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Resumo

Neste trabalho estudamos diversos problemas de empacdtarnasiderados NP-dificeis. As-
sumindo a hipétese de qlire#£ NP, sabemos que nao existem algoritmos eficientes (complexi-
dade de tempo polinomial) exatos para resolver tais pradeima das abordagens considera-
das para tratar tais problemas é a de algoritmos de apro&onqge séo algoritmos eficientes e
gue geram solucBes com garantia de qualidade. Neste toadgaiésentamos alguns algoritmos
aproximados para problemas de empacotamento com aplicpgitecas. Outra maneira de se
lidar com problemas NP-dificeis € o desenvolvimento deibgcas. Neste trabalho também
apresentamos heuristicas baseadas no método de geragédlardes para problemas de corte
e empacotamento bidimensional. Resultados computasisngerem que tais heuristicas sao
eficientes e geram solucdes de muito boa qualidade.
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Abstract

In this work we study several packing problems that are Niekh&we consider thaP # NP,

we know that there are no efficient (polynomial time compigxexact algorithms to solve
these problems. One way to deal with these kind of problens isse approximation algo-
rithms, that are efficient algorithms that produce solwiwith quality guarantee. We present
several approximation algorithms for some packing proklémat have practical applications.
Another way to deal wittNP-hard problems is to develop heuristics. We also consideinoo
generation based heuristics for packing problems. In thé&e cwe present column generation
algorithms for some two dimensional packing problems asd akesent computational tests
with the proposed algorithms. The computational resultsvsithat the heuristics are efficient
and produce solutions of very good quality.
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Capitulo 1

Introducao

Neste trabalho apresentamos algoritmos voltados pardéepnab de empacotamento. Mui-
tas das variacfes de problemas de empacotamento séo paslderatimizacao que pertencem
a classeNP-dificil. Problemas de otimizacéo, na sua forma geral, tdmaobjetivo maximi-
zar ou minimizar uma fungéo definida sobre um certo dominiteohia classica de otimizagao
trata do caso em que o dominio é infinito. Ja no caso dos chapadblemas de otimizacao
combinatoria, o dominio é tipicamente finito; além dissogemal é facil listar os seus elemen-
tos e também testar se um dado elemento pertence a esseaohmda assim, a idéia ingénua
de testar todos os elementos deste dominio na busca pelormedtra-se inviavel na pratica,
mesmo para instancias de tamanho moderado.

Como trabalho de doutorado fizemos um estudo na area de ati@izombinatéria, mais
especificamente sobre problemas de empacotamento. Quasdefarimos a problemas de
empacotamento, estamos tratando de uma grande classebtenmas onde temos um ou mais
objetos grandes-dimensionais, 0os quais chamamos de recipientes, e vdrjes menores
tambémn-dimensionais 0os quais chamamos de itens. O nosso objeinpéacotar itens den-
tro de recipientes maximizando ou minimizando uma dadadfoipjetivo. Provavelmente os
dois problemas de empacotamento mais conhecidos sejanbleipede empacotamento uni-
dimensional Bin Packing Problerne o problema da mochil&(apsack Problem No primeiro
problema temos uma lista de itens e um namero infinito deietis iguais. O objetivo € em-
pacotar todos os itens no menor niumero de recipientes phshiv segundo problema, temos
um unico recipiente e uma lista de itens, cada item com umrdetado valor. O objetivo do
problema é empacotar itens da lista que maximizem a somaide/alores.

Neste trabalho, assumimos a hipotese de lqug NP. Desta forma, tais problemas e
muitos outros problemas de otimizagédo que S&edificeis ndo possuem algoritmos eficientes
exatos. Muitos destes problemas aparecem em aplicacGeEapré ha um forte apelo econd-
mico para resolvé-los. Problemas de empacotamento posspi@acdes em diversas areas
da Computacéo e Pesquisa Operacional. Podemos citar camplkes, problemas em aloca-
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2 Capitulo 1. Introdugéo

cdo de recursos em computadores ou problemas classicoste@eonateriais em industrias
[37, 42, 36, 17, 18, 19, 20, 21, 16].

Como nao conseguimos resolver tais problemas de forma exafiaiente, buscamos al-
ternativas que possam ser Uteis. Existem varios métodos&uenuito utilizados na prética
como o uso de heuristicas, programacéao inteira, métodosidsb redes neurais, algoritmos
genéticos, dentre outros.

O foco deste trabalho de doutorado esta no desenvolvimertieutisticas para problemas
de empacotamento, principalmente aquelas em que consegegtabelecer umarazao, no pior
caso, entre a solucao devolvida pela heuristica e a solugéa.dTais heuristicas sdo comu-
mente chamadas de algoritmos de aproximacao. Neste cdgoritnao sacrifica a otimalidade
em troca da garantia de uma solucédo aproximada computavehepo polinomial em relacao
ao tamanho da entrada. Em linhas gerais, algoritmos de iapag&o sao aqueles que néo ne-
cessariamente produzem uma solucao 6tima, mas solu¢céestfuedentro de um certo fator
da solucéo 6tima. Esta garantia deve ser satisfeita pasa sedinstancias do problema. Desta
forma, devemos dar uma demonstracao formal deste fato. éirarénosso interesse o estudo
de heuristicas baseadas no método de geracao de colunéss pfoblemas de empacotamento
podem ser formulados com programas lineares que possuemimeram muito grande de co-
lunas. Desta forma, a resolucao de tais programas linearangtodos tradicionais se torna
impraticavel. Muitos destes programas lineares forneadutg8es fracionarias muito proximas
das solucdes inteiras. Com isso, ha um grande interesseseluaretais sistemas lineares, e
usa-los para obter solucdes inteiras. Como o numero deaokkimuito grande aplica-se o
método de geracdo de colunas.

1.1 Objetivos do Trabalho

O principal objetivo deste trabalho € apresentar novosrigilgos para alguns problemas de
empacotamento. Para cada problema considerado tambéamimssapresentar aplicacdes pra-
ticas destes, de forma a se ter uma maior motivacao por paretdr. Para alguns destes

problemas fizemos inclusive testes computacionais, demamal® a aplicabilidade pratica de

alguns dos algoritmos propostos.

1.2 Organizacéo do Texto

Esta tese esta organizada como uma coletanea de artigosdasmaandes vantagens desta
forma de apresentagdo é mostrar de forma direta os ressiltdddiclos na tese de doutorado.
Por outro lado, uma desvantagem é que pode haver repetiedaefidicdes durante o texto.
De qualquer maneira optamos por esta forma de organizacada &tigo apresenta aplica-



1.2. Organizagdo do Texto 3

¢cOes dos problemas considerados, bem como os algoritmpsgtos. A seguir detalhamos a
organizacao do texto.

No Capitulo 2 apresentamos algumas definicbes e conceisosobajue sdo usados nos
capitulos seguintes.

No Capitulo 3 fazemos um resumo dos principais resultadsta dese que correspondem
aos resultados dos capitulos seguintes.

Do Capitulo 4 até o Capitulo 8 apresentamos cinco artigosaoprincipais resultados
desta tese.

No Capitulo 9 apresentamos as conclusdes e trabalhosguturo



Capitulo 2

Preliminares

Este capitulo contém, de forma resumida, definicbes e nbg@sas que serdo necessarias
no decorrer da leitura do trabalho. Primeiramente aprased conceitos e problemas basicos
de empacotamento. Em seguida, introduzimos definicoesdsasobre algoritmos de aproxi-
macéo, e discutimos brevemente algumas técnicas usadaseaovdlvimento de algoritmos
aproximados. Apresentamos ainda um resultado de analiskicatoria que é utilizado fre-
guentemente neste trabalho e por fim apresentamos o algaiinplexe como ele pode ser
usado com o0 método de geracdo de colunas.

2.1 Problemas de Empacotamento

Nesta se¢ao descrevemos 0s principais problemas de eapatud tratados nesta tese.

Nos problemas de empacotamento temos um ou mais objetategraddimensionais, 0s
guais chamamos decipientes e varios objetos menores tambérdimensionais os quais
chamamos déens O nosso objetivo é empacotar itens dentro de recipientegordna a
maximizar ou minimizar uma dada func&o objetivo. No casa@lgéanto os itens quanto os
recipientes podem assumir qualquer forma, ou modelo @atés, esferas, formas quaisquer
etc.). O empacotamento deve ser feito de tal maneira quesies A0 ocupem um mesmo
espaco e que as capacidades do recipiente sejam respeitadas

Umatipologia para varios tipos de problemas de empacotanf@rieita por Dyckhoff [14]

e mais recentemente uma nova tipologia foi proposta por k¢sietal. [41].

Problemas de empacotamento sdo muito comuns na indusimgpeoblemas computaci-
onais. Em muitas aplicacfes, faz-se necessario cortarienat@lacas de metal, vidro, papel
ou tecido) em itens menores para se atender uma determieadmda. Note que para deci-
dirmos como cortar o material, podemos supor que estamosgcatgmdo os itens no material.
Como exemplos de problemas computacionais, citamos pnaisiele alocacéao de tarefas em
computadores. Tais problemas podem ser vistos como prabldmempacotamento. Temos
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2.1. Problemas de Empacotamento 5

vérias tarefas, que correspondem a itens, e devemos a®eadim conjunto de processadores
de modo a otimizar uma certa funcao objetivo, como por exenmpaximizar o peso das tare-
fas que podem ser processadas até um determinado momeste.cilgo, o problema consiste
em empacotar itens unidimensionais, que possuem um taneamhgeso, em recipientes cujo
tamanho é dado pelo limite de tempo.

Problemas de empacotamento sdo comuns em nosso cotidiéarmo&o astronomo Johan-
nes Kepler, em 1611, ja se perguntava a melhor maneira dacdlode esferas. Um feirante
que deseja empilhar laranjas por exemplo, pode se pergyrdaa melhor maneira de realizar
tal tarefa. O problema de empacotamento de esferas propmskepler sé teve uma solucéo
confirmada formalmente em 1998 [38], em uma sequéncia dalti@bfeitos por Hales [23].

Definiremos agora trés problemas de empacotamento basiecsag tratados nesta tese.
Estes problemas serédo tratados com algumas restricoes exte sdo apresentadas em cada
capitulo.

O primeiro problema, chamadan packing tem como entrada uma lista de itehs=
(ai,...,a,), cada item com tamanhg(a;), € um nimeraB que indica o tamanho de um
recipiente. Assumimos que para todo iteyre L, vale ques(a;) < B. Este problema consiste
em empacotar todos os itens &0 menor numero possivel de recipientes, ou seja, devemos
achar uma particéé,, . . ., P, de L tal queq seja minimo eEaiGPj s(a;) < B, para cada parte
P;.

Existem as versdes em outras dimensodes deste problemapaopeckingbidimensional,
tridimensional etc. Nestes casos, 0s recipientes e osps®miem tamanhos dados por uma
tupla que indica o seu tamanho em cada dimensao.

Podemos assumir ainda que cada itenme L possui uma multiplicidadéd;. Neste caso
devemos gerar um empacotamento que contéitens dotipoa;, i = 1,..., m. Os problemas
com multiplicidade sé&o conhecidos na literatura camibing stock

Detalhes sobre algoritmos de aproximagéo para este praljjedem ser encontrados em
Coffmanet al. [10]. Para o caso bidimensional pode-se consultar as rasede Lodiet al.

[29, 30].

O segundo problema é conhecido cokmapsack ou problema da mochila. Neste caso
temos apenas um recipiente de tamanhe uma lista de itengd = (ay,...,a,,) cada item
com tamanhos(a;) e valorp(a;). O objetivo do problema é empacotar um subconjunto dos
itens deL em um recipiente de tamanti® de tal forma que a soma dos valores destes itens
empacotados seja maximizada. Também podemos considevarsé®s multi-dimensionais
deste problema.

O problema, como foi definido, € conhecido como restrito, oalmia 0/1. Neste caso, cada
item pode ser empacotado apenas uma vez. Na versao naiarestritema; € L pode ser
empacotado varias vezes. Um esquema de aproximacao pavhlerpa restrito foi proposto
na década de 70 por Ibarra e Kim [26]. Maiores informacfeseseste problema podem ser



6 Capitulo 2. Preliminares

encontradas no livro de Martello e Toth [31].

O terceiro problema é conhecido comstnip packing Neste problema temos uma lista de
itens bidimensionaig¢ = (a4, ...,a,), cada items; com tamanhdz(a;),y(a;)), € uma faixa
de largural e altura infinita. O objetivo do problema é empacotar todogens na faixa de
tal maneira que seja minimizada a altura total utilizada panpacotar os itens. Versées multi-
dimensionais podem ser consideradas.

Dentre os diversos algoritmos propostos para este probléeséacamos um esquema de
aproximacao apresentado por Kenyon e Rémila [27, 28], eifafyms exatos como o0 proposto
por Martelloet al. [32].

Neste trabalho, consideramos duas classes de algoritmaognpalemas de empacotamento,
a classenlinee a classeffline Os algoritmos chamadadfling s&o aqueles onde todos os da-
dos da instancia sao conhecidos pelo algoritmo de antengolalise de algoritmos chamados
online os dados da instancia ndo séo conhecidos de anteméo pwitnady Itens chegam com
0 passar do tempo e devem ser empacotados assim que estiigpemiveis. Muitos proble-
mas de empacotamento tém esta caracteristica, e neste peesé desenvolver algoritmos
onlinepara estes problemas. Um exemplo de problenime é oBin Packing Onlineque tem
a mesma definicdo que o problewffling com excecao de que os itens a serem empacotados
chegam um por vez, de tal forma que um algoritmo para estégonaldeve empacotar um item
sem saber quais os proximos itens da lista.

2.2 Algoritmos de Aproximacao

Nesta se¢do apresentamos a notacdo utilizada e algunstosrgsicos sobre algoritmos de
aproximacao.

Dado um algoritmaA, para um problema de minimizag&o, Bdéor uma instancia para
este problema, denotamos pd(/) o valor da solugéo devolvida pelo algoritmbaplicado
a instancia/. Denotamos poOPT(/) o correspondente valor para uma solu¢do 6tima de
I. Dizemos que um algoritmgl tem umfator de aproximacéay, ou € a-aproximado se
A(I)/OPT(I) < a, para toda instancid. No caso dos algoritmos probabilisticos, consi-
deramos a desigualdadg.A(7)]/OPT(/) < «, onde a esperancg|.A(I)] é tomada sobre
todas as escolhas aleatorias feitas pelo algoritmo. Hetdsd de desempenho sdo chamados
de absolutos. Em problemas de empacotamento € comum camsageoximacdeassintod-
ticas Neste caso dizemos que um algorittdotem fator de aproximacédo assintoticose
limo pr(1)—00 A(I)/OPT(I) < a. E importante ressaltar que algoritmos de aproximagéo con-
siderados neste trabalho tém complexidade de tempo pakhom

Do ponto de vista tedrico, os algoritmos de aproximacéo uhesejados sdo aqueles que
obtém valores mais proximos possivel do valor 6timo. Dadwalor constante > 0, € possi-
vel mostrar para varios problemas, que estes admitem @giicom fatores de aproximacgéao
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(1 + €), no caso de problemas de minimizacad]le- ¢), no caso de problemas de maximi-
zacao, onde pode ser tomado tdo pequeno quanto se queira. Chamamoslgstésnos de
esquemas de aproximacao polinonmal PTAS Polynomial Time Approximation Schense
apresentarem tais fatores de aproximacao e tempo de ergmigédmial na entrada. Chama-
mos de FPTASKully Polynomial Time Approximation Scheneeesquema de aproximacao que
tem tempo de execugé&o polinomial na entrada e}ehogo, dentre os dois tipos, os algoritmos
mais desejados sao os FPTAS.

Em problemas de empacotamento € também comum considetaness|de aproximacao
assintéticos. A definicdo é parecida com a que demos amteige para aproximacao as-
sintotica, mas neste caso deve valer a desigualdade ;). A(l)/OPT(I) < (1 + e).
Denotamos por APTASAsymptotic Polynomial Time Approximation Schgme algoritmos
que apresentarem tais fatores de aproximagéo e tempo deérguolinomial na entrada. De-
notamos por AFPTASAsymptotic Fully Polynomial Time Approximation SchgoeAPTAS
que tém tempo de execucéao polinomial na entrada é.em

Uma outra forma de analise de problemd3-dificeis é a utilizacdo do conceito de apro-
ximacado dual proposto por Hochbaum e Shmoys [24]. Nestewasalgoritmo é dual apro-
ximado se ele consegue encontrar uma solucdo, ndo neaeessaie viavel, cujo valor € no
maximo o valor de uma solucao 6tima. Neste caso, a medidaalielade de aproximacao esta
ligada a quéo inviavel € a solucdo. Existem algumas sitsagd@ratica nas quais as restricées
de viabilidade sao flexiveis e o conceito de algoritmos dexapracdo duais podem ser utili-
zados. Neste caso o fator de aproximagdo é uma razdo enireaalgviabilidade da solugéo
em relacdo a restricdo de viabilidade. Por exemplo, no cagwrablemabin packing onde
todos os recipientes tém tamanho 1, um algoritmo que patgugranstancia do problema
encontra uma solucéo que USZ7T(I) recipientes de tamanHho3 corresponde a um algoritmo
dual aproximado com fator de aproximagas.

No caso de algoritmosnline o termo comumente utilizado para designar fator de aproxi-
macao eompetitive ratipque é a razao, no pior caso, entre o valor da solucdo deaqgbeid
algoritmo sobre o valor de uma solucdo 6tima para a veofifine do problema. No texto,
guando tratarmos de problemasling, usaremos o termo fator de aproximag¢do com 0 mesmo
significado decompetitive ratio

Ao projetar um algoritmo aproximado e provar que o mesmo tencerto fator de apro-
ximagaoc«, € interessante verificar se este fator de aproximagcdemonstrado é o melhor
possivel. Para isto, devemos encontrar uma instanciaazga rentre a solucéo obtida pelo al-
goritmo e sua solucao 6tima € igual, ou tdo proxima quantosiea) dex. Neste caso, dizemos
que o fator de aproximacaodo algoritmo €é justo.

Nos ultimos anos surgiram varias técnicas de carater garalgdesenvolvimento de al-
goritmos de aproximacéo. Algumas destas séicedondamento de soluc¢des via programacao
linear, dualidade em programacéo linear e método primadigalgoritmos probabilisticos (e
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sua desaleatorizacdo) e programacao semidefifidga [15, 25, 39, 5]). Além disso, resulta-
dos sobreprovas verificaveis probabilisticamenri 3, 4] permitiram obter varios resultados
sobre a impossibilidade de aproximacdes.

Uma estratégia comum para se tratar problemas de otimizagébinatoria é formular o
problema como um programa linear inteiro e resolver a rexéinear deste, uma vez que isto
pode ser feito em tempo polinomial. Programacéo linear ielm issado para a obtencao de
algoritmos aproximados através de diversas maneiras. Wita oomum é o uso de arredon-
damentos das solucdes fracionarias do programa lineara @anica é resolver o sistema dual
do programa linear, em vez do primal, e em seguida obter uhngdmocom base nas variaveis
duais. Outra técnica mais recente, € o uso do método de a@Ee&o primal-dual, que tem sido
usado para obter diversos algoritmos combinatdrios usartdoria de dualidade em progra-
macao linear. Neste caso, o método € em geral combinat@doreguerendo a resolucéao de
programas lineares e consiste de uma generalizacao doongiothl-dual tradicional.

Ja no caso de algoritmos probabilisticos, o algoritmo eomassos que dependem de uma
sequUéncia de bits aleatérios. Neste caso, a andlise déisajecada pelo algoritmo é calcu-
lada com base no valor esperado da solucéo. E interessa#p/abque apesar do modelo
parecer restrito, a maioria dos algoritmos probabilistipode ser desaleatorizada, através do
meétodo das esperancas condicionais, tornando-se algsrideterministicos (veja [15, 5]). A
versao probabilistica €, em geral, mais simples de se ingoltane mais facil de se analisar
que a correspondente versdo deterministica. Além dissibosmilos algoritmos de aproxima-
¢do combinam o uso de técnicas de programacéo linear comcdgamsadas em algoritmos
probabilisticos, considerando o valor das variaveis aBtpkla relaxacéo linear como probabi-
lidades.

No caso da técnica de programacao semidefinida, temos wemsiske programacéo mate-
matica para o problema, que nao precisa ser estritameata.llBm alguns casos é possivel ter
restricdes néo lineares na formulagédo, como por exemplog@ss quadraticas. Se a formu-
lacéo for escrita sob certas condicdes, o problema podesavido em tempo polinomial. A
vantagem deste método é que muitos problemas podem seserfa@os atraves de modelos
de programacao semidefinida, isto €, formulacdes ndo reg@sente lineares. Goemans e
Williansom [22] apresentaram uma forma bastante inovaderse arredondar as soluc¢des de
um sistema quadratico, através do arredondamento prigiiol) considerando cada uma das
variaveis do sistema como um vetor na esfera unitéaria.

Estas técnicas, tanto isoladamente como em conjunto, tonusiadas nos ultimos anos
com sucesso em diversos problemas de otimizacdo combaatoér

Outro topico importante em algoritmos de aproximacao e€proxdmalidade de problemas.
Dado um certo problem&@, dizemos que este problema possui fator de inaproximadidad
se nao existir um algoritma-aproximado pard). Uma das maneiras para se demonstrar tais
resultados, € mostrar que se existir um algorittaproximado para um problend, entdo
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podemos resolver em tempo polinomial um problepajue sejaNP-dificil. Resultados im-
portantes nesta area foram feitos com a utilizacdo de pr@rificaveis probabilisticamente,
devido a Aroraet al. [3, 4]. Para mais detalhes sobre resultados de inaproxiad#i veja
[2, 5, 25, 39].

2.3 Um Resultado sobre Contagem

Nesta secdo apresentamos um resultado sobre contagem tjlizadcuem diversas partes
desta tese. Problemas de contagem aparecem como um ramélida aombinatéria onde
busca-se descobrir uma expresséo que determina a quandielatementos de um determinado
conjunto. Uma visdo mais ampla sobre problemas de contageidlise combinatéria pode ser
encontrada em [13].

