60611 3.022 0 60611 3.022 0
gcut3r 30 (250, 250) 60485 3.224 0 61399 1.762 0 61626 1.398 0
gcut4r 50 (250, 250) 62265 0.376 0.01 62265 0.376 0.01 62265 0.376 0.01
gcut5r 10 (500, 500) 246000 1.600 0 246000 1.600 0 246000 1.600 0
gcut6r 20 (500, 500) 240951 3.620 0 240951 3.620 0 240951 3.620 0
gcut7r 30 (500, 500) 245866 1.654 0.01 245886 1.654 0.01 245866 1.654 0
gcut8r 50 (500, 500) 247260 1.096 0.01 247462 1.015 0.02 247787 0.885 0.02
gcut9r 10 (1000, 1000) 971100 2.890 0 971100 2.890 0 971100 2.890 0
gcut10r 20 (1000, 1000) 982025 1.798 0 982025 1.798 0 982025 1.798 0
gcut11r 30 (1000, 1000) 980096 1.990 0.02 980096 1.990 0.03 980096 1.990 0.04
gcut12r 50 (1000, 1000) 988694 1.131 0.03 988694 1.131 0.05 988694 1.131 0.06
gcut13r 32 (3000, 3000) 8997780 0.025 106.3 9000000 0.0 129.64 9000000 0.0 226.75
gcut14r 42 (3500, 3500) 12240515 0.077% 322.77 12247700 0.019% 418.26 12247796 0.018% 702.19
gcut15r 52 (3500, 3500) 12242904 0.058% 337.27 12248176 0.015% 437.72 12250000 0.000% 725.21
gcut16r 62 (3500, 3500) 12243100 0.056% 368.20 12249625 0.003% 465.92 12250000 0.000% 800.55
gcut17r 82 (3500, 3500) 12242998 0.057% 393.52 12250000 0.000% 495.39 12250000 0.000% 829.92

Table 8.3: Performance of the algorithm SDP for 2-, 3- and 4-staged patterns with rotations.
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8.6.2 Computational results for the 2CS problem

We did not find instances for the 2CS problem in the OR-LIBRARY. We tested the algorithms
CG and CGp with the instancesgcut1, . . ., gcut12, associating with each itemi a randomly
generated demanddi between 1 and 100 (varying demands). We called these instancesgcut1d,
. . ., gcut12d.

In the tables of the results, LB denotes the lower bound (given by the rounded up solution
of (8.1)) for the value of an optimal integer solution.

We used the algorithm CGp with subroutine SDP andk = 2, 3, 4.

The tests for this case are presented in tables 8.4–8.9. For all tests, the algorithms CG and
CGp obtained solutions in a small amount of time.

Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 295 295.0 0.000% 0.03 19 322 8.39%
gcut2d 345 345.0 0.000% 0.37 137 360 4.17%
gcut3d 343 342.0 0.292% 1.10 388 374 8.29%
gcut4d 845 845.0 0.000% 4.02 828 878 3.76%
gcut5d 207 207.0 0.000% 0.03 19 224 7.59%
gcut6d 375 375.0 0.000% 0.14 77 395 5.06%
gcut7d 600 600.0 0.000% 0.59 278 642 6.54%
gcut8d 720 720.0 0.000% 3.35 592 765 5.88%
gcut9d 135 135.0 0.000% 0.07 48 141 4.26%
gcut10d 315 315.0 0.000% 0.14 79 328 3.96%
gcut11d 349 349.0 0.000% 0.68 224 375 6.93%
gcut12d 676 675.0 0.148% 4.03 660 722 6.37%

Table 8.4: Performance of the algorithm CG with 2-staged patterns.

For the2-staged cutting, the algorithms CG and CGp obtained optimum solutions for all
instances, except for two of them (on the average, the difference from LB was0.036%). When
compared to the solution of M-HFF, the improvement was5.93% on the average. This is a great
improvement, since M-HFF is also restricted to 2-staged patterns.

For the 3-staged problem, algorithm CGp, found one more optimal solution (gcut10d) com-
paring to the results of algorithm CG. For the 4-staged case the algorithm CG found a better
solution to instancegcutd7dthan the one found by the algorithm CGp. On the other hand the
algorithm CGp found an optimal solution to instancegcut11dwhile CG does not.

The algorithms had a good performance both in terms of the quality of the solution and in
terms of the time required. The improvement of the algorithmCGp for the 4-staged case, over
M-HFF was, on the average,8.89%, for example.
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Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 295 295.0 0.000% 0.03 21 322 8.39%
gcut2d 345 345.0 0.000% 0.45 173 360 4.17%
gcut3d 343 342.0 0.292% 1.31 534 374 8.29%
gcut4d 845 845.0 0.000% 5.99 1506 878 3.76%
gcut5d 207 207.0 0.000% 0.03 21 224 7.59%
gcut6d 375 375.0 0.000% 0.16 86 395 5.06%
gcut7d 600 600.0 0.000% 0.71 357 642 6.54%
gcut8d 720 720.0 0.000% 3.50 693 765 5.88%
gcut9d 135 135.0 0.000% 0.08 57 141 4.26%
gcut10d 315 315.0 0.000% 0.21 122 328 3.96%
gcut11d 349 349.0 0.000% 0.79 289 375 6.93%
gcut12d 676 675.0 0.148% 5.28 1167 722 6.37%

Table 8.5: Performance of the algorithm CGp with 2-staged patterns.

We also tested the algorithms with rotations on the instances gcut1dr,. . ., gcut12dr. See
tables 8.10–8.15.

Notice that the algorithm CGRp obtains better solutions than the algorithm CGR in several
instances. For the algorithm CGRp, in the 2-staged case, the difference from the lower bound
was 0.220%, on the average and the improvement over the FFDHR algorithm was10.14%.
These numbers are very close to the ones we can obtain for the 3- and 4-staged version.
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Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 294 294.0 0.000% 0.04 24 322 8.70%
gcut2d 345 345.0 0.000% 0.34 101 360 4.17%
gcut3d 333 333.0 0.000% 0.87 285 374 10.96%
gcut4d 837 836.0 0.120% 5.44 1015 878 4.67%
gcut5d 198 197.0 0.508% 0.05 29 224 11.61%
gcut6d 344 343.0 0.292% 0.20 100 395 12.91%
gcut7d 591 591.0 0.000% 0.46 203 642 7.94%
gcut8d 692 690.0 0.290% 7.02 985 765 9.54%
gcut9d 132 131.0 0.763% 0.08 49 141 6.38%
gcut10d 294 293.0 0.341% 0.12 58 328 10.37%
gcut11d 331 330.0 0.303% 1.42 379 375 11.73%
gcut12d 673 672.0 0.149% 4.32 601 722 6.79%

Table 8.6: Performance of the algorithm CG with 3-staged patterns.

Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 294 294.0 0.000% 0.04 26 322 8.70%
gcut2d 345 345.0 0.000% 0.38 135 360 4.17%
gcut3d 333 333.0 0.000% 1.30 506 374 10.96%
gcut4d 837 836.0 0.120% 8.19 1878 878 4.67%
gcut5d 198 197.0 0.508% 0.06 41 224 11.61%
gcut6d 344 343.0 0.292% 0.22 113 395 12.91%
gcut7d 591 591.0 0.000% 0.52 229 642 7.94%
gcut8d 692 690.0 0.290% 8.88 1563 765 9.54%
gcut9d 132 131.0 0.763% 0.10 70 141 6.38%
gcut10d 293 293.0 0.000% 0.13 73 328 10.67%
gcut11d 331 330.0 0.303% 2.28 710 375 11.73%
gcut12d 673 672.0 0.149% 4.95 885 722 6.79%

Table 8.7: Performance of the algorithm CGp with 3-staged patterns.
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Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 294 294.0 0.000% 0.04 23 322 8.70%
gcut2d 345 345.0 0.000% 0.46 133 360 4.17%
gcut3d 332 332.0 0.000% 0.87 260 374 11.23%
gcut4d 837 836.0 0.120% 4.27 668 878 4.67%
gcut5d 198 197.0 0.508% 0.05 28 224 11.61%
gcut6d 344 343.0 0.292% 0.19 98 395 12.91%
gcut7d 592 591.0 0.169% 0.27 103 642 7.79%
gcut8d 691 690.0 0.145% 9.68 1247 765 9.67%
gcut9d 131 131.0 0.000% 0.05 35 141 7.09%
gcut10d 294 293.0 0.341% 0.14 70 328 10.37%
gcut11d 331 330.0 0.303% 1.26 285 375 11.73%
gcut12d 673 672.0 0.149% 5.06 640 722 6.79%

Table 8.8: Performance of the algorithm CG with 4-staged patterns.

Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1d 294 294.0 0.000% 0.04 25 322 8.70%
gcut2d 345 345.0 0.000% 0.49 157 360 4.17%
gcut3d 332 332.0 0.000% 1.76 621 374 11.23%
gcut4d 837 836.0 0.120% 7.27 1606 878 4.67%
gcut5d 198 197.0 0.508% 0.06 40 224 11.61%
gcut6d 344 343.0 0.292% 0.26 136 395 12.91%
gcut7d 593 591.0 0.338% 0.61 295 642 7.63%
gcut8d 691 690.0 0.145% 10.33 1539 765 9.67%
gcut9d 131 131.0 0.000% 0.08 55 141 7.09%
gcut10d 294 293.0 0.341% 0.17 93 328 10.37%
gcut11d 330 330.0 0.000% 1.88 535 375 12.00%
gcut12d 673 672.0 0.149% 5.70 927 722 6.79%

Table 8.9: Performance of the algorithm CGp with 4-staged patterns.
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Solution Difference Columns Solution Improvement
Instance of CG LB from LB Time (sec) Generated of M-HFF over M-HFF

gcut1dr 291 291.0 0.000% 0.03 21 291 0.00%
gcut2dr 283 282.0 0.355% 3.01 263 314 9.87%
gcut3dr 318 316.0 0.633% 2.83 580 347 8.36%
gcut4dr 837 836.0 0.120% 5.50 722 846 1.06%
gcut5dr 175 175.0 0.000% 0.07 33 198 11.62%
gcut6dr 302 302.0 0.000% 0.44 156 371 18.60%
gcut7dr 543 542.0 0.185% 0.69 178 623 12.84%
gcut8dr 650 650.0 0.000% 6.76 602 734 11.44%
gcut9dr 126 125.0 0.800% 0.07 38 143 11.89%
gcut10dr 271 270.0 0.370% 0.37 128 301 9.97%
gcut11dr 300 299.0 0.334% 6.15 388 342 12.28%
gcut12dr 602 601.0 0.166% 21.55 835 696 13.51%

Table 8.10: Performance of the algorithm CGR with rotationsand 2-staged patterns.