Considere os seguintes problemas:

1. Qual o nimero de solugbes da inequajdb , =; < d, onded é um namero inteiro
positivo e todas as variaveis sdo inteiras ndo negativas?

2. Dados letrasa ed letras/, quantas palavras diferentes podemos formar com todas esta
letras permutando-as?

A principio, estes dois problemas podem parecer distintas,sdo equivalentes. Podemos
fazer a seguinte associacao para os dois problemas. Dadaeumatacéo qualquer deletras
a e d letras3, o numero de letrag a esquerda da primeira letracorresponde ao valor da
variavelz;. O nimero de letras entre a-ésima i + 1)-ésima letrasr corresponde ao valor
da variavelr; .1, paral < i < n — 1. O numero de letrag a direita da Ultima letra n&o é
associado com nenhuma variavel.

Para respondermos as duas questdes acima usaremos cdebinagombinaca(’;) re-
presenta o numero total de subconjuntos/agementos de um determinado conjunto com
elementos. O numero destes subconjuntos é exatamente:

n!
(n —a)\d!”
Dadosn letrasa e d letras3, podemos enumerar as posi¢cées onde cada letra pode aparecer
As posi¢fes vao de 1 até+ d. O numero de possibilidades de distribuicdo das letrasstas
posices ¢ dado pdf?). Dado cada uma destas possibilidades, restami — n posi¢des
para serem preenchidas pelas lettas que nos déj) possibilidades. Logo o numero total de
palavras diferentes que podemos formar coletrasa e d letrasg é dado por

(G -0 -00)
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O numero de configuragBes para os dois problemas proposto&itodesta secéo é dado
pela férmula acima. Nesta tese, usamos este resultado textmde empacotamento. Suponha
gue para uma determinada instancia do problbmaackingunidimensional, o nimero total
de itens sejan e saibamos calcular o numero total de configuracfes disel® recipientes.
Denotamos por 0 numero total de configuracdes de recipientes.O niumerbdetsolucdes
para esta instancia é limitado por

m—+c
(")

De fato, note que o nimero maximo de recipientes utilizadosi®a solucdo qualquer para
esta instancia é.. Associando cada configuracéale recipiente a uma variavel inteitg,
estamos contando o nimero de possibilidades de soluc@eamparequacao

c
E € S m,
i=1

onde cada; indica quantas vezes a configura¢&era usada em uma solucéo especifica.
Logo o numero de solucdes para esta instancia é limitado por

()

C
m mlc! < (m+o)”

Note que se o numero de configuracdes de recipientes foractesb nimero total de solugdes
para esta determinada instancia € polinomial em relacdanaanho da entrada.

2.4 Geracao de Colunas

Nesta secdo apresentamos de forma resumida o funcionaa@raigoritmosimplex e
como podemos resolver programas lineares com um numero graitde de colunas utilizando-
se 0 método de geracdo de colunas. Maiores detalhes solgrampexao linear, o algoritmo
simplexe geracao de colunas podem ser encontrados no livro de B&tala[6].

2.4.1 O algoritmoSimplex
Considere o programa linear,

Min  cx
sujeitoa Az =0b (2.1)
flszo ]:1,,7’L

ondeA é uma matrizn x n de postan, ¢ € um vetor de custos de tamanhd é um vetor de
tamanhon e x € um vetor de variaveis de tamanhoUmabaseB,, ., deste programa linear
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consiste em uma sub-matriz deinversivel. Uma base é ditaavelse B~'b > 0 (note que
B~1b é uma solucédo do programa linear).

A idéia do algoritmosimplexpara resolugcédo de sistemas deste tipo esta fundamentada em
alguns resultados que relaciondases viaveis pontos extremos do poliedro descrito petas
restricbes do sistema.

Teorema 2.4.1Se o programa linear (2.1) possui uma solugéo étima com Jahito, entao
existe um vértice do poliedro descrito pelas restric6es2d#)( cujo valor é igual ao valor da
solucéao o6tima.

Em outras palavras o que o teorema nos diz, é que é suficieateomgentrarmos nos
pontos extremos do poliedro pois se um programa linear possusolucdo étima finita, entao
podemos achar uma solucéo 6tima em algum vértice.

SejaB uma base viavel para (2.1). Sejg as variaveis correspondentes as coluna®de
(chamadas deariaveis basicase z as demais variaveis (chamadasgiaveis ndo basicgs
correspondentes as colunas de uma mafrie dimensdes: x (n —m). Fazendary = B~'b
exy = 0, temos uma solugéo para o programa linear. Para cadalbpessivel, associamos
esta com a solucdo (chamasi@lucdo basichdada porzy = B~'bexy = 0. O préximo
teorema garante que cada uma slalsicdes basicasorresponde a um vértice, e que para cada
vértice do poliedro existe uma solucao basica correspaeden

Teorema 2.4.2Para cada vértice do poliedro do programa linear (2.1), éxisma (ndo ne-
cessariamente Unica) base viavel que corresponde a esteeyér para cada base viavel existe
apenas um vértice correspondente a esta base.

A idéia do algoritmasimplexé partir de uma base viavel inicial e fazer altera¢des deneslu
que levem a outras bases melhorando o valor da solucao aténimgm que possamos garantir
gue estamos em uma solucdo 6tima, ou que o sistema ¢ ilin{tadoaso em que a solucao

pode ser melhorada o quanto quisermos).
~ o[ B!
Suponha que temos uma solugéo baéca0

20 = c( B& b ) = (cB,cN) ( B& b ) —cgB7'b (2.2)

) cujo valor da funcéo objetivo é

Temos qué = Az = Bxp + Ny, e multiplicando esta equacgédo pér! obtemos
rB = B~ b — B_lN{L'N
= B_lb — EjER B_lajxj (23)
b — EjER(yj)xj
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ondeR é o conjunto dos indices das variaveis ndo basidds-e B~'b. O valor da fungédo
objetivo pode ser reescrito da seguinte forma:

Z = CBXpB -+ CNIN

cg(B7b — ZJER B~ lajx;) + ZjER CjT;

cgB7'b — cp ZjeRB_lajxj + D ier CiTi (2.4)
20— ser(ceB™a; — ¢j)z;

0 — ZjER(Zj —¢j)x;

ondez; = cgB~'a; paracadg € Rez, = cg B~ 0.
Desta forma, utilizando estas transformacdes podemoseses o sistema (2.1) da seguinte
forma:

Min 2=z — Z(zj — ;)
jER
sujeito a Z(yj)xj +axp="0" (2.5)
jER

Note que partimos de uma base viavel com solugdoxy) e reescrevemos o programa
linear de tal forma que a funcéo objetivo tem um valor cortstaymenos um termo em fungéo
das variaveis ndo basicas, que tem valor zero dada:gue 0. Mas note que se para alguma
colunaa; de A tivermos

cgBlaj —cj =2 —c; >0

podemos incrementar o valor da variavel ndo basjazorrespondente, e melhorarmos o valor
da solugdo do programa linear. Se para tgdivermosz; — ¢; < 0 entéo a solucédo basica
corresponde a uma solucgéo o6tima. O valor z; € conhecido como custo reduzido da coluna
j e o vetorcg B~! corresponde ao vetor de solucdo dual do programa linear. diservacao
interessante € que o custo reduzido das variaveis basigaalé@izero. Para ver isso, note que
BB~! é aidentidade, e para uma colunae B, temos quezB~'b; = c;.

Sejak o indice de uma variavel ndo basica cujo vajor- ¢, seja positivo. Mantendo todas
as demais variaveis ndo basicas iguais a zero o sistema(®l&)er reduzido a

z =2y — (2 — ck)Tp (2.6)
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e
_ _ - - _ _
B, 1 Y1k
TB, S Yok
g, by Yrk
| B, | L b | L Ymk

Note que sg;;,. < 0, entdor s, deve aumentar seu valor a medida gueresce. Sg;;, > 0,
entéor 5, deve diminuir de valor a medida qug cresce. Para mantermos as restricdes de néo-
negatividadeg, pode ser incrementada até o ponto em que a primeira variasglesbassume
valor igual a zero. Examinando a equacgéo (2.7), podemosugea@rimeira varidvel basica
a assumir valor zero a medida gueaumenta é agquela correspondente a menor frggag,
paray;, positivo. Podemos incrementag até o valor

*

Ty = L = Minlgigm{
Yrk

b . )
Yy > 0 } (2.8)

Note que se;, < 0 para toda;, entdo o sistema é ilimitado, pois a medida que incrementa-
moszy, as variaveis basicas também sao incrementadas e o valengiofobjetivo decresce.
Quandar,, é incrementada criamos uma nova solugéo basica onde a egldaanatrizA toma
lugar da coluna . Temos entdo uma nova solugéo cujos valores das variav@ab&ao

xp, = b — %b:, parai = 1,2,...,m
Yrk
by
T = —
Yrk

e todas as demais variaveis iguais a zero.

Abaixo temos uma descricdo do algoritrsionplex Maiores detalhes sobre o algoritmo,
sobre como achar uma base viavel inicial, tratamento dengegecéncia, ciclagem e outros
topicos podem ser encontrados no livro de Bazata. [6].

Partindo de uma bage viavel para o sistema (2.1) execute 0s seguintes passos.

1. Resolva o sistemBz = b cuja Gnica solugcdo€s = B~'b = b*. Sejarg = b*, oy =0
ez = cgxrp. Prossiga para o proximo passo.
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2. Resolva o sistemaB = ¢ cuja solugdo & = cp B~!. Calculez; — ¢; = wa; — ¢; para
todas as variaveis nao basicas. Seja

2p — ¢ = MaXjer {25 — ¢}

ondeR € o conjunto dos indices associados as variaveis nao haSeas— ¢, < 0 entéo
pare com a solucao basica atual como uma solugéo 6tima. Gaséaro prossiga para o
proximo passo.

3. Resolva o sistem&y;, = a;, cuja solucédo &, = B 'a,. Sey, < 0 entdo pare pois
solucao é ilimitada. Sg, £ 0 prossiga para 0 proximo passo.

4. Calcule o indice da coluna a sair da base que € aquele que atem ao minimo

*

b . *
yr :Mlnlgigm{ ;—Zk yzk>0 }
rk ‘

Atualize a matrizB inserindo a coluna; no lugar da colunag,. \Volte ao passo 1.

2.4.2 O algoritmoSimplexcom Geracao de Colunas

A idéia do algoritmo de geracdo de colunas é simular o algordimplex mas no passo 2 do
algoritmo, ao invés de calcularmos o custo- ¢; para cada uma das variaveis ndo basicas,
resolvemos de forma indireta o sub-problema

ManER {Zj - Cj} . (29)

Logo o algoritmo ndo mantém em memoria todas as colunas dpgma linear, e na hora
de gerar uma coluna resolvendo o sub-problema (2.9) ndo h&erificacéo explicita de todas
as variaveis néo basicas. Ressaltamos que a resolucad®jerglicitamente ndo € sempre
possivel mas para alguns problemas isto é possivel.

Como exemplo do método de geracao de colunas vamos comsigetdlemacutting stock
unidimensional (denotado por CS). Neste problema temodistaale iteng. = (a4, ..., a,),
com tamanho$s(a,), . .., s(a,,)), um vetor de demandas para cada iteln . .., d,,) e reci-
pientes bing) de tamanha3. O objetivo do problema € gerar um empacotamento dos itens
suprindo todas as demandas utilizando a menor quantidageigentes possivel.

Chamamos dpadrag uma descricdo de um empacotamento de itens em um recipiente
Podemos considerar um padrgp = (pyj,...,pn;) COMO um vetor onde cada posicag
indica quantos itens do tipoestdo empacotados neste padirddm padréq, para ser valido
deve satisfazey " | p;;js(a;) < B. SejaP uma matriz de dimensdes x n que contém todos
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os tipos de padrbes possiveis como colunas. Note que o namgradrdes possiveis é muito
grande. Podemos formular o problema CS da seguinte forma

Min (1) -z
sujeitoa Pz =d (2.10)
;>0 j=1,...,n
Neste programa linear temos um vetate tamanha, que indica quantas vezes cada padrao
deve ser utilizado em uma solucéadlg epresenta um vetor de uns com dimensablote que

estamos minimizando o numero de recipientes utilizados.
O custo de uma colunadeste programa linear é

Zj — Cj = (1)B_1pj — 1.

Sejaw = (1)B~! e P o conjunto de padrdes possiveis. No passo 2 do algosimplextemos
entao que resolver o sub-problema

Max,,ep {wp; — 1},

onde cada padrao possivel deve satisfazer

Zpijs(ai) S B
i=1

Note que se considerarmps como variaveis inteiras, o sub-problema acima corresponde
ao problema da mochila, ou seja, ao invés de considerarrdos ts padrbes possiveis, pode-
mos resolver o sub-problema acima como um problema da naabéicrito abaixo

Max wp—1
sujeito a Zpis(ai) <B (2.12)
i=1
p; > 0, inteira, i=1,...,m.

ondep é um vetor de tamanha de variaveis inteiras.

Podemos comecar a resolucdo do programa linear (2.10) carbase viavel correspon-
dente a matriz identidadg,,,, € 0 passo 2 do algoritmsimplexé resolvido utilizando o
programa linear (2.11). Desta maneira, sempre mantemo£nmedria apenas as colunas basi-
cas naresolucao de (2.10), e o passo 2 do algostmplexé resolvido de forma implicita sem
a necessidade de calcular o custe- ¢; para todas as variaveis nao basicas.



Capitulo 3

Resumo dos Resultados

Neste capitulo descrevemos os principais resultadoseayesos nesta tese. Cada um dos pro-
ximos capitulos desta tese representa um artigo com rdesltaiginais desenvolvidos durante
o doutorado. Cada artigo apresenta aplicacdes dos problnaiderados, bem como algorit-
MOos propostos para tais problemas.

No Capitulo 4 apresentamos o problema que chamamddads Constrained Shelf Bin
Packing(CCSBP). Este problema € uma generalizacabidgackingonde itens tém classes
diferentes e devemos empacotar os itens separando-osapelepas.

Uma insténcia para este problema consiste de uma fupla(L, s, c,d, A, B), ondeL é
uma lista de itenss e ¢ sdo fungdes de tamanho e classe sobre os iteris d& o tamanho
de uma divisériaA é o tamanho maximo de uma prateleir® & o tamanho dos recipientes.
Dado uma sub-listd’ C L denotamos pos(L’') a soma dos tamanhos dos itens éi.e,
s(L') = > .cp s(e). Um empacotament® da instancia para o problema CCSBP consiste
em um conjunto de recipientdd = {P,, ..., P.}, onde os itens em cada recipieritec P
estdo particionados em prateleirg®7, ..., N/ } tal que para cada prateleifd; temos que
s(N;) < A, todos os itens enV; sdo de uma mesma classg €' (s(N;) +d) < B.

Uma aplicagéo interessante do problema CCSBP pode serteagtammo trabalho de Fer-
reiraet al. [16] que introduziram este problema que aparece na indldgrimetais.

Apresentamos algoritmos baseados nas estratéigsas-it (Decreasing)e Best Fit (Decre-
asing)para o problema CCSBP. Quando o numero de classes difegehtegado por uma
constante, apresentamos algoritmos com fatores de a@oaorassintétic8.4 e 2.445. Se
0 numero de classes nao € limitado por uma constante, mastralgoritmos com fatores de
aproximacéo absolutos iguaid & 3.

Por fim, para o caso em que o numero de classes € limitado parametante, apresentamos
um APTAS para o problema CCSBP.

Uma versdo resumida deste artigo foi aceita para apres@magGRACO2005 (2nd Brazi-
lian Symposium on Graphs, Algorithms, and Combinatoridd).[A versdo completa apresen-
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tada nesta tese, foi aceita para publicacdo em uma edicaoi@spa revistdiscrete Applied
Mathematiczom artigos selecionados do congresso.

No Capitulo 5 consideramos dois problemas: o CCSBP e o pnatidén packingcom
restricdes de classes, denotado @aBP. Uma instancia deste Gltimo problema € uma tupla
I = (L,s,¢,C,Q)ondeL = (ay,...,a,) € uma lista com itens, cada itena; € L com
tamanhd < s(a;) < 1 e classe(q;) € {1,...,Q}, e um conjunto de recipientes de tamanho
1 e C compartimentos. Um empacotamento para esta instancisgstoesn um conjunto de
recipientesP = {P,..., P} tal que, para cad&, o numero de classes diferentes de itens
empacotados et € no maxima’', e a soma dos tamanhos dos itens empacotadd3 émo
maximo1. O objetivo do problema € encontrar um empacotamentb giée utiliza o menor
namero de recipientes possivel.

Neste capitulo apresentamos esquemas de aproximacagdrammsmbos os problemas. O
artigo que corresponde a este capitulo foi submetido pdiécpgdo em uma revista.

No Capitulo 6 apresentamos o problebiapackingcom restricdo de classes(¢BP) com
aplicacdes para um problema de construcéo de servidorédel®sob demanda.

Para o problemanline consideramos dois casos: no primeiro caso, que chamamos de
limitado, dada uma constante um algoritmo pode manter ativo no maxinkorecipientes
durante sua execuc¢ao (conhecido na literatura ciinoundedl, no segundo caso um ndmero
ilimitado de recipientes pode permanecer ativo. Um renigi@tivo € aquele que pode ser
usado para empacotar itens. Quando um recipiente se t@tiirele ndo pode mais voltar a
ser ativo. Para o caso limitado, mostramos que nao podé eashum algoritmo com fator de
aproximacao constante. Além disso, mostramos que se axigenma instancia tém tamanho
pelo menog, entdo ndo existe algoritmo com fator de aproximagéo meloaue @1/Ck¢).
Para o caso ndo limitado mostramos um algoriémiinecom fator de aproximagao en2e66
e2.75.

Também apresentamos neste capitulo resultados para a g#lis@&do problema. Quando
todos os itens tém tamanhos iguais, apresentamos um aiggiit+ 1/C')-aproximado. Para
0 caso paramétrico, quando os itens possuem tamanhos nmen&xin (B é o tamanho do
recipiente), para algum inteira, apresentamos um algoritmo com fator de aproximagéao igual a
(14+1/C+1/min{C,m}). Implementamos alguns dos algoritmos apresentados daaprs
resultados computacionais baseados em instancias quemefieproblema de construcéo de
servidores de video sob demanda. Tais experimentos mogtramws algoritmos considerados
geram solugdes de muito boa qualidade.

Neste capitulo consideramos ainda a versdo do problemaempientes de tamanhos va-
riados (VCCBP). Este problema foi estudado primeirameatddawandeet al. [12, 11] onde
uma tentativa de um APTAS foi considerada, para o caso em gumero de classes diferentes
na entrada é limitado por uma constante. Mostramos que atalggoroposto por Dawandst
al. [12, 11] est& errado e entdo mostramos um APTAS para o prablem



18 Capitulo 3. Resumo dos Resultados

Os resultados deste capitulo foram apresentaddtioAnnual International Computing
and Combinatorics Conference (COCOON 20p8)], e a versao apresentada aqui foi subme-
tida para publicacdo em uma revista.

No Capitulo 7 apresentamos algoritmos de aproximacao pesao do problemiain pac-
king onde os itens possuem demandas, ou seja, para cada iteenuerestmultiplicidade que
indica quantos itens deste tamanho devem ser empacotasies foblemas sdo conhecidos
na literatura como problemas datting stock Neste capitulo mostramos como adaptar varios
algoritmos de aproximacdo desenvolvidos para problenrasdeenanda para o caso onde ha
demanda. Mostramos que se um determinado algoritmo paraabtema sem demanda tiver
uma determinada propriedade, que denominamos de algsridéomoportados, entdo este algo-
ritmo pode ser transformado em outro para o caso com maultpliles. Dentre os resultados
deste capitulo destacamos um esquema de aproximacaaassipara o problemautting
stockunidimensional e um algoritmo com fator de aproximacaon&sisco igual2.077 para
0 problemacutting stockbidimensional. Os resultados deste capitulo aparecem eartigo
aceito para publicacdo na revigaropean Journal of Operational Reseal@j.

Finalmente no Capitulo 8 apresentamos algoritmos pardgmnais de empacotamento bidi-
mensional. Os problemas considerados assumem cortestgualeis e em estagios. Apresen-
tamos algoritmos exatos para o problema da mochila bidiimealshbaseados em programacao
dindmica. Consideramos também o probldnmapackingbidimensional com demandas e o
problemastrip packingbidimensional com demandas. Para estes problemas apiesstteu-
risticas baseadas no método de geracao de colunas. Impdenusnos algoritmos propostos
e reportamos os resultados computacionais obtidos corm a&gteritmos. Tais resultados in-
dicam que estes algoritmos acham soluc¢des de muito boalgdalem tempos razoaveis. Os
resultados deste capitulo, juntamente com resultadodostdinteriormente por Cintra e Waka-
bayashi [9], fazem parte de um artigo aceito para publicagérevistaEuropean Journal of
Operational Research



Capitulo 4

Artigo: A One-Dimensional Bin Packing
Problem with Shelf Divisions

E. C. XavieF F. K. Miyazaw&

Abstract

Given bins of sizeB, non-negative valuesandA, and a listL of items, each itema € L with
sizes, and class:., we define a shelf as a subset of items packed inside a bin etéhitems
size at mostA such that all items in this shelf have the same class. Twoesulent shelves
must be separated by a shelf division of sizelThe size of a shelf is the total size of its items
plus the size of the shelf division. The Class Constrainedf&in Packing Problem (CCSBP)
is to pack the items of. into the minimum number of bins, such that the items are diithto
shelves and the total size of the shelves in a bin is at BosiVe present hybrid algorithms
based on the First Fit (Decreasing) and Best Fit (Decrepnsaiggrithms, and an APTAS for the
problem CCSBP when the number of different classes is balibg@ constant'.

Key Words: Approximation algorithms, bin packing, shelf packing.

4.1 Introduction

In this paper we present approximation algorithms for asctamstrained bin packing problem
when the items must be separated by non-null shelf divisMfesdenote this problem bglass
Constrained Shelf Bin Packing Probl§@CSBP).

1An extended abstract of this paper was presented at GRACD@0@ Brazilian Symposium on Graphs,
Algorithms, and Combinatorics) and appeared in Electrdiuites in Discrete Mathematics 19 (2005) 329-335.
This research was partially supported by CNPq (Proc. 47/0868, 478818/03-3, 306526/04-2 and 490333/04-4)
and ProNEx—FAPESP/CNPq (Proc. 2003/09925-5).

?|nstituto de Computacdo — Universidade Estadual de Carapi@aixa Postal 6176 — 13084-971 —
Campinas—SP — Brazil, {eduardo.xavier,fkm}@ic.unicabmp.
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An instance for the CCSBP problem is a tuple= (L, s, c,d, A, B), whereL is a list of
items,s andc are size and class functions overd is the size of the shelf division) is the
maximum size of a shelf anf is the size of the bins. Given a sublist of itelis C L we
denote bys(L') the sum of the sizes of the itemsin, i.e,s(L') = > .., s.. A shelf packing
P of an instancd for the CCSBP problem is a set of bis= { P, ..., P.}, where the items
packed in a binP; € P are partitioned into shelvesVy, ..., N/ } such that for each shel’
we have thas(N;) < A, all items inN; are of the same class ajgd’_, (s(N}) +d) < B.
Without loss of generality we consider thak s, < A andc, € Z™ for eache € L.

The CCSBP problem is to find a shelf packing of the item& @ito the minimum number
of bins. This problem isV P-hard since it is a generalization of the bin packing problém
this case consider that the instance has just one cdass B andd = 0. We note that the term
shelf is used under another context in the literature forktestrip packing problem. In this
case, packings are two staged packings divided into levels.

There are many practical applications for the CCSBP proldgen when there is only
one class of items. For example, when the items to be packetl lmeuseparated by non-null
shelf divisions (inside a bin) and each shelf has a limitgzhcay. In Figure 4.1 we can see an
example of a shelf packing of items into one bin, with= 60, A = 17, d = 3 and all items
of the same class. The CCSBP problem is also adequate whemnitamns cannot be stored
in a same shelf (like foods and chemical products). In mogh®efcases, the sizes of the shelf
divisions have non-negligible width. Although these psshs are very common in practice, to
our knowledge this is the first paper that presents apprdiomeaesults for them.

Maximum weigth

supported by shelf
7‘ 5 ITHT division: 17

Maximum total weigt
a— supported: 60

Figure 4.1: Example of a shelf packing of items into one bin.

An interesting application for the CCSBP problem was inticet by Ferreira et al. [4] in
the iron and steel industry. In this problem, we have raw nadteolls that must be cut into
final rolls grouped by certain properties after two cuttingapes. The rolls obtained after the
first phase, called primary rolls, are submitted to difféngrocessing operations (tensioning,
tempering, laminating, hardening etc.) before the secdrad@ cut. Due to technological lim-
itations, primary rolls have a maximum allowable width ardle cut has a trimming process
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that generates a loss in the roll width. Each processingatiperhas a high cost which implies
items to be grouped before doing it, where each group casretsgpto one shelf.

Given an algorithm4, and an instancé for the CCSBP problem, we denote BYI) the
number of bins used by algoriths to pack the instancé and byOPT(7) the number of bins
used in an optimal solution. The algorith#is ana-approximation, itA(7)/OPT(I) < a, for
any instancd. In this case, we also say thdthas an absolute performance boundin bin
packing problems, it is also usual to use the asymptoticivoarse analysis. We say thdthas
an asymptotic performance boundf there is a constant such thatd(7) < «OPT(I) +
for any instancd .

Given an algorithmA,, for some= > 0, and an instancé for some problen” we denote
by A.(I) the value of the solution returned by algorithin when executed on instanée We
say thatA., for ¢ > 0, is an asymptotic polynomial time approximation schemeTA®) for
the problem CCSBP if there exist constantsd K such thatd.(7) < (1 + te)OPT(I) + K
for any instancd .

Results: In this paper we present hybrid algorithms for the CCSBP lerabbased on the First
Fit (Decreasing) and Best Fit (Decreasing) algorithmslferin packing problem. When the
number of different classes is bounded by a constant, we fatthe hybrid versions of the
First Fit and Best Fit algorithms have an asymptotic pertoroe bound 08.4 and the hybrid
versions of the First Fit Decreasing and Best Fit Decreaalggrithms have an asymptotic
performance bound less thani45. In the case where the number of different classes is part
of the input, we show that the hybrid versions of the Firstdfitl Best Fit algorithms have an
absolute performance bound ©find the hybrid version of the First Fit Decreasing algorithm
has an absolute performance boundofAt last, for the case when the number of classes is
bounded by a constant, we present an APTAS for the CCSBPgmbl

Related Work: A special case of the CCSBP problem is the Bin Packing propbemch is
one of the most studied problems in the literature. Someeofrtbst famous algorithms for the
bin packing problem are the algorithms FF, BF, FFD and BFDhwsymptotic performance
boundsl17/10, 17/10, 11/9 and11/9, respectively. Fernandez de la VVega and Lueker [3] pre-
sented an APTAS for the bin packing problem. Dawande et §J.pf2sented approximation
schemes for a class constrained version of the bin packi@Bf), where bins can have dif-
ferent sizes and each bin is used to pack items of at lndsterent classes, and the number of
different classes in the input instance is bounded by a aahsBhachnai and Tamir [7], pre-
sented a polynomial time approximation scheme for a duaieerof the problem CCBP also
for the case where the number of different classes in thd inptance is bounded by a constant.
Shachnai and Tamir [8], considered a special case of aneoolass constrained bin packing
problem. In this case all items have the same size and mustdie@ without knowledge of
the next subsequent items of the input. We refer the readeoffonan et al. [1] for a survey on
approximation algorithms for bin packing problems. In [ consider the knapsack version
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of the CCSBP problem, where each iterhas also a value.. The objective is to find a shelf
packing of a subse$ of the items in just one knapsack (bin) of sizg such that the total
value of the items ir6' is maximum. We also give a PTAS for this problem. We remark, tha
despite of the similarity of the problems, the techniques aligorithms used in this paper are
not related to the ones used in the knapsack version of th#gmno Practical approaches for
the CCSBP problem were considered by Ferreira et al. [4{,itfv@duced the problem in the
iron and steel industry. Recently, the problem was consitlby Hoto et al. [5] and Marques
and Arenales [6]. Hoto et al. [5], considered the cuttingkteersion of the problem where a
demand of items must be attended by the minimum number of Bimsy use a column gener-
ation strategy. In [6] exact and heuristic algorithms aespnted for a knapsack version of the
problem.

4.1.1 Notation

Given an instancé = (L, s,c,d, A, B) for the CCSBP problem, we denote hy= |L| the
number of items in this instance. For any integewe denote by¢| the set{1,...,t}. We
assume that each class belongs to thg@gt We assume that’ is bounded by a constant,
unless otherwise stated. We denote(ilyT, (/) the minimum number of non-null shelves in
an optimal packing of, and byOPT(7) the number of bins in this optimal solution. Given
a packingP = {P,..., P.}, we denote byP| = k the number of bins used in this packing,
and byN,(P) the number of shelves used in all bins/f Given an algorithm4 we denote by
A(TI) the number of bins used by the algorithdrto pack the instance.

4.1.2 Simple Lower Bounds

The following facts present lower bounds for the number oghised in any optimum solution
for the CCSBP problem.

Fact 4.1.1 For any instancd = (L, s,c,d, A, B), we have

s(L)
OPT(I) > :
()= [B/(d+ A)]A
Proof. Since[B/(d + A)] is an upper bound for the number of totally filled shelves irira b
the total items size in a bin is at mdgB/(d + A)]A. 0

Fact 4.1.2 For any instancd = (L, s, c,d, A, B), we have
s(L) + OPT,(1)d o s(L) + [s(L)/Ald
B - B '
Proof. The statement holds sin¢e(L)/A] is a lower bound for the number of shelves used in
any packing. O

OPT(I) >
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4.2 Hybrid versions of the First Fit and Best Fit Algorithms

In this section we present hybrid versions of the First Fé¢i2asing) and Best Fit (Decreas-
ing) algorithms, for the classic bin packing problem, to @@SBP problem. Without loss of
generality, we assume that all bins have capacity 1.

We briefly describe how these algorithms work for the clabsicpacking problem. The
First Fit (FF) and the Best Fit (BF) algorithms pack the itesha given listL = (ey, ..., e,)
in the order given byl.. Assume that the items, ..., e;,_; have been packed into the bins
B1, Bs, ..., By, each bin with capacity. To pack the next item;, the algorithm FF (resp. BF)
finds the smallest index 1 < j < k, such thats(B;) + s(e;) < 1 (resp.s(B;) is maximum
given thats(B;) + s(e;) < 1). If the algorithm FF (resp. BF) finds such a bin, the itenis
packed into the birB;. Otherwise, the item; is packed into a new bif,,. This process is
repeated until all the items df have been packed.

The First Fit Decreasing (FFD) (resp. Best Fit Decreasirg{p algorithm first sorts the
items of L in non-increasing order of size and then apply the algoriim(resp. BF). The
following result holds (see [1, 9]).

Theorem 4.2.1 For any instancd for the bin packing problem, we have

17 17

FR(I) < 5 OPT(I) + 1, BF(I) < 5 OPT(I) + 1.

1 1
11 11
FFD(I) < n OPT(I)+3, BFD(I) < n OPT(I)+3
and FFD(I) < gOPT(I).

Now we can present the hybrid algorithms for the problem CESB
Algorithms SFF, SBF, SFFDand SBFD: Given an instancé = (L, s, ¢,d, A, B), the algo-
rithm SFF (resp. SBF, SFFD and SBFD) uses the algorithm Fp(rBF, FFD and BFD) to
pack all items of a same class into shelves of gizelThe algorithm considers the size of each
generated shelf as the total items size in the shelf plusitieeo$ the shelf divisionl. The set
of generated shelves are then packed into bins of8imsing the algorithm FF (resp. BF, FFD
and BFD).

Given an instancé = (L, s, c,d, A, B) for the CCSBP problem, we denote & T A (7)
the minimum number of shelves of sizeneeded to pack, where all items in a shelf have the
same class. ClearlQPTA (/) is a lower bound for the number of shelves used in any optimal
solution. That isSOPTA(I) < OPT(I).

Theorem 4.2.2 Let I be an instance for th€ CSBPproblem. If the number of classesins
bounded by then

SFRI) < (3+ %) OPT(I)+2C, SBRI)< (3+ §> OPT(I) + 2C,
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SFFD(I) < (2 + g) OPT(I) +6C and SBFD(I) < (2+ g) OPT(I) + 6C.
Proof. Let A’ be an algorithm i{ FF, BF, FFD, BFD} such that
A'(I') < aOPT(I') +

for any instancd’ of the classic bin packing problem and J&tbe the corresponding algorithm
in {SFF, SBF, SFFD, SBFD}. LetI = (L, s,c,d, A, B) be an instance for the CCSBP prob-
lem. Consider the packing produced by the algorithmd for the instancd. We consider that
|P| > 1, otherwiseP is optimum. On average, all binsf are filled by at least /2 (including
shelf divisions), since the algorithms pack the shelvesioghs way that any pair of bins have
total contents size greater than 1. We can conclude thenfinigp

A(I)(1/2) < s(L)+ Ny(P)d
< s(L) + (aOPTA(I) 4+ CpH)d (4.1)
< s(L)+ (aOPT,(I) + CB)d (4.2)
< a(s(L) + dOPT,(I)) + Cpd
< aOPT(I)+ CB, (4.3)

where (4.1) holds from Theorem 4.2.1, and (4.3) follows fifeewt 4.1.2 and the fact that< 1.
U

Notice that any algorithm for the classic bin packing problean be easily extended to an
algorithm with the same asymptotic performance bound aatfoduces bins that on average
are filled by at least half of its capacities. Therefore, tiing result can be easily derived
as a generalization of the previous theorem.

Corollary 4.2.3 Given an algorithmA’ for the bin packing problem, such that
A'(L) < aOPT(L) + 3
for any instancd., then there exists an algorithp for the CCSBPsuch that
A(I) < 2a0PT(I) + 26C,
for any instancd of theCCSBPproblem.

This result shows that when the number of classes is boundaddnstant we can obtain, using
an APTAS for the bin packing problem, algorithms for the CE&Sgroblem with asymptotic
performance bound as close to 2 as desired (although withtimge complexity and with high
value of 3).
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Now we consider that the number of different classes is nahtded by a constant. Notice
that if a given algorithmA’ for the bin packing problem has absolute performance baynd
then we can derive an algoriths for the CCSBP problem with absolute performance bound
2a, even if the number of different classes of items is givenas @f the input. Using the fact
that algorithms FF, BF and FFD have absolute performancad®u2 and3/2 respectively,
we can obtain the following result.

Corollary 4.2.4 Let I be an instance for th€ CSBPproblem, then
SFRI) < 40PT(I), SBRI) <40PT(I) and SFFDI) < 30PT(I),
even if the number of different classes is not bounded by staon

From the practical point of view, the size of the shelf digisil is not so large compared
with A. The next theorem shows thatdfis a small fraction ofA, we can obtain a better
performance bound for the Best and First Fit strategies.

Theorem 4.2.5Let] = (L, s,c,d, A, B) be an instance for th€ CSBPproblem. If the num-
ber of classes i is bounded by’ andd = 2, r > 1, we have

r 1

14 14
SFRI) < (2+ =) OPT(I) +2C, SBR(I) < (2+ ) OPT(1) +2C,

SFFD(I) < (2+ 9%) OPT(I)+6C, SBFD(I) < (2+ %) OPT(I)+6C,
and SFFDI) < (2+ %)OPT(I).
Proof. Let A’ be an algorithm i FF, BF, FFD, BFD} such that
A'(I') < aOPT(I') +

for any instancd’ of the classic bin packing problem and Jétthe corresponding algorithm in
{SFF, SBF, SFFD SBFD}. Let] = (L, s,¢,d, A, B) be an instance for the CCSBP problem
andP the packing produced by the algorithifor the instancd.

We divide the proof in two cases, according to the value§¥ gf?) andOPT (7).
CASE 1: Ny(P) < OPT(I). In this case, we have

A(D)(1/2) < s(L)+ Ny(P)d
< (L) + OPT,(I)d
<

OPT(I), (4.4)
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where inequality (4.4) holds from Fact 4.1.2. That is,
A(I) < 20PT(I). (4.5)
CASE 2: N4(P) > OPT,(I). Inthis case, we can follow the proof of Theorem 4.2.2 andiobt
inequality (4.2). That is,
A(1)(1/2) < s(L) + («OPT (1) + CP)d. (4.6)

Since on average each shelf generated by the algovitiistilled by at least\ /2 (not including

the shelf division), we have
OPT(I) s(L)

Ns(P)(A/2)

OPT,(I)A/2 = OPT(1)dr/2.

That is,OPT(I)d < (20PT(1))/r. Therefore, from inequality (4.6), we have

A(D)(1/2) < s(L) + (aOPT,(I) + CP)d.

= s(L)+ OPTs(I)d + (a — 1)OPT(I)d + Cpd.
< OPT(I)+ O‘T_l(zom([)) +Cpd.

(AVARAVARLY

< (1+ 2<O‘T_ \opT(r) + cpd.
That is,

AN < 2+ 29 =D 6prir) + 280, @.7)
The theorem follows from inequalities (4.5), (4.7) and tte@04.2.1. a

The following proposition shows that the previous theorgespnts an asymptotic perfor-
mance bound that is tight for the algorithms SFF and SBF, whisrnvery small compared to
A.

Proposition 4.2.1 The asymptotic performance bound of the algoritfBf$ and SBF is at
least 2, even when there is only one class.

Proof. Let [, = (L,s,c,d, A, B) be an instance witl. = (ey,...,e9,),c = 1/n,d = ¢/2,

B =1,A =1/2ands(e;) = 1/2 — ¢ wheni is odd ands(e;) = ¢ otherwise. Notice that
d = A/n. Also assume that all items have a same class. The SFF andI§BFrans applied
over this instance generatesshelves, each one containing one item of diz2 — = and one
item of sizez. The final packing generated by these algorithmsrhlamis, each one containing
one shelf. An optimal packing with/2 + 1 bins can be obtained in such a way thé® bins
have two shelves each, one shelf with an item of diz2— <, and the other shelf with two
items, one item of siz&/2 — ¢ and another of size. The last bin contains the remaining items
of sizee. O
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4.3 An Asymptotic Polynomial Time Approximation Scheme

In this section we present an APTAS for the CCSBP problem whemumber of different
classes is bounded by a constant

The algorithm is presented in Figure 4.2 and is denoted ®iP.. It considers two cases:
Whene > d + A, it uses an algorithm denoted BYSBP. and in the other case, it uses an
algorithm denoted byASBP”. Notice that the algorithrASBP” receives as input a rescaled
instance so that the maximum shelf capacity is 1.

ALGORITHM ASBP.(L, s,¢,d, A, B)
Input: List of items L, each iteme € L with sizes, and class:,., maximum capacity
of a shelfA, shelf divisions of sizel, bins of capacityB = 1.

Output: Shelf packingP of L.
Subroutines:Algorithms ASBP. and ASBP”.
1. Ife>d+ Athen
2 P «— ASBPL(L,s,c,d, A, B)
3. else
4. Scale the sizeg, A, B ands,, for eache € L, proportionally so that\ = 1.
5 /I The condition to enter in this case is now equivalent t0 (d + A)/B.
6 P «— ASBPY(L,s,c,d, A, B).
7. ReturnP.

Figure 4.2: AlgorithmASBP..

The intuition to consider these two cases is that in the fasecwe can pack shelves almost
optimally because the maximum size of a shelf is bounded byd then the bins can be filled
by at leas{1 — ¢). In the second case, sinee< d + A, we can bound by a constant the number
of shelves used in each bin of an optimal solution. Then amenation step can be done to
guess the shelves that are used in an optimal solution anlnasteoptimal shelf packing can
be generated for large items. Small items are packed laiteg adinear programming strategy.
In the following two subsections we show that algorithAffBP. and ASBP” are APTAS.

4.3.1 The algorithm ASBP.

In this section we show that the algorithh$BP” is an APTAS for its corresponding case. This
algorithm uses two subroutines: One is the FF algorithm &edother is an APTAS for the
one dimensional bin packing problem presented by Fernateléa Vega and Lueker [3]. We
consider the version of this APTAS presented by Vaziran],[tuhich we denote by FL, for
which the following statement holds.
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Theorem 4.3.1 For anye > 0, there exists a polynomial time algorithiaL. to pack a list of
itemsL, each iteme € L with sizes, € [0, 4], into bins of capacityA such thatFL.(L) <
(14¢)OPTA(L) + 1, whereOPT A (L) is the minimum number of bins of capaciiyto pack
L.

The algorithmASBP?. is presented in Figure 4.3. Given an instafcthe algorithmASBP.
first packs all items of the instance into bins of sixeising the algorithm FL The algorithm
ASBP. considers each one of these bins of sizas a shelf, where the size of a shelf is its total
items size plus the sizé of a shelf division. The algorithmASBP. packs these shelves into
bins of size 1 using the algorithm FF.

ALGORITHM ASBP.L(L, s,c, A, d, B)
Input: List of items L, each iteme € L with sizes, and class:., maximum capacity
of a shelfA, shelf divisions of sizel, bins of capacityB = 1 ande > d + A.

Output: Shelf packingP of L.
SubroutinesAlgorithms FL. and FF.
1. Let L, be the set of items of clagan L.
2. Foreach class € [C] let P{ be the packing of. obtained by the algorithm FL
using bins of capacity.

Let P be the union of the packingB, for eache € [C].

Consider each bi € P as a shelf with sizé s + d.

Let S be the set of shelves obtained frgm .

Let P be the packing obtained with the algorithm FF to pack thevasedf.S into

unit bins.
7. ReturnP.

o0 AW

Figure 4.3: AlgorithmASBP. wheres > d + A.

The following statement holds for the algorithi$BP"..

Lemma 4.3.2 The algorithmASBP?, is an APTAS for th€ CSBP problem when the given
instancel is such thatB = 1 ande > d + A.

Proof. In step 2, the algorithm obtains a packiRg of items of class: in L (items inL.) into
bins of capacityA using the algorithm FL By Theorem 4.3.1, we have

[Pl < (1+¢)OPTA(L.) + 1. (4.8)

The algorithm then considers each bin7qa as a shelf and obtains a shelf packiRgusing
the algorithm FF to pack these shelves into unit bins. Sinced + A, all bins of P, except
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perhaps the last, must be filled by at least . So,
(ASBPL(L) —1)(1—¢) < s(L)+d|Pal

< s(L)+d) ((1+2)OPTa(Lc) + 1)

c=1

IN

(L+e)(s(L)+d > OPTa(L)) + dC

(14 ¢)(s(L) +dOPT(1)) + dC (4.9)

<
< (14¢)OPT()+C

where inequality (4.9) is valid from Fact 4.1.2. Also notitatd < 1. Therefore, for any
0 <e<1/3 we have

+1

ASBP(L) < ~FEopT(r)+ 10

1—¢ —€

< (14 32)OPT(I) + % + 1.