Solution Difference Columns Solution Improvement
Instance of CGRp LB from LB Time (sec) Generated of FFDHR over FFDHR

gcut1dr 291 291.0 0.000% 0.05 26 291 0.00%
gcut2dr 283 282.0 0.355% 3.69 359 314 9.87%
gcut3dr 317 316.0 0.316% 4.35 1023 347 8.65%
gcut4dr 837 836.0 0.120% 9.47 1523 846 1.06%
gcut5dr 175 175.0 0.000% 0.09 45 198 11.62%
gcut6dr 302 302.0 0.000% 0.45 166 371 18.60%
gcut7dr 543 542.0 0.185% 0.72 193 623 12.84%
gcut8dr 650 650.0 0.000% 6.85 630 734 11.44%
gcut9dr 126 125.0 0.800% 0.10 61 143 11.89%
gcut10dr 271 270.0 0.370% 0.45 177 301 9.97%
gcut11dr 300 299.0 0.334% 8.32 677 342 12.28%
gcut12dr 602 601.0 0.166% 24.55 1207 696 13.51%

Table 8.11: Performance of the algorithm CGRp with rotations and 2-staged patterns.
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Solution Difference Columns Solution Improvement
Instance of CGRp LB from LB Time (sec) Generated of FFDHR over FFDHR

gcut1dr 291 291.0 0.000% 0.04 22 291 0.00%

gcut2dr 283 282.0 0.355% 3.50 256 314 9.87%

gcut3dr 315 313.0 0.639% 3.28 585 347 9.22%

gcut4dr 836 836.0 0.000% 6.62 782 846 1.18%

gcut5dr 175 174.0 0.575% 0.10 48 198 11.62%

gcut6dr 302 301.0 0.332% 0.78 228 371 18.60%

gcut7dr 544 542.0 0.369% 1.63 350 623 12.68%

gcut8dr 651 650.0 0.154% 11.92 716 734 11.31%

gcut9dr 123 122.0 0.820% 0.08 39 143 13.99%

gcut10dr 270 270.0 0.000% 0.35 89 301 10.30%

gcut11dr 299 298.0 0.336% 5.99 321 342 12.57%

gcut12dr 603 601.0 0.333% 35.15 976 696 13.36%

Table 8.12: Performance of the algorithm CGR with rotationsand 3-staged patterns.

Solution Difference Columns Solution Improvement
Instance of CGRp LB from LB Time (sec) Generated of FFDHR over FFDHR

gcut1dr 291 291.0 0.000% 0.05 27 291 0.00%

gcut2dr 283 282.0 0.355% 4.24 331 314 9.87%

gcut3dr 315 313.0 0.639% 5.13 1056 347 9.22%

gcut4dr 836 836.0 0.000% 9.67 1344 846 1.18%

gcut5dr 175 174.0 0.575% 0.14 69 198 11.62%

gcut6dr 301 301.0 0.000% 1.04 330 371 18.87%

gcut7dr 543 542.0 0.185% 2.10 509 623 12.84%

gcut8dr 651 650.0 0.154% 13.57 967 734 11.31%

gcut9dr 123 122.0 0.820% 0.10 53 143 13.99%

gcut10dr 270 270.0 0.000% 0.35 92 301 10.30%

gcut11dr 299 298.0 0.336% 6.41 417 342 12.57%

gcut12dr 602 601.0 0.166% 35.66 1142 696 13.51%

Table 8.13: Performance of the algorithm CGRp with rotations and 3-staged patterns.
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Solution Difference Columns Solution Improvement
Instance of CGRp LB from LB Time (sec) Generated of FFDHR over FFDHR

gcut1dr 291 291.0 0.000% 0.05 21 291 0.00%

gcut2dr 283 282.0 0.355% 1.95 174 314 9.87%

gcut3dr 315 313.0 0.639% 3.05 439 347 9.22%

gcut4dr 836 836.0 0.000% 6.41 583 846 1.18%

gcut5dr 175 174.0 0.575% 0.13 53 198 11.62%

gcut6dr 302 301.0 0.332% 0.54 147 371 18.60%

gcut7dr 543 542.0 0.185% 1.87 348 623 12.84%

gcut8dr 652 650.0 0.308% 14.51 691 734 11.17%

gcut9dr 123 122.0 0.820% 0.09 42 143 13.99%

gcut10dr 270 270.0 0.000% 0.45 103 301 10.30%

gcut11dr 299 298.0 0.336% 11.84 386 342 12.57%

gcut12dr 603 601.0 0.333% 40.92 903 696 13.36%

Table 8.14: Performance of the algorithm CGR with rotationsand 4-staged patterns.

Solution Difference Columns Solution Improvement
Instance of CGRp LB from LB Time (sec) Generated of FFDHR over FFDHR

gcut1dr 291 291.0 0.000% 0.05 26 291 0.00%

gcut2dr 283 282.0 0.355% 2.22 274 314 9.87%

gcut3dr 314 313.0 0.319% 6.85 1103 347 9.51%

gcut4dr 836 836.0 0.000% 12.81 1446 846 1.18%

gcut5dr 175 174.0 0.575% 0.14 65 198 11.62%

gcut6dr 302 301.0 0.332% 0.74 230 371 18.60%

gcut7dr 542 542.0 0.000% 2.46 568 623 13.00%

gcut8dr 651 650.0 0.154% 18.35 1159 734 11.31%

gcut9dr 123 122.0 0.820% 0.11 58 143 13.99%

gcut10dr 270 270.0 0.000% 0.44 109 301 10.30%

gcut11dr 299 298.0 0.336% 20.08 996 342 12.57%

gcut12dr 602 601.0 0.166% 47.96 1535 696 13.51%

Table 8.15: Performance of the algorithm CGRp with rotations and 4-staged patterns.



114Capítulo 8. Artigo:Algorithms for Two-Dimensional Cutting Stock and Strip Packing Problems Using Dynamic

8.6.3 Computational results for theBPV problem

We have tested the algorithm CGVp with the instancesgcut1d,. . ., gcut12d, defining three dif-
ferent bins. For each bin in the original instances, we definetwo others. Given an instance,
let (W, H) be the bin dimensions of this instance. In our modified instances, one bin has di-
mensions(1.2W, 0.8H) and the other has dimensions(1.1W, 0.9H). The value of each bin
corresponds to its areaW ×H.

For thek-staged version of he BPV problem, we present tests for the algorithm CGVp with
k = 2, 3, 4 (see tables 8.16–8.18). We do not present the results of the algorithm CGV since
CGVp got better results in several instances.

Solution Difference Columns
Instance of CGVp LB from LB Time (sec) Generated

gcut1d 14880000 14822812.5 0.386% 0.58 397

gcut2d 16820625 16740781.3 0.477% 1.31 492

gcut3d 20267500 20149803.6 0.584% 21.83 7877

gcut4d 46591875 46523511.2 0.147% 60.56 11569

gcut5d 42022500 41667500.0 0.852% 0.17 110

gcut6d 78167500 77621562.5 0.703% 0.96 539

gcut7d 124257500 123946562.5 0.251% 2.90 1316

gcut8d 161575000 161074884.1 0.310% 23.67 3958

gcut9d 131830000 130802500.0 0.786% 0.12 86

gcut10d 262470000 260444166.7 0.778% 0.81 434

gcut11d 304440000 303137516.6 0.430% 18.58 6926

gcut12d 611230000 609519416.7 0.281% 36.65 5452

Table 8.16: Performance of the algorithm CGVp with 2-staged patterns.

For k = 2 (resp.3 and4) the difference of the solution obtained by the algorithm from the
lower bound was of0.498% (resp.0.505% and0.437%) on the average. The algorithm CGVp

with k = 3 (resp. k = 4) has an increase of84, 56% (resp. 143.68%) of computational time
when compared withk = 2, on the average.

When orthogonal rotations are allowed in the BPV problem, wenote that it becomes harder
to solve the instances. We can see that the large instances require several minutes to be solved.
See tables 8.19–8.21.
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Solution Difference Columns
Instance of CGVp LB from LB Time (sec) Generated

gcut1d 14880000 14822812.5 0.386% 0.45 310

gcut2d 15768125 15679972.9 0.562% 6.37 2587

gcut3d 19914375 19830115.7 0.425% 8.72 3086

gcut4d 46413750 46269759.9 0.311% 103.53 19002

gcut5d 41737500 41517500.0 0.530% 0.70 493

gcut6d 74440000 73967812.5 0.638% 3.96 2116

gcut7d 123135000 122531666.7 0.492% 9.16 3940

gcut8d 155612500 155267743.8 0.222% 91.62 15493

gcut9d 130730000 129600000.0 0.872% 0.18 119

gcut10d 254160000 252596666.7 0.619% 1.61 1030

gcut11d 295270000 292967500.0 0.786% 17.55 5627

gcut12d 603220000 601848214.3 0.228% 66.44 9763

Table 8.17: Performance of the algorithm CGVp with 3-staged patterns.

Solution Difference Columns
Instance of CGVRp LB from LB Time (sec) Generated

gcut1dr 13908750 13828125.0 0.583% 0.67 416

gcut2dr 15474375 15432371.3 0.272% 37.05 4616

gcut3dr 19436875 19310805.3 0.653% 45.33 12159

gcut4dr 44905000 44767392.4 0.307% 166.68 21902

gcut5dr 40382500 40087187.5 0.737% 0.74 341

gcut6dr 71162500 70839625.0 0.456% 5.49 2411

gcut7dr 115312500 114817716.3 0.431% 56.78 13326

gcut8dr 153410000 152634892.3 0.508% 394.05 28128

gcut9dr 121040000 119568000.0 1.231% 1.14 756

gcut10dr 249260000 247872857.1 0.560% 5.68 1545

gcut11dr 289430000 286973906.4 0.856% 290.64 23447

gcut12dr 564650000 562898801.3 0.311% 690.59 28565

Table 8.19: Performance of the algorithm CGVRp with rotations and 2-staged patterns.
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Solution Difference Columns
Instance of CGVp LB from LB Time (sec) Generated

gcut1d 14880000 14822812.5 0.386% 0.44 307

gcut2d 15730625 15673933.2 0.362% 8.03 3163

gcut3d 19864375 19769831.3 0.478% 40.23 12327

gcut4d 46343750 46257603.4 0.186% 125.23 18410

gcut5d 41737500 41517500.0 0.530% 0.68 489

gcut6d 74187500 73967812.5 0.297% 2.27 1005

gcut7d 122745000 122295271.7 0.368% 9.09 3715

gcut8d 155832500 155221710.8 0.393% 117.61 17864

gcut9d 129360000 128389230.8 0.756% 1.01 727

gcut10d 254130000 252565036.2 0.620% 2.76 1649

gcut11d 294200000 292879166.7 0.451% 33.78 8413

gcut12d 602360000 599851250.0 0.418% 68.63 7886

Table 8.18: Performance of the algorithm CGVp with 4-staged patterns.