Notice that the running time of the algorithAtBP. only depends on the running times of
algorithms FL and FF, and the value 6. Let 7%y, (n, €) andTrr(n, €) be the running times of
algorithms FL and FF respectively. The running time of algoritfiBP. is O(C Ty (n, €) +
Trr(n,€)). Since the algorithms Fland FF have polynomial time complexity infor fixed e,
the complexity time of algorithrh SBP” is also polynomial im for fixede. 0

4.3.2 The algorithm ASBP?

Now, assume that the algorithkSBP. obtains a shelf packing with the algorithASBP”.
Throughout this section, we consider that d, A and B is the rescaled instance, such that
A = 1. Notice that, the equivalent condition to enter in this dase

d+A  d+1
B B’

Notice that the maximum number of shelves completely filladked in a bin is at most
| 725 | which from (4.10) is at most + 1. Observe that if there is any bin with more thas- 2
shelves of a same class, it has at least two shelves of tlgs wlih total size at mosh. In
this case, these two shelves can be combined into only oiffe Bhthout loss of generality we
consider that each bin, in a solution for the CCSBP problemtains at mos§ + 2 shelves of
a same class.

In Figure 4.4 we present the algorithit8BP”. The algorithm first obtains a pa(P;, P)
whereP; UP’, for eachP’ € P, is a packing of big items (items with size at lea$t This pair

e<

(4.10)
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is obtained by the subroutinetA. For each packing?, U P/, P’ € P, the algorithmASBP”
uses the subroutine SMALL to pack the items with size less tRdnto the packingP’. At
least one of the generated packings uses at ifiost O(¢))OPT(7) + O(1) bins as will be
shown latter. The algorithm returns the packing with thelsanumber of bins.

ALGORITHM ASBPY(L, s,c,d, A, B)

Input: List of items L, each iteme € L with sizes, and class:., maximum capacity
of a shelfA = 1, shelf divisions of sizel, bins of capacityB ande < (d +
A)/B.

Output: Shelf packingP of L.

SubroutinesAlgorithms Ay g and SMALL.

1. LetG be the set of items € L with sizes, > % and.S the setL \ G.

2. Let(P1,P) be a pair obtained from the algorithm A applied over the list

G.
For eachQ € P do

3.

4. let O be the packing obtained using the algorithm SMALL to p&ckto
Q. A A

5. LetP be apacking?; U Q whereQ € P and|Q)| is minimum.

6. ReturnP.

Figure 4.4: AlgorithmASBP?.

In the next subsections we present the subroutines usectalgbrithmASBP”. The first
subroutine called £y is used to generate a set of packings of big items. On the nbgestion
we present an algorithm called SMALL used to pack small itéibesns with size smaller than
%) in the packings of the big items generated by the algorithm. An the last subsection we
present the analysis of the algorithi8BP”.

Generating Packings for the Big Items

In this section, we present the algorithmAused to pack items with size at leadiof a given
input instancd. This algorithm generates a set of packings such that dtdeascan be used to
pack the small items, such that the resulting packing hassgimos{1+O(<))OPT(1)+O(1).
This algorithm uses the linear rounding technique, presktbly Fernandez de la Vega and
Lueker [3], and considers only items with size at legst The algorithm Ay returns a pair
(P1,P), whereP; is a packing for a list of very big items aritlis a set of packings for the
remaining items.

We use the following notation in the description of the lineaunding technique: Given two
lists of itemsX andY, let X, ..., X¢c andYy, ..., Yo be the partition ofX andY respectively
in classes, wheré&. andY, have only items of classfor eachc € [C]. We write X < Y if
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there is an injectiory. : X. — Y. for eachc € [C] such thats(e) < s(f(e)) forall e € X..
Given two listsL; and L, we denote by, || L, the concatenation of these lists.

The algorithm Ay uses three subroutinesixA,, SFF, and A. The algorithm SFF was
presented in Section 4.2. In what follows we present therdilgos Ay, and Ag.
Algorithm A,r: Thisis an algorithm used as subroutine to generate all plegsackings with
at mostg + 2 shelves of a same class, when the size of each item is bouratadelow by a
constant and the number of distinct sizes in each class isruppunded by a constant The
algorithm may generate empty shelves (used latter to pael gems). The following lemma
guarantees the existence of such an algorithm.

Lemma 4.3.3 Given an instancd = (L,s,c,d, A, B), with A = 1, where the number of
distinct items sizes in each class is at most a constatiie number of different classes is
bounded by a constant and each itemne € L has sizes, > <2, then there exists a polynomial
time algorithm that generates all possible shelf packingé avith at most% + 2 shelves of a
same class in each bin.

Proof. The number of items in a shelf is bounded;by= 1/¢2. Given a class, the number of
different shelves for it is bounded by = (p+;+1) and so, the number of different shelves is
bounded by = C’. Since the number of shelves in a bin is bounded by C(2 + 2), the
number of different bins is bounded ly= (“"). Notice thatu is a (large) constant since all
the value9, ¢, r andu depends only on, C' andt which are constants.

Therefore, the number of all feasible packings is bounded'dy/), which is bounded by
(n 4 w)", which in turn is polynomial im. O

Notice that the complexity time of the algorithm#A, is O(nO(QC/a)O“/E%t).

Algorithm Ag: Given two listsX andY such thatX < Y and a packin@y of Y, there exists
an algorithm, which we denoted byrAReplace), with inputPy, X), that obtains a packing
Px for X such thatPx| = |Py| as the next lemma guarantees.

Lemma 4.3.4If X andY are two lists withX < Y, thenOPT(X) < OPT(Y). Moreover,
if Py is a shelf packing ot then there exists a polynomial time algorittfg that givenPy
obtains a shelf packin®x of X such thatPy| = |Py|.

Proof. The algorithm A sorts the listsX, andY, for eache € [C] in non-increasing order of
items size and then replaces in this order, each itein of the packingPy by an item ofX..
The possible remaining items bf are removed. 0

For any instanceX, denote byX the instance with preciselyX | items with size equal to
the size of the smallest item iK. Clearly, X < X.

The algorithm Ay is presented in Figure 4.5. It consists in the following: Ggt ..., G
be the partition of the input list’ into classed, ..., C and letn, = |G,| for each class.
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The algorithm Ag partition each listG. into groupsGl, G?, ..., G*. LetG' = UZ_|GL. The
algorithm generates a packifig of G' usingO(¢)OPT(I)+1 bins and a se® with polynomial
number of packings for the items @\ G*'. The packingP; is generated by the algorithm SFF
and the set of packing®is generated using the algorithmg; 4 and Ag.

ALGORITHM Arr(G)
Input: List G with n items, each itene € G with sizes, > £2; maximum capacity
of a shelfA = 1; shelf divisions of sizel and bins of capacitys.
Output: A pair (P, P), whereP; is a packing and is a set of packings, whef@, UP’
is a packing of for eachP’ € P.
SubroutinesAlgorithms Ay, SFF and A.
1. PartitionG into listsG. for each class = 1,...,C and letn. = |G,|.
2. Partition each lisG., into k. < [1/¢3] groupsGL, G2, ..., Gk, such that

Gz GEz - = Gl
where|GY| = . = |n.e®] forallj =1,... k. — 1,
and|G*| < q..

3. LetG'=u% Gl

Let P, be a packing oty obtained by the algorithm SFF.

5. Let Q be the set of all possible packings obtained with the algorif g,
over the list(GL| ... [GE 7Y .. |GL]| ... ||GEe .

6. LetP be the set of packings obtained with the algorithm éver each pair
(Q, G2 ... |GE ... |GZ]| ... ||GE), whereQ € Q.

7. Return(P! P).

B

Figure 4.5: Algorithm to obtain packings for items with setdeast:>.

Denote byT'\11,, Tr andTspr the time complexity of algorithms 4, Ar, and SFF re-
spectively. The time complexity of steps 1-3 of algorithmrAs bounded byD(nlogn). The
overall time complexity of algorithm £ is O(nlogn + Tspp + Tary + TartTr). SinceTary,
Tk and7srr have polynomial time complexity in for fixed e, the time complexity of algorithm
Arr is also polynomial im for fixed e.

The following statement holds for the packi®y.

Lemma 4.3.5 The packingP; for the items inG! is such that
|Py| < 4e OPT(I) + 1.

Proof. First, consider the total items size packed in a’Biof some shelf packing. From Fact
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4.1.1 any optimum solution must satisfy

(L) s
OPTU) 2 T5ia+ ANA ~ TBjd+ 1] =

1 s(L)
2 B/(d+1)

(4.11)

Notice thaty>"¢ , n. = n. The algorithm SFF packs at leds®/(d + A)| shelves in each
bin, each shelf with at least one item. This means that eachds at leastB/(d + A) | items,
except perhaps the last, each item with size at l€ashd at most 1. Since the grodh has at
mostne? items, the number of bins in the shelf packiBgcan be bounded as follows.

Pl < MB/(Z(Q—?;A)J-‘ B MB/&i 1>J

ne’ es(L)
< 22— 4+1<2—— 41
= “B/a+y T STB/a+ )
< 4 OPT(I) + 1, (4.12)
where the inequality (4.12) is valid from (4.11). O

Packing the Small Items

In this section we present an algorithm to pack the smallsteihwe only consider the big
items, at least one of the packings generated by the algokhr has basically the same
configuration of an optimal packing. That is, one of the gatest packings has approximately
the same number of bins and approximately the same shehabsding empty shelves that are
used only for small items) of an optimal packing. Therefdre @lgorithm can guess how the
small items are packed into the shelves of this packingingaenly a small fraction of small
items to be packed in new extra bins. Notice that a first amgbréa deal with the CCSBP
problem, would be to produce the packing of the big items &ed try to pack small items
greedily. In the classic bin packing problem this approaoinka, since after packing the small
items in the bins, each bin is filled by at leds$t— ¢) of its capacity, except perhaps the last
bin. In the CCSBP problem this strategy may not work, sinter glacking the small items, the
packing could use more shelves. This way, each bin would @dilbd with items by at least
(1 — ¢) of its capacity, since each bin also contains shelf divisiofo pack small items in the
shelves generated by the algorithmpAwe use a linear programming strategy. This approach
has an easier and clearer analysis leading to the APTAS.

The algorithmASBP? uses a subroutine denoted by SMALL to pack small items (gize |
thane?) into a given packing of big items. L& = {P,, ..., P} be a shelf packing of a list of
itemsL and assume that we have to pack a%ef small items, with size at most, intoP. The
packing of the small items is obtained from a solution of adinprogram. LeN{*,..., N/° be
the shelves of classin the bin P; of the packingP. For each sheIN;fC, define a non-negative
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variablez’¢. The variabler!® indicates the total size of small items of claghat is to be packed
in the sheIfN;C. Consider the following linear program denoted by LPS:

k C  nge
max Y30
i=1 c=1 j=1
s(N )+ <A Vielk], ce[C], j€ [, (1)
C  nje
SN (s(NF€) 2l +d) <B Vi€ [k, (2)
c=1 j=1
t Nic
>N al < s(S) Vee O], (3)
i=1 j=1
>0 Vielk]l, ce[C], j€ni] (4)

whereS, is the set of small items of clagsn S.

Constraint (1) guarantees that the amount of space useccimsteelf is at most\ and
constraint (2) guarantees that the amount of space usedhirb@ais at mosi3. Constraint (3)
guarantees that variable$ are not greater than the total size of small items.

Given a packingP, and a seft of small items, the algorithm SMALL first solves the linear
program LPS, and then packs small items in the following weyr. each variablerg'.c it packs,
while possible, the small items of clasinto the shelfN, so that the total size of the packed
small items is at mostj.c. The possible remaining small items are grouped by classgs a
packed using the algorithm SFF into new bins. The complexitye of algorithm SMALL
is polynomial inn, since the linear program LPS can be solved in polynomia¢ tand the
algorithm SFF also has polynomial time.

The following lemma is valid for the algorithm SMALL.

Lemma 4.3.6 Let P be a shelf packing of a list of itenIs where each bin oP has at most
g + 2 shelves of a same class,be the set of items i with size at least? and S be the set
L\ G. LetG' be alist of items witl” < G andP be a packing of the items’ U S obtained
from P as follows:

1. LetP; be the packing obtained frofda removing the items dof.

2. LetP, be the packing of/” using the algorithmAg over the pair(P;, G').

3. LetP be the packing obtained applying the algorit@RIALL over the pair(Pz, S).

Then, we havéP| < (14 8C¢)|P|+ C + 1.

Proof. Notice that|?,| = |P| and for each shelV; in a bin of P, its corresponding shel¥’;
in P, is such thats(N}) < s(N;). If [P| = |P| then the lemma follows. So assume that the
algorithm SMALL uses additional bins to pack the itemssof
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Given a binE, denote byns(F) the number of shelves i, ns.(E) the number of shelves
of classcin E, ss(F) the total size of small items if andss.(E) the total size of small items
of classcin E.

Consider the linear program LPS. An optimum solution for UB&ds to an optimal frac-
tional packingP* of the small items such th&p*| = |P|. Consider a birP* of P* and P, the
corresponding bin ifP. We first prove that the following inequality is valid,

ss(P*) — ss(P;) < 4Ce. (4.13)

To prove (4.13), notice thats.(P) = ns.(P;) for each class. Given a shelf i and
the corresponding variabl€®, the algorithm SMALL packs a set of iterfi§“ in V; such that
it — s(T}°) < £* since a small item has size at me3t Since each bin ifP* has at most + 2
shelves of a same class, we have for each clas§’]

Nic

sse(P) = ) (aff — %) = s5e(P) — mso(P))e?

J=1

2
> ss.(P) — (E +2)e? > s5.(P;) — 4e.

Since the above inequalities are valid for each class we @adude the proof of (4.13). From
(4.13), we know that the total size of small items packed dhtaahal bins by SMALL with the
algorithm SFF, is at mostCe|P*| = 4Ce|P|. Denote byQ the set of additional bins. Each
shelf generated by the algorithm SFF is filled by at lelast <2, except perhaps i@ shelves.

Therefore, the number of shelves dhis at mostPC&'PW + C < 8Ce|P| + C + 1. Since

1—g2
each additional bin has at least one shelf, the number ofibigsis at mos8Ce|P| + C + 1.
Therefore, the number of bins R is at most(1 + 8C¢)|P| + C + 1. O

Analysis of the Algorithm ASBP?

In this section we conclude the analysis of the algorith®BP”. First, let7;r andTs be the
time complexities of algorithms & and SMALL, respectively. Notice that the time complex-
ity of algorithm ASBP?” is dominated by steps 2—4, that have time compleXityi g +71.rTs)-
Since the time complexity of algorithms A and SMALL is polynomial for fixedt, the time
complexity of algorithmASBP” is also polynomial. The following lemma concludes the anal-
ysis of the algorithmASBP”.

Lemma 4.3.7 The algorithmASBP?, is an APTAS for th€€ CSBP problem when the given
instancel is such thathA = 1, ¢ < (d + A)/B and the number of different classes is bounded
by some constardt'.
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Proof. Given an instancé = (L, s, c,d, A, B), with A = 1, let G be the set of items ik with
size at least? and S the setl \ G.

The items inG are packed by the algorithmiA. It first partitionsG into listsG.. for each
classc and then it partitions each lit. into groupsG! = G? = ... = G*. From Lemma
4.3.5 the following inequality is valid for the ligt* = US_,GL.

|Py| < 4e OPT(I) + 1. (4.14)

The packing of the items i62| ... |G| ... [|G%| ... ||GE¢ is obtained from the set of all
possible packings af1|| ... |G ... |GL] ... ||GEe~". Notice that

Gl GT M NG - NGE ™ = GG IGE - lIGe

Let O be an optimum shelf packing éf O the packing obtained fro® without the items
of S but with the possible empty shelves af¥ the packing of0; rounding down each item
size to the corresponding item in

Gill-- Gy, NGED -G

Clearly, 0, € P, whereP is the set of packings generated by the algorithmn:A Let O be a
packing obtained from the algorithmpAover the pair

(O Rl - NGY - IGEL - 1 GEE).

If Q is a packing obtained applying the algorithm SMALL over traeiar;()@, S), we have from
Lemma4.3.6 the following result.

Q< (1+8Ce)|0|+C+1=(1+8Ce)OPT(I)+C +1 (4.15)

Since the algorithrA SBP” obtains a packin@ that uses at most the number of bingAinJ Q,
the theorem follows from inequalities (4.14) and (4.15). 0

From lemmas 4.3.2 and 4.3.7, the following statement holds.

Theorem 4.3.8 The algorithmASBP. is an APTAS for th€ CSBPproblem.

4.4 Concluding Remarks

In this paper we consider the CCSBP problem, a class consttdiin packing problem with
non-null shelf divisions. Although this problem has mangqtical applications, to our knowl-
edge, this is the first paper to present approximation resoitit. We first presented hybrid
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versions of the First Fit (Decreasing) and Best Fit (Dedrggsalgorithms for the bin packing
problem to the CCSBP problem. When the number of differeagsgs of items is bounded by a
constant’, we prove that the versions of the First Fit and Best Fit hayegptotic performance
bound3.4 and the versions of the First Fit Decreasing and Best Fit&etng have asymptotic
performance boungl.445. We also presented an APTAS for this same case whose runmag t
IS

0(1/62)0/53

O(n0(2/e) ).

This algorithm is more of theoretical (rather than pradjic#terest since it has a high running
time (yet polynomial). When the number of classes is not dedrby a constant we show that
the algorithm SFFD has absolute performance badund
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Capitulo 5

Artigo: A Note on Dual Approximation
Algorithms for Class Constrained Bin
Packing Problems

E. C. Xaviet F. K. Miyazaw&

Abstract

In this paper we present a dual approximation scheme folléiss constrained shelf bin packing
problem. In this problem, we are given bins of capadityandn items ofQ different classes,
each iteme with classc, and sizes.. The problem is to pack the items into bins, such that items
of different classes must be packed in different shelvesj@the bin, that are separated by non-
null shelf divisions. We also present a dual approximatidrese for the class constrained bin
packing problem. In this problem, items must be packed ih suway that each bin contains at
mostC different classes and has total items size at mhogt dual approximation scheme may
produce infeasible packings but only within a small toleen

Key Words: Bin Packing, Approximation Algorithms.

5.1 Introduction

In this paper we study class constrained bin packing probléhat are generalizations of the
well known NP-hard bin packing problem. We first consider thess constrained shelf bin
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packing CCSBP) problem. In this problem we are given a tugle= (L, s, ¢, Q,d, A), where
L = (ay,...,a,) is a list of n items, each itemu; € L with size0 < s,, < 1 and class
ca, € {1,...,Q}, dis the size of a shelf division anfl is the maximum size of a shelf. We are
also given a set of bins, each one with capatity

Given a list or set of item$ we denote by(S) the total size of items ity i.e. s(S) =

ZeES Se-
A shelf packingP of an instance for the CCSBP problem is a packing of the items in a set
of binsP = { P, ..., P}, where the items packed in a bith € P are partitioned into shelves

{S1, ..., S;,} such that for each sheff, we have that(S?) < A, all items inS? are of the same
class and %", (s(S}) 4+ d) < 1. The problem is to find a shelf packing that uses the minimum
number of bins.

We also consider the class constrained bin packing probMnith we denote by’ CBP.

In this problem we are given a tuple= (L, s,c,C,Q) whereL = (ay,...,a,) is a list of
n items, each itena; € L with size0 < s,, < 1 and class;,, € {1,...,Q}, and a set of
bins, each one with capacityandC compartments. A packing for instanéas a set of bins
P = {Py,..., P} such that the number of different classes of items packeddh binF; is
at mostC' and the total items size in each bin is at mbsThe problem is to find a packing of
instancel that uses the minimum number of bins.

In both problems we assume that the number of different classes in the input instance, is
bounded by a constant.

Given an algorithmA for the CCBP or CCSBP problem and an instande we denote by
A(I) the number of bins used by the algorithm to pack this instaiée denote byOPT(I)
the number of bins used by an optimum solution to pack theunt®t/. In both notations the
problem considered will be clear from the context. Givenraadert, we denote byt| the set
{1,...,t}.

In [5], Hochbaum and Shmoys presented the concept of duabx=ippation algorithms
where one has to find an infeasible optimal solution, and tiadity of the algorithm is measured
by how infeasible is the generated solution. There are samescwhere the restrictions of
the problem are flexible in practice and the concept of dupt@pmation algorithms can be
applied.

A dual polynomial time approximation scheme (dual PTAS)tfeeCCSBP problem is an
algorithm that, for all instances produces solutions that use at madgtT(/) bins, each bin
with size at most1 + O(¢)) and each shelf of the bin with size at mest+ O(¢))A. A dual
PTAS for theCCBP problem is an algorithm that, for all instancgsproduces solutions that
use at mosOPT(/) bins, each bin with size at moét + O(¢)). In both cases is a fixed
parameter given to the algorithm.

Packing problems with class constraints have many apmitatn multimedia storage sys-
tems, resource allocation [15, 11, 4, 7, 14, 16, 13, 3, 19]manthnufacturing systems [6, 9, 1].
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The CCSBP problem appears in the iron and steel industry, [[),817, 18].

The CCSBP problem admits an asymptotic polynomial time@ypration scheme [17]. A
knapsack version of this problem also admits a PTAS [18]s Phabper is the first one to present
a dual PTAS for the CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice trduad approximation
scheme for th€ CBP problem was first presented by Shachnai and Tamir [12] alssidering
that the number of different classes in the input instand®ishded by a constant. The com-
plexity time of their algorithm is()(n16Q/€2). In their paper they presented a dual PTAS using
techniques that group small items together. They also S cannot adopt the technique
commonly used for packing, where we first consider largestand then add the small items”.
In this paper we show how to adopt the traditional technique @btain a dual PTAS with an
easier analysis, also considering tiiais a fixed constant. Although the easier analysis, the
complexity time of our algorithm i§)(7n2?Qes11-1/9)/)) 'whereT is the complexity time
to solve a linear program (see Section 5.3).

In section 5.2 we present a dual PTAS for the CCSBP problengugsaditional techniques,
and linear programming to pack small items. In section 5.3i1se&ethese ideas to obtain a dual
PTAS for the CCBP problem. The analysis of it is easier thanaime presented by Shachnai
and Tamir [12].

5.2 A dual PTAS for the CCSBP Problem

In this section we present a dual PTAS for the CCSBP problem.

Let / = (L,s,c,Q,d,A) be an instance for the CSBP problem. We first present a dual
PTAS for the case where the maximum size of a shelf plus tHédikissor satisfyA + d < ¢.