Solution Difference Columns
Instance of CGVRp LB from LB Time (sec) Generated

gcut1dr 13823750 13790625.0 0.240% 0.70 407

gcut2dr 15158750 15083409.1 0.499% 33.76 2676

gcut3dr 19235000 19120561.8 0.599% 45.67 8410

gcut4dr 44672500 44627391.4 0.101% 307.66 31450

gcut5dr 38887500 38456458.3 1.121% 2.42 1044

gcut6dr 70090000 69717232.1 0.535% 12.23 3892

gcut7dr 115220000 114605812.2 0.536% 52.29 10316

gcut8dr 151917500 151467609.8 0.297% 502.60 32303

gcut9dr 120290000 119104183.0 0.996% 0.41 210

gcut10dr 247580000 246552500.0 0.417% 5.55 2065

gcut11dr 283940000 282079863.6 0.659% 269.26 16320

gcut12dr 561610000 559820015.8 0.320% 1003.48 39675

Table 8.20: Performance of the algorithm CGVRp with rotations and 3-staged patterns.
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Solution Difference Columns
Instance of CGVRp LB from LB Time (sec) Generated

gcut1dr 13823750 13790625.0 0.240% 0.83 415

gcut2dr 15161875 15083409.1 0.520% 46.73 3010

gcut3dr 19181875 19118423.5 0.332% 96.76 16255

gcut4dr 44723750 44575105.3 0.333% 253.43 27104

gcut5dr 38890000 38454765.6 1.132% 4.72 1662

gcut6dr 70192500 69599732.1 0.852% 10.45 2639

gcut7dr 114867500 114503487.9 0.318% 70.18 12339

gcut8dr 151745000 151462312.9 0.187% 605.13 30285

gcut9dr 119730000 118806666.7 0.777% 2.73 1198

gcut10dr 248620000 246552500.0 0.839% 9.25 3409

gcut11dr 283560000 281851974.2 0.606% 628.87 27379

gcut12dr 561640000 559820015.8 0.325% 1328.03 32554

Table 8.21: Performance of the algorithm CGVRp with rotations and 4-staged patterns.



118Capítulo 8. Artigo:Algorithms for Two-Dimensional Cutting Stock and Strip Packing Problems Using Dynamic

8.6.4 Computational results for the SP problem

For the problem SP, we have used the instancesgcut1d,. . .,gcut12dconsidering the maximum
distance between two horizontal cuts of the strip as the width of the bin.

Although the instances for the SP problem required considerably more time than the (same)
instances for the 2CS problem, the corresponding times required by the latter were still small
and acceptable in practice.

The results for algorithm CGSp for 2-, 3- and4-staged cutting are shown in tables 8.22,
8.23 and 8.24, respectively. The lower bound corresponds tothe optimal fractional solution of
formulation 8.2.

Solution Difference Average Columns Solution Improvement
Instance of CGSp LB from LB Time (sec) Generated of FFDH over FFDH

gcut1d 51604 51583.0 0.041% 0.06 43 54323 5.01%
gcut2d 77436 77369.5 0.086% 0.26 141 77436 0.00%
gcut3d 80206 80112.5 0.117% 4.50 1479 83529 3.98%
gcut4d 196480 196422.5 0.029% 3.74 702 205250 4.27%
gcut5d 91177 91177.0 0.000% 0.04 29 96693 5.70%
gcut6d 168148 167987.5 0.096% 0.18 93 181578 7.40%
gcut7d 243241 243076.0 0.068% 0.65 232 259462 6.25%
gcut8d 332924 332669.3 0.077% 3.57 534 344732 3.43%
gcut9d 122836 122532.5 0.248% 0.08 66 129706 5.30%
gcut10d 272919 272680.5 0.087% 0.22 119 286790 4.84%
gcut11d 315026 314747.5 0.088% 1.50 332 338271 6.87%
gcut12d 573806 573590.0 0.038% 8.88 610 605126 5.18%

Table 8.22: Performance of the algorithm CGSp with 2-staged patterns.

For the 2-staged problem, all instances were solved in less than 10 seconds. On the av-
erage, the difference between the solutions found by the algorithm an the lower bound was
only 0.081% and an optimal solution for instancegcut5dwas found. The improvement of the
algorithm CGSp over FFDH was, on the average, of4.85%. These improvements are very
significant, since algorithm FFDH also produces 2-staged solutions.

For the 3-staged problem, the most difficult instance (gcut12) take151 seconds to be com-
pleted. On the average, the difference between the solutions found by the algorithm and the
lower bound was0.113% and the average improvement over FFDH was7.66%.