Hochbaum and Shmoys [5] presented a dual PTAS, which we eéyot ; 5, for the classi-
cal bin packing problem. Consider an algorithm that corss$ra list of shelves' in a straight-
forward manner: For each class, it packs the items of thssal@ing the algorithml ;s con-
sidering shelves as bins, each one with sizeSince the algorithmd s is a dual PTAS the
number of generated shelves by the algorithm is at most thdauof shelves used in any op-
timal solution, which we denote bPT(/),. Moreover each generated shelf has size at most
(1+¢)A.

Given the list of shelveS, consider another algorithm that packs the shelves in tlenimg
manner: It packs shelves (including the shelf divisors) birauntil for the first time the total
size of packed shelves becomes greater than 1. Then it gi®eath a new bin. It is easy to
prove the following result for this algorithm.

Theorem 5.2.1 The presented algorithm is a dual PTAS for th€SBP problem restricted to
instances wheré\ + d < ¢.
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Proof. Notice that the algorithm packs all items in at mo$tT (/) shelves and each shelf has
its size increased by a factor of at mastThe total size of items and shelf divisors that the
algorithm has to pack into bins is

s(L) + dOPT(I), < OPT(I).

Since the algorithm generated bins with size greater thainelalgorithm packs all shelves in
at mostOPT (/) bins. Since each shelf has size at niasteach generated bin has size at most
(1+ 2¢). 0

On the remaining of this section we assume that ¢ > <. Notice that the maximum
number of shelves completely filled, that can be packed imasat most(ﬁ}, that is at
most! + 1. Observe that if there is any bin with more than- 2 shelves of a same class, it has
at least two shelves of this class with total size at mosln this case, these two shelves can be
combined into only one shelf. Without loss of generality v8swame that each bin in a solution
for the CCSBP problem, contains at mo§t+ 2 shelves of a same class.

Throughout the remaining of this section, we assumedhédr eache € L, d, A and the
size of the bins are rescaled, such that 1. We denote byB the new size of the bins.

Let L, be the list of items with size greater than or equattdbig items) and let., be
the remaining items i, (small items). We round down each item i as follows: each
iteme € L, with size in the intervale?(1 + %)%, e%(1 + £2)"™!) has its size rounded down to
£*(1 4+ ¢?)", fori > 0. The rounded items have at magt= [log, .., 1/¢*] different sizes.

Lemma5.2.2Let ] = (L,s,c,@Q,d,A) be an instance of th€ CSBP problem wherel, =

Ly, U Ly, A =1, the number of distinct items sizeslipis at most a constant/, the number of
different classes is bounded by a const@@peach iteme € L, has sizes, > 2 and L, = L\ L.
Then there exists a polynomial time algorithm that genesaiépossible shelf packings &f
removing small items of the packing, with at més% 2 shelves of a same class in each bin.
Moreover, each bin of each generated packing has an indioadi the possible shelves that
may be used by further small items.

Proof. The maximum number of big items that can be packed in a shetfinded by = 1/22.
Given a class, the number of different shelves for it is baghidy ' = (”“‘;*1), including a
empty shelf that can be used latter to pack only small itenie Mumber of different shelves
can be bounded by= Qr’. Since the number of shelves in a bin is bounded byQ(% +2),
the number of different bins is bounded by= (qj;’”). Notice thatu is a (large) constant since
all the value®, ¢, r andu depends only on, @Q and M which are constants.

Therefore, the number of all feasible packings is bounde¢"h¥), which is bounded by
(n 4+ u)*, which in turn is polynomial im. 0

In each generated packing, we then consider the originek it the big items, and in
this case, the total size of each shelf increases by a fatttrmosts2. Since the maximum
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number of shelves in a bin is bounded @y2 + 2), the size of each bin increases to at most
B+ Q2 +2)

The algorithm generates a set, which we denoté of all possible packings of the rounded
big items. For each of these packings we then consider theelng with their original size. For
each packing i?, the algorithm then packs small items using a solution frdmesar program.
Let? = {Py,..., P} be a shelf packing of a list of itemis, and suppose we have to pack a
list L, of small items, with size at most, into P. The packing of the small items is obtained
from a solution of a linear program. Léf; C {1,...,Q} be the set of possible classes that
are packed in the bi®, and letS{, . . ., ijic be the shelves of clagsc N; in the bin P, of the
packingP. For each shelﬁjc, define a non-negative variatmt@”f. The variabler;‘.c indicates the
total size of small items of classthat is to be packed in the shedfc. Denote bys(S}°) the
total size of big items already packed in the shtglf. Consider the following linear program
denoted by LPS1:

Nic

Y Y3

_ 4 i=1 cEN; j=1
s(S)) + 2 < (1+e)A Vielkl, ce N, j€lnic], (1)
SN (St rd) <(Qa)B Vie k), (2 (LPsY)
ceEN; j=1
ke )
Z Zx;c < s(LS) VeelQ], (3)
i=1 j=1
x;"c >0 Vie [k], cE [Nz]a JE [nlc] (4)

whereL¢ is the set of small items of clagsn L.

Constraint (1) guarantees that the amount of space usedlinsbalf is at mostl + £2)A
and constraint (2) guarantees that the amount of space ngedh bin is at mostl + z¢?) B,
wherez = Q(2 + 2). Constraint (3) guarantees that variablé¢sare not greater than the total
size of small items. The number of variables in LPS1 is bodrinye) (n(Q)2/<) and the number
of constraints is bounded Wy (nQ2/c +n + Q).

Given a packing?, and a listL, of small items, the algorithm first solves the linear program
LPS1, and then packs small items in the following way: Forhemriablexj.c the algorithm
packs, while possible, small items of classito shelfS;¢ of the bin 7, so that the total size of
the packed small items is at mogf + &2,

The algorithm returns a packing that uses the minimum nurabbms and that packs all
items in bins of size at mo$t + (2 + 2)2:2Q) B.

Since@ ande are constants, the size Bfis bounded by a polynomial in. Since the
complexity time to solve LPSL1 is polynomial, the presentigghithm has a polynomial time
complexity. Now we conclude with the following theorem.
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Theorem 5.2.3 The presented algorithm is a dual PTAS for €¢©€SBP problem whem\ +d >
E.

Proof. LetO = {Py,..., P} be an optimal packing for an instanf®f the CCSBP problem
(notice thatOPT(I) = k). Round down the big items according to the rounding we have
presented and remove the small itemgodbtaining another packing’. ClearlyO’ € P and
has an indication of the shelves of small items that weregxok it. When the algorithm packs
the big items with their original size, the size in each sbél)’ increases by at most. Since
in the linear programming formulation we consider the sizeach shelf agl + £2), there is
enough room to pack all small items. So the variableams to the total size of small items. We
also consider the size of each bin in the linear programmingiilation ag1 + (2 + 2)e2Q) B,
so there is enough room to pack all shelves.

During the packing of the small items we increase the sizacfishelf by at most’. Since
the maximum number of shelves in a bir(#s+ 2)Q then the total size of each bin is increased
to at mostB + (2 +2)2e2Q < (1 + (2 +2)2:2Q) B. 0

5.3 A dual PTAS for the CCBP Problem

In this section we present a dual PTAS for tH€BP problem using the same ideas of the
previous section. This dual PTAS has an easier analysidhieaone presented by Shachnai and
Tamir [12].

Let L, be the set of items ik with size at least (big items) and let., be the remaining
items in L (small items). We round down each item i as follows: each itena € L; with
size in the intervalz (1 + ¢)?, (1 + €)"™!) has its size rounded down #¢1 + <), fori > 0. The
rounded items have at masf = [log, .. 1/¢] different sizes.

It is not hard proof the following lemma that is similar to Lera 5.2.2.

Lemma5.3.1Let] = (L, s, ¢, C, Q) be an instance of the CBP problem wherd. = L, U L,
the number of distinct items sizeslipis at most a constant/, the number of different classes
is bounded by a constanl, each iteme € L, has sizes, > ¢, and L, = L\ L,. Then there
exists a polynomial time algorithm that generates all polespackings of. removing the small
items of the packing. Moreover, each bin of each generate#fipg has an indication of the
possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is boungdedb1/=. The number
of distinct types of big items is bounded ByQ). The number of different configurations of bins
is bounded by’ = (y+MyQ+1), including the empty bin. If we also consider additionalsskes
to pack small items in each configuration, the number of difieconfigurations is bounded by



5.3. Adual PTAS for the CBP Problem 45

r = 1’29, which is a constant. Notice that we only consider configanstthat satisfy the class
constraints.

The number of all feasible packings is bounded(by"), which is bounded byn + r)",
which in turn is polynomial im. O

We then consider the original size of the items in each of #meegated packings. In this
case, the size of each bin increases by at most a factor of

The algorithm generates a set, which we denot@bgf all possible packings of the big
items. For each one of these packings the algorithm packsiad items in the following way:
Let? = {Py,..., P} be a packing of the list of items, and suppose we have to pack a list
L, of small items, with size at most into P. The packing of the small items is obtained from
a solution of a linear program. Lé{; C {1,...,Q} be the set of possible classes that may be
used to pack the small items in the ki of the packingP. For each class € N;, define a
non-negative variable’. The variabler’ indicates the total size of small items of clag® be
packed in the birP;. Denote bys(F;) the total size of big items already packed in the Bin
Consider the following linear program denoted by LPS2:

k
i
max E g x,

s(P; xi < i:1€CENi Vielk

( )+;M <(1+e¢) € [k] (1) (LPS2)
> <s(L) veelq), (2)
T >0 Vielk,ce[N], (3)

whereLf is the set of small items of classn L;.

Constraint (1) guarantees that the items packed in eachalisfysits capacities and con-
straint (2) guarantees that the total use of variabjds not greater than the total size of small
items for each clasa In this linear program, the number of variables is bounded® and
the number of constraints is boundedrby Q.

Given a packing?, and a listL, of small items, the algorithm first solves the linear program
LPS2, and then packs small items in the following way: Foheaariablez?, it packs, while
possible, the small items of clasgnto the bin P;, so that the total size of the packed small
items is at most? + .

The algorithm returns a packing that uses the minimum nurmbbms and that packs all
items in bins of size at mogtl + (C' + 1)¢). The number of packings in the sBtcan be
bounded byl; = O(n2°Qs1:-1/9"%) et T, be the worst complexity time to solve a linear
program LPS2. The complexity time of the entire algorithm ba bounded by (7,75), which
is polynomial since) ande are constants and the complexity tiffieis polynomial.
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We conclude with the following theorem.
Theorem 5.3.2 The presented algorithm is a dual PTAS for tW€BP problem.

Proof. LetO = {Py,..., P/} be an optimal packing for an instantef the CCBP problem.
Round down the big items according to the rounding we havegmted and remove the small
items of O obtaining another packing’. ClearlyO’ € P and has an indication of the classes
of small items that were packed on it. When the algorithm patle big items with their
original size, the size of each bin @ increases by at most Since in the linear programming
formulation we consider the size of each bin(as+ <), there is enough room to pack all small
items. So the variablessums to the total size of small items.

During the packing of the small items we increase the sizecoéin by at most for each
class in the bin. So the total size of each bin is increasetinwat(1 + (C' + 1)e). a0
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Capitulo 6

Artigo: The Class Constrained Bin Packing
Problem with Applications to
Video-on-Demand

E. C. Xavief F. K. Miyazaw&

Abstract

In this paper we present approximation results for a classtcained bin packing problem that
has applications to Video-on-Demand Systems. In this prabie are given bins of capacify
with C' compartments, anditems of(Q different classes, each itene {1, ..., n} with classc;
and sizes;. The problem is to pack items into bins, where each bin costai most” different
classes and has total items size at m@st\We present several approximation algorithms for
offline and online versions of the problem. The presentedlteare the best known to the
author’s knowledge.

Key words: Bin Packing, Video-on-Demand.

6.1 Introduction

In this paper we study the class constrained version of tHekmwewn bin packing problem,
which we denote byCCBP (Class Constrained Bin Packing). In this problem we arergive
atuplel = (L,s,c,C,Q) whereL = (aq,...,a,) is a list of items, each item; € L with

LA preliminary version of this paper appeared as an extentsttact in COCOON 2006, LNCS 4112, pp.
439-448, 2006.

?|nstituto de Computacdo — Universidade Estadual de CarapiGaixa Postal 6176 — 13084-971 —
Campinas—SP — Brazil, {eduardo.xavier,fkm}@ic.unicabmp.
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size0 < s,, < B and class,, € {1,...,Q}, and a set of bins, each one with capadity
andC compartments. A packin@ of L is a partition of the items into bins, where each bin
has total items size at most and the number of different classes in each part is at fiost
The problem is to find a packing df into the minimum number of bins. In the online version
of the CCBP problem the items must be packed in the ordsr . . ., a,), where each item,;
must be packed without knowledge of further items. We cardidat] < C' < @, otherwise
the CCBP problem can be solved as the original bin packing, sineé ¥ 1 then items of
different classes must be packed in different bins ard i# () then the class constraints are
irrelevant. We also consider the version of this problemhviins of different sizes. In this
case we havé’ different bin sizes. The input instance is a tuple- (L, s, c¢,w, C, ) where
w:{l,...,T} — R*isafunction of bins size. We assume w.l.0.g that for eaeH 1, ..., T},
w(i) < B. In this case, the problem is to pack all items into bins sunat the total size
of used bins is minimized. This problem is denoted by VCCBERri@ble Class Constrained
Bin Packing). Packing problems with class constraints magay applications in multimedia
storage systems, resource allocation [23, 19, 8, 13, 22,,%]2&nd in operations research like
manufacturing systems [12, 17, 5, 26, 27].

6.1.1 Notation

In the online case, the bins used to pack the items are ctasifopenor closed An empty
bin is declared open when it receives its first item, and ramao until it is declared closed.
Only open bins may receive items. Once a bin is closed, itatp@ declared open again. We
consider the bounded and unbounded space versions for line QiCBP problem. In the-
bounded space problem an algorithm must keep at any timegliisi execution at mosgtopen
bins. In the unbounded version an algorithm may keep an urdexlinumber of open bins.

Given an algorithmA for the CCBP problem and an instanck we denote byA(7) the
number of bins used by the algorithm to pack this instanced®vmte byOPT(7) the number
of bins used by an optimum (offline) solution to pack the instl. The algorithmA has
an absolute approximation factas, if for every I it satisfies A(/) < «OPT(I). It has an
a approximation factor if for every, the algorithm produces a solution such that/) <
aOPT(I) 4+ § whereg is a constant. Given an algorithry, for somes > 0, and an instance
I for some problemP we denote byA.(I) the value of the solution returned by algorithm
A. when executed on instande We say thatA., for ¢ > 0, is an asymptotic polynomial
time approximation scheme (APTAS) for the problem CCBP dréhexist constantsand 3
such thatA.(I) < (1 + te)OPT(I) + /8 for any instance/. An online algorithmA for a
minimization problem is said to have a competitive ratid there exists a constaptsuch that
A(I) < aOPT(I) + § for any instancd.

Let / be an instance of th€CBP problem andL be the list of items in/. We write that
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a € I with the same meaning of € L, and we denote(/) = s(L) = Y ., s(a). Given an
integer/, we denote by)M/] the set{1, ..., M}.

Giventwo sequencds, = (ay, . ..,a,)andL, = (by,...,b,), we denote the concatenation
of these two lists by., || Ly, i.€, Ly || Ly = (a1, ..., an, b1, ..., by). Given a packind® we denote
by |P| the number of bins irP.

Throughout this paper, we use the terms color and class hélsame meaning. We say
that a bin iscoloredif it contains items o' different classes. In this case, this bin cannot pack
any other item of a different class. A bin is said tofb# if the total size of the items packed
inside it is equal tdB.

6.1.2 Related Work

A special case of the CCBP problem is the Bin Packing problehch is one of the most
studied problems in the literature. Some of the most famdgmrithms for the bin packing
problem are the algorithms FF, BF, FFD and BFD, with asyniptmrformance bounds’/ 10,
17/10, 11/9 and11/9, respectively. We refer the reader to Coffrmetral. [2] for a survey on
approximation algorithms for bin packing problems. Fedemnde la Vega and Lueker [6] pre-
sented an APTAS for the bin packing problem. The online bickjpay is also a well studied
problem. There are many online algorithms presented intérature for the bin-packing prob-
lem. The algorithms FF, NF, and BF are online and were ingastd by Uliman [24], Johnson
[10] and Johnsost al. [11]. Subsequent papers proposed algorithms with betf@oapnation
ratios that pack items according to interval sizes. Yao,[28d Lee and Lee [15] presented
the Harmonic and Refined Harmonic algorithms with compatitatio1.692 and1.636 respec-
tively. To our knowledge the best online algorithm, with angetitive ratio of1.58889, was
presented by Seiden [18]. The best lower bound for this prabt1.54014 due to van Vliet
[25]. Recently the class-constrained versions of packiodplpms have obtained attention. In
[5, 4], Dawandeet al. claimed to present an approximation scheme for the offlic€’BP
problem when the number of different clasggs the input instance is bounded by a constant.
In [20], Shachnai and Tamir presented a dual polynomial tmgroximation scheme for the
offline class constrained bin packing problem (CCBP). THeg aonsider that the number of
different classes in the input instance is bounded by a aahsin this case, given an instance
I, the problem is to find a packing of the items in at mOStT (/) bins, each bin with size
at most(1 + O(¢e))B. In [19], Shachnai and Tamir presented theoretical re$oiita Multiple
Knapsack problem with class constraints where all item® hait size. They introduce this
problem with applications to video-on-demand servers.s8gbently to this work, Golubchik
et al. [8] presented an approximation scheme to the problem. U&sshyap and Khuller [13],
also presented approximation schemes to the problem, éuttnsider that the class require-
ment of items are not equal to all classes. Shachnai and Tarfi8], presented algorithms
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for the onlineCCBP problem when all items have equal size. In this case theyigeavlower
bound of2 to the problem and also algorithms that get a competitive dt2.

6.1.3 Results

In this paper we generalize the work presented by Shachdalamir [23], since we consider
the onlineCCBP problem where items can have different sizes. We show teabtiunded
space onlin€CBP problem cannot have a constant competitive ratio. Moreibegry item of
the instance have size at least. B we show that there is no algorithm with competitive ratio
better than Q1/C<). For the unbounded space problem we present an online thligowith
competitive ratio in2.666, 2.75]. We also present some results for the offline problem. When
all items have equal size, we present @n+ 1/C)-approximation algorithm. When items
have size at mosB/m, for some integem, we show an algorithm with approximation factor
(1+1/C+ 1/min{C,m}). Notice that we consider that the number of different clagsés
part of the input in these cases. We implemented these gahatgorithms and we also present
in this paper some experimental results for them. The exyaris show that the algorithms
generate solutions of high quality and can be used in pecilibe VCCBP problem was first
considered by Dawandst al. [5, 4] where a tentative of an APTAS was considered w@en
is bounded by a constant. We observed that their algorithes dot lead to an APTAS as
claimed. First of all, they do a linear rounding step of the &f itemsL and then obtain an
optimal packing for the new list. Doing this they do not gudes a packing for the original
items because of the class constraints. To pack the snrak iieey use a First Fit strategy, and
claim that each bin (at most a constant number of bins), &ifthly at leastl — O(¢)), but this is
also not true due to the class constraints. In this paper o e points where their algorithm
fails and present an APTAS for the VCCBP problem for fixgdn the linear rounding step we
separate items by colors and generate all possible packingise rounded items. To pack the
small items we use another strategy.

Organization: In Section 6.2 we present the application of the CCBP prolitedata place-
ment of videos. In Section 6.3, motivated by the video-omaed systems applications, we
present practical approximation algorithms for the CCB&bfem considering that all items
have equal size. In Section 6.4, we present lower boundsiéocompetitive ratio of any al-
gorithm for the bounded space onlit€’BP problem. In this section, we also present online
algorithms, one of them with competitive ratio [A666,2.75]. In Section 6.5 we present an
APTAS for theVCCBP problem when() is bounded by a constant. In Section 6.6 we show
experimental results of the practical algorithms shownent®n 6.3.
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6.2 Applications of theCCBPProblem to Data Placement on
Video-on-Demand Servers

The first work to consider packing problems with class caists as a data placement problem
was the one of Shachnai and Tamir [19]. They considered tapdack version of theCBP
problem. In this caséV bins are given, and the objective is to pack the maximum nurobe
items satisfying the class constraints in each bin. Supp@séave a server of videos with
N disks, each disk € {1,..., N} with storage capacity)C; andload capacityB;. That
is, each diskj can storeC; movies and can attend at maBt simultaneously requests for
videos. The problem is to construct a server such that, basexpected requests for movies
(computed by movies popularity), the number of attendediesty is maximized. The total
load capacity of the server By = Z;V:l B;. The movies considered to be stored in the
server arefy, I, . .., Fy with popularity parameters,, p, ..., py, Whel’ezllepi = 1. Given
these popularity parameters we compute expected requestach movie at any time. These
expected requests are, for edactefined as; = Brp;. Notice thatZ{:1 r; = By (we suppose
that eachr; is an integer).

Consider for example that we have a server with two hard diBksk 1 hasC; = 2 and
B, = 4 and disk2 hasCy; = 2 and B, = 8. There are three movieg,, F, and F3, with
popularity parameterns, = 1/4, p» = 1/4 andps = 1/2. Computing the expected requests one
obtainr; = 3, r, = 3 andrz = 6. One optimal solution is given in Figure 6.1. One copy of
movie F} is done in disk 1, a copy of movig, is done in disk 1 and 2, and a copy of movig
is done in disk 2. Notice that not all load capacity of the diskn be used. We call a perfect
placement when all load capacity is used, i.e, all requestalibcated.

o -
.
=,

Figure 6.1: An optimal solution for the given video server.

% Disk 1
@. Disk 2

This problem was shown to b€ P-hard by Shachnai and Tamir [19]. Golubclekal. [8]
show that even if all disks are equal, i.e, have the same Inddtore capacities, the problem
remainsN P-hard.