For the 4-staged problem, the difference between the solutions found by the algorithm CGSp

an the lower bound was0.116% and the improvement over FFDH was7.74%, on the average.
We also performed tests when orthogonal rotations are allowed. The results of the tests

can be found in tables 8.25, 8.26 and 8.27. On the average, thedifference between the solu-
tions found by the algorithm CGSRp and the lower bound was0.114%, 0.204% and0.261%
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Solution Difference Average Columns Solution Improvement
Instance of CGSp LB from LB Time (sec) Generated of FFDH over FFDH

gcut1d 51432 51332.8 0.193% 0.25 188 54323 5.32%
gcut2d 77436 77369.5 0.086% 0.31 116 77436 0.00%
gcut3d 77790 77728.7 0.079% 10.51 3297 83529 6.87%
gcut4d 195307 195249.5 0.029% 8.40 1233 205250 4.84%
gcut5d 87249 87164.4 0.097% 0.09 61 96693 9.77%
gcut6d 158137 158104.5 0.021% 0.32 132 181578 12.91%
gcut7d 236508 236412.8 0.040% 1.28 319 259462 8.85%
gcut8d 310748 310493.8 0.082% 42.55 4861 344732 9.86%
gcut9d 120479 119988.6 0.409% 0.33 245 129706 7.11%
gcut10d 260388 260259.5 0.049% 0.33 131 286790 9.21%
gcut11d 305348 304918.0 0.141% 9.96 1386 338271 9.73%
gcut12d 559870 559132.5 0.132% 151.08 9748 605126 7.48%

Table 8.23: Performance of the algorithm CGSp with 3-staged patterns.

respectively for the 2-, 3- and 4-staged problem. Comparingwith the solutions generated by the
FFDHR2 we obtain on the average an improvement of11.62%, 13.41% and13.42% respectively
for the 2-, 3- and 4-staged problem.
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Solution Difference Average Columns Solution Improvement
Instance of CGSp LB from LB Time (sec) Generated of FFDH over FFDH

gcut1d 51432 51332.8 0.193% 0.23 178 54323 5.32%
gcut2d 77436 77369.5 0.086% 0.40 126 77436 0.00%
gcut3d 77446 77287.0 0.206% 19.80 4516 83529 7.28%
gcut4d 195307 195249.5 0.029% 9.70 1118 205250 4.84%
gcut5d 87249 87164.4 0.097% 0.11 62 96693 9.77%
gcut6d 158137 158104.5 0.021% 0.40 149 181578 12.91%
gcut7d 236508 236412.8 0.040% 1.48 314 259462 8.85%
gcut8d 310672 310493.8 0.057% 47.28 4544 344732 9.88%
gcut9d 119861 119426.2 0.364% 0.20 131 129706 7.59%
gcut10d 260388 260259.5 0.049% 0.39 132 286790 9.21%
gcut11d 305348 304918.0 0.141% 13.80 1557 338271 9.73%
gcut12d 559159 558531.9 0.112% 201.51 10422 605126 7.60%

Table 8.24: Performance of the algorithm CGSp with 4-staged patterns.

Solution Difference Average Columns Solution Improvement
Instance of CGSR LB from LB Time (sec) Generated of FFDHR2 over FFDHR2

gcut1dr 50612 50589.0 0.045% 0.10 54 54323 6.83%
gcut2dr 60311 60192.0 0.198% 1.18 347 74744 19.31%
gcut3dr 77385 77296.3 0.115% 5.88 1193 83529 7.36%
gcut4dr 175996 175930.4 0.037% 32.11 3501 191383 8.04%
gcut5dr 78530 78370.8 0.203% 0.56 235 96530 18.65%
gcut6dr 138207 138041.0 0.120% 0.97 224 181578 23.89%
gcut7dr 226312 226163.8 0.066% 3.28 531 244742 7.53%
gcut8dr 300696 300499.3 0.065% 29.54 1419 326197 7.82%
gcut9dr 119584 119417.0 0.140% 0.22 102 129657 7.77%
gcut10dr 236531 236278.2 0.107% 1.20 193 265322 10.85%
gcut11dr 286164 285661.6 0.176% 10.53 555 326275 12.29%
gcut12dr 549751 549181.6 0.104% 130.30 2908 605126 9.15%

Table 8.25: Performance of the algorithm CGSRp with rotations and 2-staged patterns.
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Solution Difference Average Columns Solution Improvement
Instance of CGSR LB from LB Time (sec) Generated of FFDHR2 over FFDHR2

gcut1dr 50433 50329.0 0.207% 0.44 250 54323 7.16%
gcut2dr 59369 59138.7 0.389% 4.91 1220 74744 20.57%
gcut3dr 75447 75227.5 0.292% 80.03 11692 83529 9.68%
gcut4dr 173796 173588.0 0.120% 127.54 11925 191383 9.19%
gcut5dr 74885 74706.0 0.240% 0.40 140 96530 22.42%
gcut6dr 135952 135450.9 0.370% 4.77 1227 181578 25.13%
gcut7dr 221258 221137.5 0.054% 7.39 847 244742 9.60%
gcut8dr 294465 294188.3 0.094% 353.28 13965 326197 9.73%
gcut9dr 116404 115994.6 0.353% 0.55 231 129657 10.22%
gcut10dr 233321 233253.7 0.029% 2.14 211 265322 12.06%
gcut11dr 278144 277452.3 0.249% 232.55 7009 326275 14.75%
gcut12dr 541926 541610.5 0.058% 1179.61 20669 605126 10.44%

Table 8.26: Performance of the algorithm CGSRp with rotations and 3-staged patterns.

Solution Difference Average Columns Solution Improvement
Instance of CGSR LB from LB Time (sec) Generated of FFDHR2 over FFDHR2

gcut1dr 50433 50329.0 0.207% 0.47 255 54323 7.16%
gcut2dr 59420 59124.5 0.500% 10.75 2222 74744 20.50%
gcut3dr 75396 75162.2 0.311% 50.26 7261 83529 9.74%
gcut4dr 173687 173534.3 0.088% 259.84 20740 191383 9.25%
gcut5dr 74717 74391.0 0.438% 0.46 155 96530 22.60%
gcut6dr 135952 135450.9 0.370% 6.17 1332 181578 25.13%
gcut7dr 221258 221137.5 0.054% 8.19 791 244742 9.60%
gcut8dr 294578 294188.1 0.133% 764.96 23291 326197 9.69%
gcut9dr 116296 115927.8 0.318% 0.51 164 129657 10.30%
gcut10dr 233582 233066.7 0.221% 5.24 376 265322 11.96%
gcut11dr 278362 277230.7 0.408% 206.29 5251 326275 14.68%
gcut12dr 541998 541540.0 0.085% 935.73 12450 605126 10.43%

Table 8.27: Performance of the algorithm CGSRp with rotations and 4-staged patterns.
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8.7 Concluding remarks

In this paper we presented algorithms for the RK, 2CS, BPV andSP problems and their variants
RKr, BPr, BPVr and SPr (where orthogonal rotations of the items are allowed) usingguillotine
staged patterns.

For the RK problem we presented the (exact) pseudo-polynomial algorithms SDP fork-
staged patterns. We have also mentioned how to use SDP to solve the problem RKr.

We extend the work of [18] by using column generation based algorithms to solve the 2CS
and BPV problems using staged patterns, and also extended these algorithms to solve the SP
problem. These algorithms use, as subroutines, the algorithm SDP to generate the columns.
The algorithms combines different techniques: Simplex method with column generation, an
exact algorithm for the discretization points, and approximation algorithms for the last residual
instance. An approach of this nature has shown to be promising, and has been used to tackle
the one-dimensional cutting stock problem [48, 17].

The algorithm for the SP problem was obtained adapting the algorithm for the BPV problem.
We have used the same strategy used in the algorithms for the 2CS and BPV problems. The
residual instances were solved with an approximation algorithm (FFDH) or another algorithm
we proposed (called FFDHR2) when rotations are allowed.

For almost all instances tested, the algorithms that use a perturbation method found solutions
of a slightly better quality than CG (respectively CGR) at the cost of a slight increase in the
running time.

A natural development of our work would be to adapt the approach used in the algorithm
CG for the version with arbitrary orthogonal cutting patterns (the cuts need not be guillotine).
One can find an initial solution using homogeneous patterns;the columns can be generated
using any of the algorithms that have appeared in the literature for the two-dimensional cutting
stock problem with value [6, 3]. To solve the last residual instance one can use approximation
algorithms [16, 11, 34].

One can also use column generation for the variant of 2CS in which the quantity of items
in each bin is bounded. This variant, proposed by Christofides and Whitlock [15], is called
restricted two-dimensional cutting stock problem. Each new column can be generated with
any of the known algorithms for the restricted two-dimensional cutting stock problem with
value [15, 41], and the last residual instance can be solved with the algorithm M-HFF. This
restricted version with guillotine cut requirement can also be solved using the ideas we have
just described: the homogeneous patterns and the patterns produced by M-HFF can be obtained
with guillotine cuts, and the columns can be generated with the algorithm of Cung, Hifi and Le
Cun [24].

As a final remark we mention that we did not use a heuristic procedure to solve the column
generation step. Therefore, we could obtain optimal fractional solutions for all the instances
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we have considered. These optimal fractional solutions yielded excellent lower bounds for the
optimal solutions, which turned out to be in most of the tests, very close to the solutions found
by the algorithms.

We performed many tests and compared the solutions obtainedfor the different variants of
the problems. On average, we noted an increase in computational time and decrease of space
occupation when we considered 2-, 3- and 4-staged patterns,as well as when rotations were
considered. It is interesting to note that very few papers consider 4-staged patterns. Finally,
we observe that for all tests performed, the algorithms we implemented found optimal or quasi-
optimal solutions in a reasonable amount of time, showing that they may be useful for practical
purposes
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Capítulo 9

Conclusões e Trabalhos Futuros

Neste trabalho apresentamos algoritmos para diversos problemas de empacotamento. O princi-
pal foco do trabalho foi o desenvolvimento de algoritmos de aproximação e heurísticas baseadas
no método de geração de colunas.

No Capítulo 4 apresentamos o problema que chamamos deClass Constrained Shelf Bin
Packing(CCSBP). Este problema é uma generalização do problemabin packingonde itens têm
classes diferentes e devemos empacotar os itens separando-os por prateleiras. Este problema
possui aplicações na indústria de metais [16]. Apresentamos algoritmos aproximadospráticos
para este problema, e também um esquema de aproximação para ocaso em que o número de
classes diferentes é limitado por uma constante. Como trabalho futuro permanece em aberto a
questão da existência de um esquema de aproximação para o caso onde o número de classes faz
parte da entrada.

No Capítulo 5 consideramos dois problemas: o CCSBP e o problemabin packingcom res-
trições de classes. Apresentamos esquemas de aproximação duais para ambos os problemas.
Neste caso buscamos soluções para a versão dual, que podem ser inviáveis para o problema
original, usando no máximo a quantidade de recipientes de uma solução ótima da versão ori-
ginal. A medida da qualidade da solução gerada está relacionada com o grau de inviabilidade
da solução. Como possível trabalho futuro pode-se tentar propor esquemas de aproximações
duais com complexidade de tempo mais baixa, já que a complexidade de tempo dos algoritmos
propostos é muito alta.