We can also consider the following problem: given a set otiests for a set of movies,
construct a server using the minimum number of disks. Ttoblpm is/N P-hard since, given
an instance for the data placement withdisks, a perfect placement exists, if and only if we
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can find a packing for all requests using at mystlisks. When all disks are equal, we can see
this data placement problem as a special case of the CCBReprolin this case we have an
instancel = (L, s, c,C, @), where each item € L is a request for a load of classe @ (the
movie type). All items have the same size ands the capacity of the disks, i.e, the number of
different movies that the disk can store. That is, we wanbtastruct a video server storing the
videos and distributing all the requests minimizing the benof used disks.

6.3 Practical Approximation Algorithms

In this section we consider the problem where all items hanesize. As we saw, this problem
is N P-hard and has applications in the data placement problemideo-on-demand. In this
case, we can consider that items are given as a list of5ets. , U, where each séf; hasn;
items of unit size with class Each bin packs at mogt items of at most” different sets. The
problem is to pack all sets of items in the minimum number asbM/e say that a set of items
is totally packedn a bin if all of its items are packed in the bin, otherwise \ag that a set is
partially packed We also say that a bin packs entirélysets, ifC' sets are totally packed in the
bin.

We adapt here, an algorithm known as Moving-Window (MW) fimgsented by Shachnai
and Tamir [19] and also used later by Golubchktkal. [8] and Kashyap and Khuller [13]. In
these previous works the algorithm was considered for tlaggack version of the problem,
where one must have to pack the maximum number of items ineamgiumber of bins.

Moving-Window (MW): The algorithm keeps a vectét = (R[1], R[2],..., R|Q]) repre-
senting non-packed items in such a way tR&t is the number of remaining items to be packed
of some sel/;. The vector is maintained in non-decreasing order of theesak|[i| during all
the execution of the algorithm. If at any given moment, itasked part of the items represented
by R[i], then the vector must be reordered.

In any iteration of the algorithm, it tries to pack different sets creating a new bin. For
that, the algorithm keeps a window 6fsets. At first, the window goes frofi[1] to R[C]. If
5" | R[i] > B then the algorithm packs the corresponding set®[0f, R[2], . . ., R[j], where
j < C'isthefirstindex such thaE{:1 R[i] > B. Notice thatR[j] may be partially packed. The
totally packed sets are removed from the vecto@fz | R[i] < B then the algorithm moves
the window to the right, until that for the first time the widdasC' sets such that their sizes
are greater than or equal 8. If this is the case, th€' sets are packed and the veci®is
reordered (if the last considered set was partially packétien the algorithm restarts. If in
some iteration, the window reaches the end of the vagioe, theC largest sets have total size
smaller thanB, then the algorithm generates bins by packing enti€élsets in each bin, with
exception perhaps in the last bin that can pack lessdhsets.

Let By, ..., By be the bins created by the algorithvi\W in the order they were created.
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Let N be the number of full bins and~ be the number of bins that are not full which we call
colored. LetN = Np + N¢. Notice that binsBy, . .., By,., are the full bins since when the
algorithm creates the first non-full bin, when the windowctess the end ok and theC' largest
sets have total size smaller thah then all other generated bins becomes non-full having
different sets each except perhaps the last.

Lemma 6.3.1If any of the first/Vr bins produced by the algorithtlW packs less thad’
different sets (classes), then the algorithm produces amapsolution.

Proof. Let B; be the first bin, among the first bins, that packs less thar different sets.
In this case, the window must start froRj1] and goes untilz[;’] for some;’ < C' — 1. The
vectorR is ordered such thak[j'] < R[j' + 1] < ... < R[Q]. Therefore, any’ — 1 remaining
sets have total size greater thBn That is, even if the seR[;’] was partially packed, all other
created bins must be full, because the remaining items ofteipapacked set withiC' — 1 sets
have total size greater thah 0

This way, we consider that for each of thg: first bins, the algorithm packs, in each itera-
tion, exactlyC' different sets and that at most one of these sets is parpatiiked. Clearly, for
the remainingV¢ bins, all of them packs totallg' different sets except perhaps the last bin.

Let OPT(/) be the number of bins used by an optimal solution to pack festa. We
assume thatvy < OPT(I) — 1, otherwise the algorithm generated an optimal solution. We
have the following result.

Lemma 6.3.2 After theMW algorithm has created the fir€0PT(I) bins, there exists at most
Nr sets to be packed.

Proof. Notice that the number of different sets must sati@fy< OPT(/)C. Since each one
of the full bins packs” different sets, where one of these sets may be partiallygaadken
the algorithm partially packs at mostr sets. These partially packed sets can be seen as new
sets that are considered by the algorithm during its execuiihat is, we can assume that the
algorithm packs at mosp + Ny different sets. Also remember that each one of¥hecolored
bins packs entirely’ different sets. Since each one of the fitd?T (/) bins packs” different
sets and) < OPT(I)C we conclude that it remains at maSj- sets that are packed in extra
colored bins. 0

With this result we can give the approximation factor of MgV algorithm.

Theorem 6.3.3 The MW algorithm has an approximation factor ¢1 + %) for the CCBP
problem when all items are equal sized.

Proof. Let I be an instance for the CCBP problem where all items have izeit EBrom Lemma
6.3.2, after the algorithm has generated the @BiI'(/) bins, it remains at mosV sets to be
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packed. Since each one of the generated bins packing thissis selored, each bin entirely
packsC different sets and then, the number of extra bins createtbedrounded by

Ng| _ OPT(I) -1 OPT(I)
[ G w < G +1 o 1/C+1
We can bound the number of generated bin®I' (1) + OPT(1)/C + 1. 0

Proposition 6.3.1 The bound of Theorem 6.3.3 is tight.

Proof. Consider that the input instanéeonsists ofV(C' — 2) big sets with2p + 2 items each,
and2N small sets withp items each. The bin capacity 3= (C' — 2)(2p + 2) + 2p + 2 items.
Notice that(C' — 2) big sets with two small sets does not fill the bin capacity. Wiree MW
algorithm is executed over this instance, the first gendraie packs one small set(' — 2)
big sets entirely and another big set partially. The renmginiems of the last packed big set
becomes a small set withitems. Notice that th&IW algorithm generated’ (C' —2)/(C — 1)
bins by packing big sets and one small set that is a residuabpa big set. After that, remains
2N small sets that are packed in ma®¥/C bins. WhenV andC' increase enough, the number
of bins tends taV + N/C. An optimal pack of this instance usasbins. In this packing, each
bin packs(C' — 2) big sets and two small sets. O

Notice that theM'W algorithm is based in a heuristic that tries to p@cklifferent sets in
each bin. But the way the algorithm works, it tends to packikamal large sets in different bins.
A good heuristic is to pack large and small sets togetheyah st way that each generated bin
has a good use of its capacity, while trying to packlifferent sets in each bin. For that, we
propose a new algorithm that we call Modified-Moving-Wind@iiv’).

Modified-Moving-Window (MW’): This algorithm is similar to th&IW algorithm in such
a way that it also keeps a window of sizeover a vector? = (R[1], R[2],..., R[Q)]) that is
maintained ordered in non-decreasing order of the vakjgs The algorithm also moves a
window of sizeC' until the total size of the sets in the window contaiBsor more items.
In the MW’ algorithm, we consider that the vectéris a circular list. At first, the window
consists of the set®[1],..., R[C]. If the total size of these sets is greater than or equal to
B, then the algorithm packs the se®$l], ..., R[j], wherej < C'is the first index such that

5:1 R[i] > B, with the last sef?[;j] probably partially packed. If the total size of these sets

is smaller thanB then instead of doing a move to the right, as in the orighMi& algorithm,
the algorithm performs a move to the left and considers tte/g§€)|, R[1], ..., R[C — 1]. The
algorithm performs moves to the left until the total sizelwd € sets are greater than or equal
to B. In this case it packs th€ sets and restarts. If the algorithm perfor@snoves to the left,
and then considers the largéssets, and this sets have total size less tBatihen the algorithm
generates a packing like the origindW algorithm, by packing entirelg’ sets in each bin.

It is not hard to prove similar results to Lemma 6.3.1 and Len@18.2 to thée\fW' algo-
rithm. Using the same arguments of Theorem 6.3.3 we can pheviellowing result.
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Theorem 6.3.4The MW’ algorithm has an approximation factor ¢t + ) for the CCBP
problem where all items are equal sized.

Notice that this bound is tight since the algorithfiV’ generates the same solution gener-
ated by the algorithmIW for the instance presented in Proposition 6.3.1. The adgaf the
MW’ algorithm is to try to pack small sets with large ones tryingtiarantee a good filling of
the bins, since it tries to pack the maximum number of smadl wéth large sets. To see this,
consider for example an instantéhat consists ofn small sets, each one with one itemlarge
sets with5 items each and medium sets witl2 items each. Suppose = 7 andC = 3. The
MW algorithm first generates bins by packing two medium sets and part of another large set.
After that, it generate2n /3 new bins to pack the small sets. ThiéV' algorithm first generates
n bins such that each one packs two small sets and a large seteffaining medium sets are
packed inn/3 bins.

Another simple approach used to solve the problem is to nsiéesideas of the well known
FFD, (BFD) algorithms (see Coffmaet al.[2])

Algorithm FFD: The algorithm first sorts the set§, ..., U, in non-increasing order of
their size and then apply the FF algorithm in the list obtdicencatenating these sets.

Theorem 6.3.5 The FFD algorithm has an approximation factor equal to 2 for th€’BP
problem when all items have unit size.

Proof. Let By,..., By be the bins created by the algorithivy be the number of full bins
and N¢ be the number of colored bins. Clearlyr < OPT and each bin that is not full must
be colored except perhaps the last generated bin. Alsoentttat two different bins that are
colored cannot have items of a same color. Siacé./C < [Q/C| < OPT we get that
N¢ < OPT. Then we can bound the number of generated bind by 20PT + 1. O

Since this algorithm does not try to optimize the class usadfee packing, it can generate
poor quality packings. In fact, we show in the next proposithat the bound of Theorem 6.3.5
is tight.

Proposition 6.3.2 The bound of Theorem 6.3.5 is tight.

Proof. Let/ = (L, s, ¢, C, Q) be an instance to theCBP problem where all items have unit
size. Let the size of the bins & = . Suppose the input list of items consists of one big set
with C3 items andC? small sets with one item each. The FFD algorithm first packsth set
in C3/C? bins and the small sets {6 /C' bins giving a total oRC' bins. An optimal solution
usesC bins packing in each bi6? — (C' — 1) items of the big set an@' — 1 small sets. The
remainingC'(C' — 1) items of the big set, an@d' small sets can be packed in 2 extra bins. 0
Now we consider the case where items in each set may haveediffsizes. This case
is also interesting for applications of the data-placenpeablem to video-on-demand servers.
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Suppose that users have different network access spedtis ¢ase, requests for load resources
may have different sizes. This case can be mapped to thectmeCCBP problem where items
have different sizes. Also notice that even if the items Ithiferent sizes, in practical instances
it is expected that the size of the item is not too large. Sppese that the maximum size of
an item is an integer bounded B)/m for somem > 1. Problems with this restriction are also
called parametric packing problems [16, 3]. Given an integewe denote this version of the
problem as Parametric Class Constrained Bin PacKiit¢3P,,,) problem.

Let / be an instance of the CBP,, problem where each item has size bounded3gyn.
Consider that the input instanéeconsists of set#’y, . . ., Ugy. We now present an algorithm to
pack this instance. Although items may have different sizessider that each item with size
greater than 1 is broken intounit size pieces. Now apply tRdW algorithm for this modified
instance. Now consider this packing for the original iterf®r each full bin it may happen
that the last item packed is fractionally packed. For eachwiere this happens, remove the
item of the bin. Notice that there are at maét items removed of the generated packing. For
these remaining items, generate new bins packing atigagtn, C'} items in each bin except
perhaps in the last bin.

Theorem 6.3.6 There exists an algorithm for th@CBP problem where each item has size at
mostB/m, for somem > 1, with approximation factor equal td + 1/ min{m, C} + 1/C).

Proof. From Theorem 6.3.3, the packing generated when itemsactdnally packed uses at
most(1 + 1/C)OPT(I) + 1 bins. Notice that the number of items fractionally packethis
packing is bounded by, since the firstVy bins are the only ones that are full. TheSe
extra items can be packed in at moaty/ min{m, C'}] extra bins. O

6.4 The OnlineCCBP Problem

From now on, we consider that the capacity of the biBis= 1, and each itenz has size
0 < s, < 1. In this section we consider the online class constrainadobacking problem.
In this case each item in the list of itemis= (a4, ..., a,), is packed without knowledge of
subsequent items in the list. In subsection 6.4.1 we prdeamr bounds for any bounded
space algorithm, in subsection 6.4.2 we present and analyzdgorithm based in the First-
Fit strategy and finally in subsection 6.4.3 we present arotimline algorithm with better
competitive ratio.

6.4.1 Lower bounds for bounded space algorithms

In this section we present inapproximability results fax tounded space onlif@CBP prob-
lem. In this case, the basic strategy is to compare the rektdined by the algorithm with the
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optimum offline packing.

Theorem 6.4.1Let !/ be a constant, then thlebounded space onlinéCBP problem does not
admit an algorithm with constant competitive ratio.

Proof. Let A be an algorithm for thé-bounded space onlineCBP problem. Consider an
instancel, such thatiL| = n?l, Q = nl, andn is divisible by C. The list L haven! dif-
ferent classes and all items have siz&'n. Consider that. = L,|...||L,, where each
L; = (a1,...,ay) is asequence ofl items where each; has clasg.

Let ¢; be the time immediately after the algorithm has packed #telli. At time ¢; the
algorithm.A can have at mostopen bins. Since each item of the first sequence is of a differe
class, the algorithm uses at leagf C bins to packL,, where at least//C — [ of these bins
are closed. When the packing of the liststarts, the algorithm has at maéstpen bins that can
pack at mostC' items of the sequenck,. To pack this sequence, the algorithm uses at least
(In —1C)/C bins. This is also valid for the other sequenégs. . ., L,,.

Therefore, to pack the lidt, the algorithmA uses at least

n(nl/C) — (n— 1)l =n?l/C — (n— 1)l

bins.
Since all items have size/Cn, an optimal offline solution can use at mésyC bins, by
packingCn items in each bin. Therefore, the competitive ratio musttbeaest
n?l/C — (n— 1)l

li =
e nl/C "

EI
In Theorem 6.4.1, items may have arbitrary small sizes. |lit@ins have size at least
for some constant, we may also obtain an inapproximability result using samarguments.
Notice that in this case, any simple algorithm has a comipetiatio of 1 /<.

Theorem 6.4.2Let/ ande < 1 be constants and consider instances for @EBP problem
where each item has size at leastThen the online CCBP problem does not admit an algorithm
with competitive ratio better thaf(1/C¢).

Proof. Suppose that/= dividesn and we have the same instance presented in Theorem 6.4.1,
modified such that all items have size equal.ttn this case any algorithm uses at lea4t/C —
(n — 1)l bins. An optimal offline solution packs items of a given classs bins. To packl. an
optimal offline algorithm uses at mostic bins.
Therefore, the competitive ratio is at least
n*l/C nl—1 1

lim = —.
n—oo n2le n?le Ce
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0
Given these negative results, for the remaining of thisi@eatre only consider the un-
bounded space onlifégCBP problem.

6.4.2 The First-Fit Algorithm

Given an online algorithr for the bin-packing problem, we can obtain an online ald¢onit
A* for the onlineCCBP problem in a straightforward manner. To pack the next iterthe
algorithm A* works as follows: Let, be the class of the item, B be the list of bins in the
order they were opened. LBt be the list of bins of3, in the same order df, where each bin
has at least one item of clagsor has items of at most' — 1 different classes. The itemis
packed with algorithn into the bins of5..

One of the most famous algorithm for the bin-packing probisrthe First-Fit (FF) algo-
rithm. This algorithm packs the next item into the first bimthe order they were opened, that
has sufficient space for the item.

In this section we show that the competitive ratio of the atgm FF* is in [2.7, 3]. We note
that the upper bound was previously shown by Dawaetdd. [4]. Notice that the algorithm
FF* is online, since it only looks for the item it is packing andsitunbounded since it keeps
all bins opened. In fact it closes a bin only if the bin is fullhis algorithm is used in other
algorithms of subsequent sections.

Lemma 6.4.3 Let I be an instance for the onlinéCBP problem such that every item has size
at mosts. LetP be the set of bins generated by the algorithRi, applied over the instanck
that are filled by less thah — <. Then: (i) Each bin irf?, which is not the last generated bin, is
colored. (ii) There is no items of a same color in two différgins of P.

Proof. Let B, be a bin inP, B, the last bin created by the algorithmF&nda; an item packed
in B;. SinceB, is filled with less than — ¢ ands(q;) < ¢, a; was not packed iB; because it
must be colored.

Now suppose there are two different biisand B, in P that are filled with less thah— ¢
and there are items;, € B;, i = 1,2 with the same class. Without loss of generality, consider
that B; was opened first. Since the maximum size.ofs € and the algorithm FFries to pack
an item into the bins in the order they were opened, satigfyia size and class constraints, the
item a, would be packed in the biB,. That is, a contradiction. O

The result of the next theorem can be found in the work of Dalea al. [4]. The idea
to prove this theorem is to consider separately bins thdilbe by at least half of its capacity
and bins that are not. In the first case the number of bins iadeaiby20PT (7). In the later
case using Lemma 6.4.3 we can prove that all bins are colerxedpt perhaps the last, and then
using the fact thaf)/C'] < OPT(I), we can bound the number of used binslyT(I) + 1.
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Theorem 6.4.4 The algorithmFF* has a competitive rati@ for the onlineCCBP problem.

Now, we show that the algorithm FEannot have a competitive ratio better than. We
first give an intuitive lower bound df.666 and then we present the lower bounddf.

Theorem 6.4.5 There is an instancg, with n items,n > 1, for the onlineCCBP problem such
thatFF (1,,)/OPT(1,) — 2.666 asn — oo.

Proof. Let I be an instance with an input list of itemds = L,||L||L.||Ls. Let C be the
maximum number of classes allowable in each bin. Thellist (ay,. .., ac-16n) iS SUch
that each itemy; has class, i = 1,...,(C — 1)6/N and each item has size which is a very
small value. This list is followed by a list, = (b1, ...,bsn), Where each itenh; has class
r =6N(C —1)+ 1, and sizel /7 + . InthelistL. = (cy,...,cen) €ach iteme; has size
1/3 + ¢ and class. Finally, in the listL; = (dy, ..., dsy) €ach itemd; has sizel /2 + ¢ and
classr.

The FF algorithm packs the list, in % bins, the listL, in N bins, the listL, in
3N bins and the list.; in 6 N bins. The Figure 6.2 presents the different bins in the pagki
generated by the FRalgorithm.

]c

Items size: a 1/7+¢ 1/3+¢ 1/2+¢

Figure 6.2: The bins generated by the' Eigorithm.

An optimal (offline) solution uses at ma& bins. This packing is obtained by packing one
item of L4, one item ofL., one item ofL, andC — 1 items of the listL, in only one bin.
This gives a lower bound of

(C—1)6N
——— 4+ 10N
lim B

N 6N = 2.666.

d
The previous lower bound can be improved using an intricegaince presented by Johnson
et al. [11] that provides a lower bound @f7 for the FF algorithm in the bin packing problem.
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Theorem 6.4.6 The competitive ratio of the algorith&F is at least2.7.

Proof. Consider an instandesuch that each bin can pack at méstlifferent classes. The input
list L is the concatenation of four listd: = L, || Ly|| Lc|| La. Inthe listL, = (ay,. .., asnc-1)),
each itenu; has class, fori = 1,...,5N(C — 1), and each item has size which is a very
small value. The list, is followed by an instance similar to the one presented bySohet
al. [11] that provides a lower bound af7 for the FF algorithm in the bin packing problem. In
the listL, = (b, ..., bsy) €ach itemb, has sizel /7 + y;, wherey, € R, fori =1,...,5N. In
thelistL. = (cy, ..., csn) each itenmr; has sizel /3 + w;, wherew; € R,fori=1,...,5N. In
the listL, = (dy,...,dsy) each itemd; has sizel /2 + . All items in the listsL,, L. and L,
have class N(C' — 1) + 1.

The algorithm FF generates a packing as the one presented in the proof of g@drh
6.4.5, except that it packs only five items of the ligtper bin. That is,

S5N(C —1)

FF() > —
() z—47

An optimal solution can useN + 2 bins (see [11]), packing one item of each ligt L. and

L, andC — 1 items of the listZ,,.
Therefore, the competitive ratio of the algorithm* k& at least

+ N+ 25N +5N.

L BN(C—1)/C 485N _

2.7.
N,C—o00 5N +2

6.4.3 A2.75-competitive algorithm

In this section we present an algorithm, which we denotelby(Figure 6.3), with competitive
ratio in the interval2.666, 2.75]

To prove the competitive ratio of the algorithdy,, we use the following lemma (the proof
can be found in [16]).

Lemma 6.4.7 SupposeX, Y, z, y are real numbers such that> 0 and0 < X <Y < 1. Then

T +y <1+1—X
max{z, Xz + Yy} ~ y

Theorem 6.4.8 Algorithm A has a competitive ratio ¢f.75.

Proof.
Let L; the list of items packed i#®;, fori = 1,2, 3.
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ALGORITHM Ac(L, s,¢,C, Q)
1. LetP; — 0, fori=1,2,3.
2. Foreache € Ldo
3. if s(e) € (3,1] thenk — 1.

4, if s(e) € (3,3 thenk «— 2.
5 if s(e) € (0, 3] thenk — 3.
6 Let P;, the sublist of bins ifP;, having items of class(e) or
with at mostC' — 1 classes, preserving the order of the bin®jn
7. If possible pack the iteminto the binsP;, using the algorithm FF
Otherwise, pack into a new empty bin irP,.
ReturnP; || P, || Ps.

o

Figure 6.3: AlgorithmAc.

Note that all bins ofP; have exactly one item with size greater tt‘@nln fact we cannot
pack more than one item @f; per bin. Therefore,
P < OPT(I) (6.1)
1
5\7%\ < s(Ly). (6.2)

The packingP, has exactly two items per bin, except perhaps the last, ¢achwith size
at least;. Therefore,

2
Let P} the set of bins inP; that are filled by at least and P4 the remaining bins (i.e.,
Py =Ps \ PL). The following is valid
2
(P35 < s(L5). 6.4)

where L} is the set of items packed iR;. Let Ny = |P;| and N = |Ps| + |P5] — 1. Since
OPT(I) > s(I) > s(Ly) + s(Lo|| L) from inequalities (6.2)—(6.4) we have

OPT(I) (1) > s(L1) + s(Lo|L3)

2
~Ng. :
3N (6.5)

V)

>
> —Na+

DN | —

From inequalities (6.1) and (6.5) we have

1 2
OPT(I) = max{Na, 3Na+ 3 Ns}. (6.6)
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From Lemma 6.4.7 we have that

, N4+ Np

< OPT(I) + 1 6.7

[Pil+ [Pl +[Po] - < max{ N4, sNa + 2Np} () + (6.7)
< 1.750PT(I) + 1. (6.8)

Now, consider the packing;. Using a similar argument used in Lemma 6.4.3, we have

P —1< % < OPT(1). (6.9)

The proof can be completed summing the inequalities (6.8)&r9).

Ac(I) = [Pl +[Pa| + |P5| + [P5]
< 1.750PT(I) + OPT(I) 4 2 = 2.75 OPT(I) + 2.

U
Notice that the same instance used to prove a lower bountddalitjorithm FFin Theorem
6.4.5 can be used to prove a lower bound for.thealgorithm.

Theorem 6.4.9 There is an instancé for the onlineCCBP problem such that
Ac(I)/OPT(I) > 2.666.

6.5 An APTAS for Bounded Number of Classes

In this section we present an APTAS for the offline VCCBP peofl The input instance for
this problem is a tuplé = (L, s, c,w, C, Q) wherew : {1,...,T} — R* is a function of bins
size. The problem is to find a pack of all items minimizing tbtat size of used bins. In this
section we consider that the maximum size of a bin is 1 andileatumber of different classes
@ in the input instance, is bounded by a constant.

In subsection 6.5.1 we present the algorithm of Dawandeadgfa@lnam and Sethuraman
[5, 4] and show in what points their algorithm failed to be aRTAS. In subsection 6.5.2
we present an APTAS for the VCCBP problem. Givensarwe will show an algorithmA4
that runs in polynomial time and produces a packing for argimstance such that (/) <
(1 —0(e))OPT + 3, whereg is a constant.

As was noticed by Dawands al. [5, 4], we only use bins such that their size are at least
since this condition does not affect too much the cost of tihati®n, i.e, the algorithm remains
an APTAS.
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6.5.1 The Algorithm of Dawande, Kalagnanam and Sethuraman

In this section we give a brief description of the algorithhbawandeet al. [5, 4] and present
the points where their algorithm fails.

Let/ = (L, s, c,w,C, Q) be an instance for the VCCBP problem andilgte the items in
L with size at least? (big items) and lef, be the remaining items ih (small items).

Letn = |L,|. The algorithm sorts the lidt, in non-increasing order of size and partition this
list into groups (lists)L4, . .., Ly, each one witHne?] items except perhaps the last list that
can has less thames?] items. Call the first item in each group as the group-leadet..l. be
the list having|L}| = |L,| items, where each item has size equal to the size of the deauier
of L;. Let L/ = L ... || L},

For the listL' it is possible to generate all configurations of bins in canstime since the
number of different items size is bounded by a constdnthe number of different item colors
is also bounded by a constaptand the maximum number of items that can be packed in a bin
is1/e2. Lett = M(Q. Given an item size and an item color, denotelpyhe number of items
of this typei € [t].

Let V be the total number of bin configurations. Lgtbe a variable that represents the
number of times a configuration € [N] is used in a solutiony,; be the coefficient that rep-
resents the number of times an item type [¢] is used in configuratiori andw; the size of
the bin used in configuration The next step of the algorithm is to solve the following &ne
program:

N
min E wjxj
j=1

N
j=1

xj >0 Vje[N. (2)

(LP)

The algorithm solves this linear program and generatestagen solution by rounding up
the variablesc. The solution is a packing for the ligt that is used to generate a packing for
the list L,,.

The next step of the algorithm is to pack the small items ingbi@tion provided by the
linear program. To do this, it uses the'Rklgorithm.

Dawandeet al. [5, 4] claimed that this algorithm is an APTAS for the VCCBRplem.

The list L, was partitioned into listé,|| ... |[Ly. Let L7 be a list havingL!| = |L;| items,
where each item has size equal to the group-leader of the;list for: = 1,..., M — 1, and
L, be an empty list. LeL” = LY||...||L},. ClearlyOPT (L") < OPT(Ly).
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Dawandeet al. claimed that the following relation is valid
OPT(L') < OPT(L") + [ne*] < OPT(Ly) + [ne?],

given the argument thdt’ and L” differ only in their first and last groups. This way, given a
packing for the listL” it is easy to construct a packing for the Iis%|| .. . || L),. Since|L}| =
|LY |, fori=2,..., M, and their items size are the same, although this seemstody@btice
that the color of items of; andL!_, may be different. Then, it is not clear how to construct a
packing forLZ,|| .. .|| L, given a packing for.”.

Let B be the number of bins used by their algorithm. After packimg$mall items using
the first-fit strategy, they claimed that at ledst- (%1 bins have residual capacity at mast
This is also not true. Suppose all small items have diffecetdrs from the big items. It is easy
to construct examples where optimal packings for the bigstgiven by the linear program
have all bins with”' different colors and the residual space is larger than agiv&his way no
small item will be packed in the bins given as solution by thear program and then, all these
bins will have residual capacity greater than

6.5.2 An APTAS for the VCCBP Problem

In this section we present an APTAS for thi€CBP problem. In the next subsection we show
how to pack big items doing a linear rounding for each diffiéiolor. The algorithm to pack
the big items generates a polynomial number of packingshierig items, and also provide
information of how to pack small items. In the following selbson, we present an algorithm to
pack the small items that is based in the solution of a lineagiam. The algorithm generates
a polynomial number of packings such that at least one isalese to the optimal.

Packing Big Items with Linear Rounding

Let L, be the items inL with size at least? (big items) and lef., be the remaining items in
L (small items). In this section we show how to do the lineambng for the big items and
generate a packing for them.

The algorithm that packs the ligt,, which we denote by £, uses the linear rounding
technique, presented by Fernandez de la Vega and Luekarié]considers only items with
size at least?. The algorithm Ag returns a paifPg, P), whereP5 is a packing for a list of
very big items and is a set of packings for the remaining items/gf

For the use of the linear rounding technique, we use theviilig notation: Given two lists
of itemsX andY’, let X, ..., Xg andY, ..., Y, be the partition ofX andY” respectively in
colors, whereX,. andY, have only items of coloe for eachc € [Q]. We write X < Y if there
is an injectionf, : X, — Y, for eachc € [Q)] such thats(e) < s(f(e)) forall e € X...
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For any instanceX, denote byX the instance with preciselyX | items with size equal to
the size of the smallest item iK. Clearly, X < X.

The Algorithm also uses the variant of the First-Fit {JFhat we presented in section 6.4.2.

The algorithm Ay is presented in Figure 6.4. It consists in the following: Let. .., Lo
be the partition of the input list, into colorsi, ..., Q and letn, = |L.| for each color. The
algorithm A r sorts each list.. in non-increasing order of size and then partition thellist
into at mostM = [1/¢3] groupsL?, L2, ..., LM, whereL. = L!|...||L*. Each group has
|n.e3| items except perhaps the last list (with the smallest itehwt)can have less than e |
items.

Let L = UCQZIL}:. The algorithm generates a packiRg of the list Lz with cost at most
O(e)OPT(I) and a selP with a polynomial number of packings for the itemslin\ Lg. The
packingPg is generated by the algorithm Fiith bins of sizel. -

The algorithm generates a set of packifig®f polynomial size, for the listZl|| . . . | LY~
... HL_bH . ||Lgf‘1). This can be done in polynomial time as the next lemma gueeant

Lemma 6.5.1 Given an instancd = (L, s, c,w,C, @), where the number of distinct items
sizes of each color is at most a constait the number of different colors is bounded by a
constant) and each itena € L, has sizes, > 2, then there exists a polynomial time algorithm
that generates all possible packingslof Moreover, each bin of each generated packing has
an indication of the possible colors that may be used by &uirsmall items.

Proof. The number of items in a bin is bounded by= 1/¢2. The number of distinct type
of items is bounded by/@). The number of different configurations of bins is bounded by
r = (y+MyQ+1). If we want to indicate the colors of small items that shouddiacked in each
configuration, the number of different configurations widl b = /29, which is a constant.
Notice that we only generate configurations that satisfyctiler constraints.

For each given configuration, we pack it with the smallestbat has enough space to pack

the configuration. The number of all feasible packings isrtotmal by(" "), which is bounded

n

by (n + )", which in turn is polynomial im. a
SinceLi »= Lit', i =1,..., M — 1 for each colo, it is easy to construct a packing for the
list L3 ... |LY)| ... [IL3|| - - - [IL& , given a packing for the list

(LH N2 LG L)
The following is valid for the packin@p of the list L 3.
Lemma 6.5.2 w(Pp) < QsOPT(I).

Proof. Notice that the algorithm PRpacks at least one item per bin and sipkg| < Qne?® and
each item has size at least we havelLz| < QeOPT(I).
u
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ALGORITHM Arr(Lyp)
Input: List L, with n items, each itene € L, with sizes, > 2.
Output: A pair (Pg,P), wherePp is a packing and® is a set of packings, wherBz U P’ is a
packing ofL; for eachP’ ¢ P.
1. PartitionL, into lists L. for each colore = 1,...,Q and letn. = |L.|.
Sort each listL.. in non-increasing order of items size.
3. Partition each lisf... into M < [1/¢3] groupsL}, L?, ..., L}, such that

N

Li-Li i=1,... M—1
where|L!| = q. = |n.g?| foralli=1,...,M —1,
and|LM| < q..

4. LetLp=UZ L.

Let Pp be a packing of. 5 obtained by the algorithm FRwith bins of sizel.

6. Let Q@ be the set of all possible packings over the list
(L - 2L 1LY ), according to Lemma 6.5.1.

o

7. LetP be the set of packings for the items(ih|| ... ||LY]|... L3l .. [ILY), using the
packingsQ € Q.
8. Return(Pg,P).

Figure 6.4: Algorithm to obtain packings for items with satdeast:>2.

Packing the small items

Observe that algorithm# generates a packing for very big items that costs at @eStPT (1),
and a sel? of packings for the remaining big items. For a given packihg P, the algorithm
marked colors of small items that should be packed in eaclfgfn To pack the small items
we use a solution given by a linear program.

Let? = {By,..., By} be a packing of the list of items, and suppose we have to pack a
list L, of small items, with size at most, into P. The packing of the small items is obtained
from a solution of a linear program. Lé{; C [Q] be the set of possible colors that may be
used to pack the small items in the bify of the packingP. For each color: € N;, define a
non-negative variable’. The variabler’ indicates the total size of small items of cotaio be
packed in the bimB;. Denote bys(B;) the total size of items already packed in the Binand
by w(B;) the capacity of bim3;. Consider the following linear program denoted by LPS:
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k

max E E x.,

sB)+ Y <wB)  Viell () wps
D7 <s(5) VeelC], (2)

wheres. is the set of small items of colerin S.

The constraint (1) guarantees that the items packed in gackalisfy its capacities and
constraint (2) guarantees that variabléss not greater than the total size of small items.

Given a packing?, and a listL, of small items, the algorithm first solves the linear program
LPS, and then packs small items in the following way: For eaatiablez’ it packs, while
possible, the small items of colerinto the binB;, so that the total size of the packed small
items is at most’. The possible remaining small items are packed using theritign FF
into new bins of sizé. The algorithm to pack small items has polynomial time, sitie linear
programLPScan be solved in polynomial time.

The small items that are packed into new bins use at most

(s(Ls) — Ef:l ZceNi xZ) 4 |P‘52Q
(1—¢2) (1—¢2)

new bins, since each bin is filled by at le&st- *) except perhaps by at mogp/C' bins.

The algorithm packs the small items in each packihg= P. In the end, the algorithm
generates another set of packijdor all items. At least one of the generated packings has
cost at most1 + O(¢))OPT(I) + 3, for a constants. The algorithm returns the packing with
smallest cost.

Now we prove that the presented algorithm is an APTAS foAth& BP.

+[Q/C]

Theorem 6.5.3Let] = (L, s, c,w,C,Q), be an instance for th& CCBP problem. The pack-
ing P returned by the algorithm satisty(P) < (14 O(e))OPT(I) + /3, wheref is a constant.

Proof. LetO be an optimal packing for instanéeLet O’ be the packing without the small items
and with the big items rounded according to the linear roogoif algorithm A r. Assume that
each bin of0’ has an indication of the colors of small items used in theesponding bin of
O. Clearly the packing)’ € Q except that it can use smaller bins than the ones uséd in

When the algorithm generates a packinépr the listL3 || ... || L] ... [|L3)]| . . . ||L¢) using
the packing)’ with items (L1|| ... |[LY | ... [|L]| ... |[LAY), itis true thatw(P) < w(O)
since in? we probably use bins of smaller size for each given configamaif big items.
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LetP = {B,..., By}. Notice that we must have

w(0) > w(P ZZ

The total size of small items that are packed into new binsnsast

k
=YY a) +[PlEQ.

i=1 ceN;
The algorithm packs small items in bins of sizebtaining a new packin®’. The total cost
of the packingP’ is

(S(Ls) = 301 Yeen, 7) L IPI@

w(P) < wP)+] I+le/c1  (6.10)

- (1—¢?) (1—¢?)
w(0) |Ple*Q

< Gt e+ (6.11)
w©) , Qul0) oo+ (6.12)

(1—e?)  (1-¢?)

The last inequality follows from the fact thg®| < |O| and the smallest size of a bindsUsing
this result, Lemma 6.5.2 and the fact tidats bounded by a constant we conclude the praof.

6.6 Experimental Results of the Practical Algorithms

In this section we provide experimental results for the atgms MW, MW’ and FFD pre-
sented in Section 6.3. As we mentioned, these algorithms dmreloped motivated by the data
placement problem in video servers. This problem is a spease of theCCBP problem. All
these algorithms were implemented in C and we made a serpadical tests with them.

The instance set is constructed in some way to represenetigroblem. A movie in
MPEG format uses about 2Gbytes of space, and requires deranse rate oBMbits/sec
(384Kbytes/sec) [1]. Suppose that the server uses disk8@GAytes of capacity with trans-
ference rate 060Mbytes/sec. In this case, each disk have storage capacity50 and load
capacityB = 160.

We callsingle-diskserver, the systems that are constructed in such a way timdit@ eopy
of a movie is done in one disk. But most video servers sdeged-diskqd1]. In this case, a
video is broken into several pieces and each one of thesegiestored in a different disk. This
is done to increase the number of requests that can be attéydbe system and to balance
the load capacity of the disks. Suppose for example that desghhave transference rate of
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60Mbytes/sec and storage capacity of 100Gbytes. Theongtigalisk can support 160 users
simultaneously. If we strip the movie along 3 disks, and assthat users requests over the time
are distributed uniformly among the three parts of the mawien the striped-disk can support
480 simultaneously users requests to this movie. For oyrgses, we can view each striped-
disk as one disk with storage capacity equal to 300Gbytedaatticapacity equal to 480. In
practice it is better to use striped-disks to balance raqu€onsider for example, a single-disk
server where a copy of a movikis in disk1 and a copy of a movi# is in another disk, and
there are 320 requests for the movi@nd none to the moviB. The system becomes unable to
attend160 requests to the movid. In a striped-disk system, where the first half part of movie
A'is stored in diskl while the last half part is stored in digk it can attend more users if their
requests are distributed along the movie in such a way thhaests are divided through the two
disks.

We generate classes of instances represented by g €uple 7'). The value) corresponds
to the number of different movies (different classes) and@resider thaf) € {250, 500, 1000}.
The valueN is the number of requests to the movies (number of items) wandssume that
N € {5000, 10000, 20000}. Finally the valuel' corresponds to the system type, whérés
equal toSC for single-disk system o$7" for striped-disk system. In the single-disk system, we
haveC = 50 and B = 160, and in the striped-disk system, we have-= 150 and B = 480.

The requests for movies are generated using the Zipf disioito[14]. This distribution was
used previously to generate data for video-on-demandrsgsiE]. This distribution have the
property that the generated data have locality propertiesnovie servers it is expected that
recent movies are the most requested ones. It is expectethts of the requests goes to a
small subset of movies in the server. The Zipf distributienéthis property. Lei be a small
positive number. The probability that theth movie amongd) movies will be requested s,
given as

Pn = e

where
1

c= .
>, (1/i0+0)

As ¢ increases, the distribution becomes more localized anddasreases the distribution
becomes more uniformly. Consideriagg= 1000, if 6 = 0.0, then80% of the requests are to
approximately20% of the movies. If6 = 1.0, then80% of the requests are to approximately
0.3% of the movies. When = —1.0 we get the uniform distribution where each movie have
the same probability /@) to be requested.

We present some experimental results in Tables 6.1 and 6lRregults were obtained
in a few seconds. In the tests of these tables, we generateisiaigd < {0.0,0.5,1.0}, N €
{5000, 20000} and@ € {250, 500, 1000}. The lower bound is given byax{[Q/C'|, [N/B]}.

In Table 6.1 we consider single-disk system, and in Tablev@ 2onsider the striped-disk sys-
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tem. We also performed tests witi = 10000 but we do not present the results here since
we get similar results to the tests with = 5000 and N = 10000. We observe that the FFD
algorithm generate good results and it becomes better éosttiped-disk system. But in com-
parison with the\lW andMW’ algorithms it performs worse, since these algorithms geadr
optimal solutions to all tests. THREW and MW’ shows to be very effective algorithms to be
used in practical instances to construct video-on-demanass.

Single-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Delta Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound
FFD 32 FFD 34 FFD 42
6=0.0 MW 32 32 MW 32 32 MW 33 33
MW’ 32 MW’ 32 MW’ 33
FFD 34 FFD 39 FFD 48
6=0.5 MW 32 32 MW 33 33 MW 36 36
MW/’ 32 MW’ 33 MW/’ 36
FFD 35.8 FFD 40.6 FFD 50
6=1.0 MW 33 33 MW 34 34 MW 37.2 37.2
MW/’ 33 MW’ 34 MW/’ 37.2
Single-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Delta Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound
FFD 125 FFD 125 FFD 127
6=0.0 MW 125 125 MW 125 125 MW 126 126
MW/’ 125 MW’ 125 MW/’ 126
FFD 126 FFD 129.4 FFD 138
6=0.5 MW 126 126 MW 126 126 MW 128 128
MW’ 126 MW’ 126 MW’ 128
FFD 128 FFD 133 FFD 143
6=1.0 MW 126 126 MW 128 128 MW 131 131
MW’ 126 MW’ 128 MW’ 131

Table 6.1: Performance of the algorithms for Single-Disk.



72Capitulo 6. ArtigoThe Class Constrained Bin Packing Problem with ApplicaitmVideo-on-Demand

Striped-Disk 250 Movies 5000 Requests 500 Movies 5000 Requests 1000 Movies 5000 Requests
Delta Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound

FFD 11 FFD 12 FFD 14

6=0.0 MW 11 11 MW 11 11 MW 11 11
MW’ 11 MW’ 11 MW’ 11
FFD 12 FFD 13 FFD 16

6=0.5 MW 11 11 MW 11 11 MW 12 12
MW’ 11 MW’ 11 MW’ 12
FFD 12 FFD 14 FFD 17

6=1.0 MW 11 11 MW 12 12 MW 13 13
MW/’ 11 MW/’ 12 MW’ 13

Striped-Disk 250 Movies 20000 Requests 500 Movies 20000 Requests 1000 Movies 20000 Requests
Delta Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound || Algorithm | Result | Lower Bound

FFD 42 FFD 42 FFD 43

6=0.0 MW 42 42 MW 42 42 MW 42 42
MW/’ 42 MW’ 42 MW’ 42
FFD 42 FFD 43 FFD 46

6=0.5 MW 42 42 MW 42 42 MW 43 43
MW/’ 42 MW/’ 42 MW’ 43
FFD 43 FFD 45 FFD 48

6=1.0 MW 42 42 MW 43 43 MW 44 44
MW’ 42 MW’ 43 MW’ 44

Table 6.2: Performance of the algorithms for Striped-Disk.

In Figures 6.5 to 6.9 we present graphics of the results oalyerithms varying the disk
storage capacity. The results are given ingkexis and the storage capacity of the bin is given
in the z-axis. In all these tests we consider the load capagity 160, the number of different
movies() = 250 and the number of requests equal5t®0. In Figure 6.5 (resp. 6.6, 6.7,
6.8, and 6.9) we usé equal to1.0 (resp. 0.5, 0.0, —0.5 and —1). In the graphics th&IW’
algorithm is denoted by¥IW2. The lower bound is given byhax{[Q/C'|,[N/B]}. Notice
that the problem becomes easier as the distribution of stgjbecomes uniformly, i.e, the value
of 6 decreases. Wheh = —1.0 all algorithms generates solutions almost equal to thelowe
bound. Another point is that the problem is harder when tlpacigy is small, as one could
expect. When the capacity becomes equal to approximabetllye algorithmsMW and MW’
produces optimal solutions. When we consider the capacégtgr thanl00, the algorithm
FFD generates optimal solutions (forequal tol and0.5). The MW’ algorithm generates
better solutions than theIW algorithm in several instances forequal to1.0, 0.5, 0.0 and
—0.5. Generally the solutions generated by the algorithi’ uses 2 or 1 less disks than
MW. Most of these better solutions were obtained with capecitietweer2 and8. It is also
interesting to notice that tRdW algorithm generates a better solution thanXf@” algorithm
in one test, the one with = —1 and capacity equal . In this case the solution found by the
MW’ algorithm uses4 disks while the solution generated by thidV algorithm uses$3 disks.
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Figure 6.6: Results with = 0.5.