No Capítulo 6 apresentamos o problemabin packingcom restrição de classes, denotado por
CCBP, com aplicações para um problema de construção de servidores de vídeo sob demanda.
Apresentamos algoritmos aproximados práticos para este problema e exibimos resultados de
testes computacionais com tais algoritmos. Também apresentamos algoritmos aproximados
para a versãoonline do problema. Por fim, apresentamos um esquema de aproximaçãopara
o caso em que o número de classes diferentes da entrada é limitado por uma constante. Aqui
também fica em aberto a existência de um esquema de aproximação quando o número de classes
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diferentes faz parte da entrada. Um esquema de aproximação para este problema pode levar
a um esquema de aproximação para o problema CCSBP. Por outro lado, um resultado de
inaproximabilidade também pode ajudar a construir um resultado semelhante para o problema
CCSBP.

No Capítulo 7 apresentamos algoritmos de aproximação para aversão do problemabin
packingonde os itens possuem demandas, problemas que são conhecidos na literatura como
problemas decutting stock. Neste capítulo mostramos como adaptar vários algoritmos de apro-
ximação desenvolvidos para problemas sem demanda para o caso onde há demanda para os
itens. Dentre os resultados deste capítulo destacamos um esquema de aproximação assintótico
para o problemacutting stockunidimensional e um algoritmo com fator de aproximação as-
sintótico2.077 para o problemacutting stockbidimensional. Neste ponto, destacamos que a
complexidade computacional do problema decutting stockestá em aberto. Apesar de sabermos
que este problema éNP-difícil, não se sabe se a versão de decisão do problema está em NP.

Finalmente no Capítulo 8, apresentamos algoritmos para problemas de empacotamento bi-
dimensional. Nestes problemas são considerados cortes guilhotináveis e em estágios. Apresen-
tamos algoritmos exatos para problema da mochila bidimensional baseados em programação
dinâmica. Consideramos também o problemabin packingbidimensional com demandas e o
problemastrip packingbidimensional com demandas. Para estes problemas apresentamos heu-
rísticas baseadas no método de geração de colunas. Um possível ponto para trabalhos futuros é
estender os algoritmos descritos para problemas tridimensionais. Para tanto, deve-se construir
algoritmos eficientes para o problema da mochila tridimensional, que será usada na parte de
geração de colunas.

Algoritmos de aproximação são vistos por muitas pessoas como resultados teóricos sem
grande aplicabilidade prática. Nesta tese apresentamos alguns algoritmos aproximados práti-
cos e fizemos alguns testes computacionais (ver Capítulo 6).Os resultados destes testes mos-
tram que tais algoritmos produzem soluções de excelente qualidade, podendo ser utilizados na
prática. Vários algoritmos aproximados são de fácil implementação e em geral produzem so-
luções cujos valores estão muito mais próximos do ótimo do que os fatores de aproximação
demonstrados [39, 43]. Tais algoritmos podem ser usados inclusive como heurísticas primais
em algoritmos exatos (veja [1] como exemplo).

Também há um grande interesse de investigação teórica relacionada a algoritmos de apro-
ximação. Neste caso busca-se saber, para um determinado problema, qual o melhor fator de
aproximação que pode ser obtido por um algoritmo para este problema. Nesta linha pode-se
projetar algoritmos aproximados ou provar resultados de inaproximabilidade [25, 5, 39]. A par-
tir de tais resultados criou-se uma teoria de complexidade baseada em classes de aproximação
(veja por exemplo [5]). Tais resultados trazem uma maior fundamentação teórica para a questão
de seP é igual aNP. Hoje sabemos, por exemplo, que a existência de algum FPTAS para uma
enorme quantidade de problemas equivaleria a mostrar queP = NP. Com os recentes resul-
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tados sobre provas verificáveis probabilisticamente [2, 3,4], sabemos que diversos problemas
não admitem sequer aproximação constante a menos queP = NP.

Nesta tese também investigamos heurísticas baseadas no método de geração de colunas. A
grande vantagem desta abordagem é trabalhar com programas lineares que fornecem limitantes
duais muito próximos do ótimo. Para o problemacutting stockunidimensional existe uma con-
jectura famosa, para a formulação correspondente a apresentada no Capítulo 7 (formulação 8.1),
conhecida como MIRUP (Modified Integer Round-Up Property) que diz o seguinte: O valor de
uma solução inteira ótima para uma instânciaI docutting stockunidimensional é no máximo o
teto da função objetivo do programa linear adicionado de 1. Vários resultados corroboram com
esta conjectura [34, 35, 40]. Para o caso bidimensional com cortes em dois estágios Riehmeet
al. [33] apresentam uma versão da conjectura MIRUP, (mas neste caso adiciona-se 2 ao valor do
teto do programa linear) e resultados computacionais dandosuporte a conjectura. Uma maior
investigação sobre a qualidade do limitante dual fornecidopela formulação 8.1 para o problema
bidimensional pode ser um interessante trabalho. Como vimos no Capítulo 7, as heurísticas
propostas, baseadas na solução deste programa linear, obtiveram excelentes resultados.
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