6.7 Conclusions and Future Work

In this paper we present approximation algorithms for thienerand offline class-constrained
bin packing problem. The problem is motivated by appliaaion the data-placement problem
to video-on-demand servers and applications in the cu#timdypacking area. For the online
problem we provide lower bounds for any bounded space dfgorand we also present an
algorithm for the unbounded version with approximatiorida®.75. For the offline problem we
present practical approximation algorithms for two splexaaes of the problem, with conditions
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Figure 6.7: Results with = 0.
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Figure 6.8: Results with = —0.5.

already considered in the literature: when all items haeestime size and the parameterized
version of the problem. We also perform several tests wiglselpractical algorithms. For the
instances we considered representing practical ones,|dbetams MW and MW’ obtained
optimal solutions. At last, we present an APTAS for the splecase where the number of
different classes of the input instance is bounded by a eatst
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Capitulo 7

Artigo: A Note on the Approximability of
Cutting Stock Problems

G. Cintr& F. K. Miyazaw& Y. WakabayasHi E. C. XavieP

Abstract

Cutting stockproblems andbin packingproblems are basically the same problems. They differ
essentially on the variability of the input items. In thetfiise have a set of items, each item
with a given multiplicity; in the second, we have simply & b$ items (each of which we may
assume to have multiplicity 1). Many approximation aldgumis have been designed for packing
problems; a natural question is whether some of these #igusican be extended to cutting
stock problems. We define the notion of “well-behaved” allfpons and show that well-behaved
approximation algorithms for one, two and higher dimenaldnn packing problems can be
translated to approximation algorithms for cutting stoodipems with the same approximation
ratios. The results we show include the existence of an amtio@pproximation scheme for
the one-dimensional cutting stock problem and an algorithth an asymptotic performance
bound 0f2.077 for the two-dimensional cutting stock problem.

Key words: bin packing, cutting stock, approximation algorithm.
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7.1 Introduction

Cutting stock problems are of great interest, both from arigcal and a practical point-of-

view. Their applications go from packing of items into boresontainers, to cutting of fabrics,

hardboards, glasses, foams, etc. The exact computatiomgdlexity status of these problems
is unknown. It seems that the decision versions of thesegmabmay not be included in NP

and that we can only assume that they lie somewhere be\®gPACE

In this paper we show that some approximation algorithmdbiomacking problems give
rise to approximation algorithms for cutting stock probgenviore precisely, according to the
typology proposed by Wascher, Haussner and Schumann [E8problems we consider here
are theSingle Bin-Size Bin Packingvhich we abbreviate by SBSBP) and thmgle Stock-Size
Cutting Stockwhich we abbreviate by SSSCS). drdimensionalSBSBP problems, we are
given a listL of n items, where each iterh € L is ad-dimensional parallelepiped, and we
are asked to pack the elements/ofnto a minimum number of unit-capacig+dimensional
parallelepipeds. The items have to be packed orthogonattyasiented in all dimensions.
Furthermore, no two items can overlap in the packing.d4timensionalSSSCS problems,
we are given additionally a (positive integer) demahdmultiplicity) for each itemi € L.
Therefore, SBSBP problems can be considered particulas@dsSSSCS problems, where all
demands are equal to 1. Note, however, that although amoestdor a SSSCS problem can be
trivially translated to an instanck for the corresponding SBSBP problem, the sizd’ahay
be exponential in the size éf This means that such a trivial translation is not a good @gugr
to tackle SSSCS problems.

We denote byl SSSCS, 2SSSCS and3SSSCS the one, two and three-dimensional SSSCS
problems, respectively; and lyBSBP, 2SBSBP and 3SBSBP the corresponding SBSBP
problems. For the latter, several approximation algorglave appeared in the literature [12,
7, 3,1, 13, 6, 4, 5]. Curiously, despite the similarity of {m@blems, we did not find refer-
ences to approximation algorithms for SSSCS problems.eRiomg works on these problems
were carried out by Gilmore and Gomory [9, 10, 11] in the earkies, and since them many
contributions have appeared [14, 15, 16, 17]. We refer théaeto Cheng et al. [2] for a survey.

In this note we discuss how to extend some approximatiorrighgos for SBSBP problems
to approximation algorithms for SSSCS problems througmttteon of “well-behaved” algo-
rithm. In Section 7.3 we consider thi8SSCS problem. We define the concept of well-behaved
algorithm and show that any well-behaved algorithm for tRBSBP problem can be trans-
lated to an algorithm for theSSSCS problem. In Section 7.4 we mention how to obtain similar
results for higher dimensional SSSCS problems. We assushéhreader is familiar with the
algorithms for thel SBSBP problem we mention heré&YF (Next Fit), FF (First Fit), BF (Best
Fit), NFD (Next Fit Decreasing)i'FD (First Fit Decreasing)BFD (Best Fit Decreasing), and
Hy; (Harmonic).
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7.2 Notation

Aninstancel = (L, s, d) of the1SSSCS problem consists of a ligt of elements, in which each
elemente € L has sizes, € (0,1] and demand, € Z*; thuss = (s.)eer @andd = (d¢)eer-
Thenumber of itemén the instancd, which we denote by|/|, is the sumy___, d.. That s,
the number of items is at least the number of elements. ofhedemandd, of an element
indicates that there is a multiplicity @f itemsof the element of size.. We say that an item
corresponding to an elementc L is an item oftypee. That is, in the instancé there arel,
items of typee.

For any structurd’, we denote byT") the size in bits of the representation®f Givenk
lists Q1. ..., Qx, whereQ; = (ai,...,al ), we denote by) = Q|| ... ||Q theconcatenation
of these lists, defined as the ligt= (a},...,a}, ,...,af,... a} ). The number of elements of
alist or a setS is denoted byS)|.

If L = (a1, ...,a,)thenezpand(L, s, d) denotesthelist’ = (s1,...,sy,...,s7,...,s] ),
wheres’ = s(q;), for 1 < j < d;. Given an instancé’ of the 1ISBSBP problem, we denote by
condense(L') the triple(L, s, d), whereL’ = expand(L, s,d) and|L| is minimum.

For a given instancé = (L, s,d), a one-dimensional bi®3 can be represented (or de-
scribed) by a paifLg,dg), whereLg C L, 0 < dg(e) < d(e) for eache € Lg. We say that
such a paif L, dg) is abin typefor I. Clearly,(B) is bounded by a polynomial i{Y).

The eg-partition(equal partition) of a list) is the list(Q1, .. ., Qx), wherek is minimum
and ()Q = (Q1]] ... ||Qx); (ii) ¢ =¢€"fore' e € Q;, 1 < i < k. This definition also applies
to lists whose items are bins.

7.3 One-dimensional Single Stock-Size Cutting Stock Prob-
lem

The one-dimensional single stock-size cutting stadSECS) problem can be defined as fol-
lows:

Problem 1 (1SSSCS) Given an instancé = (L, s, d) as defined above, find a packing of the
items in/ into the minimum number of unit-capacity bins.

A natural approach to obtain approximation algorithms feritSSSCS problem is to adapt
known algorithms for the SBSBP problem. As we mentioned before, the naive approach that
transforms a given instandefor the 1SSSCS problem into the listezpand(I) and applies an
algorithm for thelSBSBP problem on this list is flawed as bo#xpand(7) and the size of
the packing that is produced may be exponential in the size @f course, expansions @f
may be easily avoided, so the main concern is whether we capt #oe algorithms so as to
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produce solutions witlshort descriptiongthat is, descriptions that are polynomial in the size
of 7). Putting in a more general setting, we would like to addtleegollowing question: which
properties should an algorithm for ti8 BSBP problem satisfy in order to be transformable
into an algorithm for thel SSSCS problem that produces a packing with a short description?
In what follows, we define the notion of well-behaved aldamt and give an answer to this
guestion.

Definition 7.3.1 An algorithm A’ that receives an input list’ for the 1ISBSBP problem is
well-behaved if it satisfies the following two properties:

P1. STABLE ORDER PROPERTY The algorithm packs consecutively the equal-sized iteats th
are consecutive in the input ligt. More precisely, if L}, ..., L) is an eq-partition of./
then the algorithm packs the items of edchconsecutively. Formally, we may consider
that the algorithm behaves as follows:

1.1. Take(L", s, d) := condense(L’).
1.2. TakeL := ezpand(L", s,d), whereL" is a permutation of.”.
1.3. Pack the items following the order given by

P2. GROUPING PROPERTY To pack an item, the algorithm does the following.

2.0 Suppos€L,..., L,) is an eq-partition ofL, whereL is the list mentioned in the
previous property. The algorithtd’ packs first the list.;.

2.1 Before packing the first item of a lit,
2.1.1.let B = (By, Bs, ..., By) be the list of existing non-empty bins, in the order
they were generated.
2.1.2. Let(By,...,B,) be the eqg-partition of.
Each listB; = (Bj, ..., B;”) is said to be a group.
2.1.3. Let B, be a group with sufficiently many empty bins.
/I New bins are obtained from this group.
2.2. To pack the first item € L;,
2.2.1. the algorithm packs into a bin B € B;, for somej, such that eithey < ¢
or (j =q+ 1andt =1).
2.2.2. Noij. becomes the current bin arft} the current group.
2.3 While the listZ; is non-empty, to pack the next itene L;,

2.3.1. if possible, packs into the current binB§.

2.3.2.1f A’ fails in the previous step an#!*' € B; then. A’ packse into Bi*'.
Now, B§+1 becomes the current bin.
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2.3.3. If A’ fails in the previous stepd’ packse into a binBJl,, for some grougs,.
Now, B}, becomes the current bin arf8}, the current group.

It is not hard to check thaVF, FF, BF, Hy, NFD, FFD, and BFD are well-behaved
algorithms. Now using this fact, and the concept of a shostdption of a packing, defined
below, we can derive our first result.

Definition 7.3.2 Let I = (L, s,d) be an instance for théSSSCS problem andP a packing of
I. Adescriptiorof P is a listD of pairs(B, bg), whereB = (Lg, dg) is a bin type forl andbg
is the multiplicity of the bin typ& in the packingP; and if B, is the number of items of tyjee
inthe binB, then}_ p, .. bpB. = d. foranye € L. We say thaD is ashort descriptiorif
the bin types3 are all distinct and(D) is polynomially bounded if\/).

Theorem 7.3.1Let I be an instance for the SSSCS problem and A’ an algorithm for the
1SBSBP problem. If A’ is well-behaved, then there exists a polynomial time atborid that
produces a packing that is precisely the packing produced’lyn the listexpand (1), differing
possibly only on the description of the packing.

Proof. Let/ = (L, s,d), andL’ be the permutation ofzpand(I) that is obtained as a conse-
quence of the stable order property P1, after applylhtp ezpand(I). Assumethatl, ..., L)
is the eqg-partition of.’.

Let (By,...,B,) be an eg-partition of the bins generated by algoritdmfor the items
L.||...||L; and letB,,; be a list of sufficiently many empty bins. Clearly, the altjom .4 may
use a short description 08, . .., B,). Now, consider the packing of the items of the list .

To pack the first item of ;, ;, the algorithm chooses a big of a groupB; = (B}, ce B;”),
where;j < ¢ + 1, and tries to pack the items &f, in the bins(Bj, . . ., B;.‘j), consecutively.

If it fails to pack all items ofL;,; in these bins, it continues in the same fashion moving to the
first bin of another group.

Suppose thas;,, ..., B;,, is the sequence of groups in the IBt= (B, . .., B,41) (of bins)
in which the algorithmA’ has packed the items @f;, |, in the order the packing has occurred.
SinceA’ is a well-behaved algorithm, it packs the items in conseeutins of each group. First
suppose that: > 1. In this case, after packing the itemsiof ; in the groups;,, the number
of different bins increases by at most 1 (note that the packirthe items may start in any of
the bins of the group). After packing items bf,; in the groups3;,, ..., B, _,, the number of
different bins does not increase. After packing the renmginiems ofL;,, in the groups;, ,
the number of bins increases by at mdstherefore, the number of different bins after packing
the whole listL; ; increases by at most 3. When= 1, the number of different bins increases
by at most 2.

Notice that with a simple calculation, the algorithihcan figure out how many items of
L, can be packed in a bin of a grodfy and how many bins of this group it uses to pack
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these items. After packing all the lisis, . . ., L, we can conclude that the number of different
bins is at mos8k. This shows that (mimicking the behavior of algoritbd) we may design a
polynomial time algorithmA that produces a packing that has a short description. O

Denote byNF,, FF., BF., Hye, NFDo, FFD., andBFD, the algorithmsNF, FF, BF,
Hy, NFD, FFD andBFED, respectively, adapted for ti&SSCS problem that generate pack-
ings with short descriptions.

Corollary 7.3.2 The algorithmNF, (respectivelWF,, FF., BF., Hyes, NFDe, FFD. and
BFD,.) has asymptotic performance boudrespectivelyl.7, 1.7, 1.691 ..., 1.691 ..., 11/9
and11/9). The bound fot,;., holds when\/ — oc.

Considering the same ideas of short descriptions presémtdte well-behaved algorithms,
we may also convert the AFPTAS of Fernandez de la Vega anddriékinto an AFPTAS for
the 1SSSCS problem. That is, the following result holds.

Theorem 7.3.3 There exists aAFPTASfor the 1ISSSCS problem.

7.4 Two and Higher Dimensional Single Stock-Size Cutting
Stock Problems

An instancel = (L,w, h,d) for the 2SSSCS problem consists of a list of elements each
elemente € L with width w, € (0, 1], heighth. € (0,1] and demand, € Z*. Most of the
notation we used in the context of theSSCS problem can be extended easily to the context of
25SSCS, as for examplegzpand (L, w, h,d), condense(L), etc. For this problem we can also
define the concept of well-behaved algorithm. Althoughdretiefinitions may be given, we
present a simple definition efell-behaved algorithnfor the 25SSSCS problem, as this can be
extended easily to higher dimensions.

Definition 7.4.1 An algorithm.A that receives an input list’ for the problen2SBSBP is well-
behaved if it satisfies the following properties:

Q1. StABLE ORDER PROPERTY The behavior of the algorithm can be described as follows:
1.1. Take(L",w, h,d) := condense(L’).
1.2. TakeL := ezpand(L", s,d), whereL” is a permutation of.”.

1.3. Pack the items following the order given by

Q2. LEVEL ORIENTED PROPERTY The strategy used by the algorithm to produce a packing
is the following:
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2.1 The algorithm generates a ligt of levels using a well-behaved algorithm for the
1SBSBP problem.

2.2 The algorithm uses a well-behaved algorithm for 1%3SBP problem to pack the
levels ofZ into unit-capacity two-dimensional bins.

Theorem 7.4.1Let I be an instance for th@SSSCS problem and A’ an algorithm for the
2SBSBP problem. If A" is a well-behaved algorithm, then there exists a polynotima¢ algo-
rithm A that produces a packing that is precisely the packing preduzy the algorithmd’ on

the listezpand(I), differing possibly only on the description of the packing.

One of the most famous algorithm for ta8BSBP problem is the algorithnil F'F (Hybrid
First Fit), presented by Chung, Garey and Johnson [3]. Tae#gers proved thdiFF has an
asymptotic performance bound®f 25, and later Caprara [1] proved that this algorithm has an
asymptotic performance bound 2077 . ... Frenk and Galambos [8] proved that the next fit
variant of the algorithniiFF, which we denote bYINF, has an asymptotic performance bound
of 3.382.... The algorithm with the best known asymptotic performanaena for2SBSBP,
which we denote byIC, is due to Caprara [1] and has bouhd91 .. .. These three algorithms
are hybrid and use algorithms for theBSBP problem to pack items into levels and levels into
two-dimensional bins. Moreover, all algorithms for th&BSBP problem used as subroutines
have a corresponding version for th&SSCS problem, given by Corollary 7.3.2 or by Theorem
7.3.3.

Corollary 7.4.2 There exists an algorithiANF,, (resp. HFF,, HC) with asymptotic perfor-
mance bound.382. .. (resp.2.077...,1.691...) for the2SSSCS problem.

Most of the ideas presented here can also be extended ta ldighensions. In particular,
the 4.84-approximation algorithms of Li and Cheng [13] and of Csisikd van Vliet [6] can
be translated to algorithms for tl38SSCS problem, as they generate packings that consist of
levels. We can prove that these algorithms are well-behamddhat the following holds.

Corollary 7.4.3 There exist algorithms for the probles8SSCS with asymptotic performance
bound4.84.
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Artigo: Algorithms for Two-Dimensional
Cutting Stock and Strip Packing Problems
Using Dynamic Programming and Column
Generation

G. Cintr& F. K. Miyazaw& Y. WakabayasHi E. C. XavieP

Abstract

We investigate several two-dimensional guillotine cujtstock problems. We restrict our at-
tention to the variants of these problems where the cuts:ataged. We also consider the
variants in which orthogonal rotations are allowed. We fiigtsent a dynamic programming
based algorithm for th&®ectangular KnapsaciRK). Using this algorithm we solved all in-
stances of the RK problem found at the OR-LIBRARY, includorge for which no optimal
solution was known. We also consider fh@o-dimensional Cutting Sto¢RCS) problem. We
present a column generation based algorithm for this pnoliat uses the first algorithm above
mentioned to generate the columns. We also investigateanvaf this problem where the bins
have different sizes. At last, we study theo-dimensional Strip Packin@P) problem. We
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also present a column generation based algorithm for tloisl@m that uses the second algo-
rithm above mentioned where staged patterns are imposetisinase we solve instances for
two-, three- and four-staged patterns. We report on somegutational experiments with the
algorithms of this paper. The results indicate that thegerdhms seem to be suitable for solv-
ing real-world instances. We give a detailed descriptiopgeudo-code) of all the algorithms
presented here, so that the reader may easily implemeiet afgsrithms.

Key words: column generation, cutting stock, guillotine cutting, edymc programming,
two-dimensional packing, strip packing

8.1 Introduction

Many industries face the challenge of finding solutions #rat the most economical for the
problem of cutting large objects to produce specified smallgects. Very often, the large
objects (bins) and the small objects (items) are two-dinogred and have rectangular shape.
Besides that, a usual restriction for cutting problems & th each object we may use only
guillotine cuts that is, cuts that are parallel to one of the sides of theablajied go from one
side to the opposite one; problems of this type are calleddiweensional guillotine cutting
problems. Another usual restriction for these problemglsgestaged cuts. A-staged cutting
is a sequence of at moktstages of cuts, each stage of which is a set of parallel gudcuts,
performed on the objects obtained in the previous stagearlglehe cuts in each stage must be
orthogonal to the cuts in the previous stage. We assumepuiitbss of generality, that the cuts
are infinitely thin.

In what follows, we define the problems we consider in thisgpaim all of them, we assume
that at mostk stages of guillotine cuts are allowed, even if is is not etfdly mentioned.

In the Rectangular KnapsackRK) problem we are given a rectangie = (W, H) with
width W and heightH, and a list ofm items (types of rectangles), each itémwith width w;,
heighth;, and valuey; (i = 1,...,m). We wish to determine how to cut the rectangleso
as to maximize the sum of the values of the items that are peatluWe assume that many
copies of the same item can be produced. We denote such andastyl = (W, H, w, h,v).
Here, as well in the next problems, we assume that (wy,...,wy), h = (h1,..., hy),
andd = (dy,...,d,,) are lists. We us¢ ) to represent an empty list and the operdtdo
concatenate lists.

The Two-dimensional Cutting Sto¢RCS) problem is defined as follows. Given an unlim-
ited quantity of two-dimensional bin8 = (W, H ), with width W and heightH, and a list of
m items (small rectangles) each itémwith dimensiongw;, k;) and demand; (i = 1, ..., m),
determine how to cut the smallest number of hihso as to producé; unities of each item.

An instance for the 2CS problem is denoted/by: (W, H, w, h, d).
We also consider the 2CS problem with variable bin sizeg, whihbe denoted by BPV.
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This problem is similar to the previous one: the differer&¢hiat we are now given a list of
two-dimensional bin type#®;, . . ., B,, each bin typeB; with dimensiongW;, H,) and value
V; (there is an unlimited quantity of them). We want to detemtiow to produceé; unities of
each itemi, 1 < ¢ < m, so as to minimize the sum of the values of the bins that are. &ech
an instance for this problem is denoted by- (W, H, V,w, h,d), whereW = (W1,..., W),
H = (Hy,...,Hy) andV = (Vi,..., V}).

The Two-dimensional Strip Packin&P) problem is the following: given a two-dimensional
strip with width W7 and infinite height, and a list of: items (rectangles), each iteimwith
dimensiongw;, h;) and demand;, 1 < i < m, determine how to producg unities of each
item ¢ from the strip, so as to minimize the height of the part of tinig shat is used. We require
that the cuts bé-staged, and that in the first stage (in which horizontal avdgperformed) the
distance between any two subsequent cuts must be atim@stommom restriction in practice,
imposed by the cutting machines). Aninstance as above eddmoted by = (W, H, w, h, d).

For all these problems, we consider variants with orthobostations. Unless otherwise
stated, we assume that the items are oriented (that isiomatdf the items are not allowed).
The variants of these problems in which the items may beedtatthogonally are denoted
by RK", BP", BPV" and SP. We also assume that, in all instances the items have feasibl
dimensions, that is, each of them fit into the given bin (or edim type) or strip.

This paper focuses on algorithms for the problems aboveioresd. They are classical
hard optimization problems, interesting both from theige¢tas well as practical point-of-view.
Most of them have been largely investigated. In the nexti@estwe discuss these problems
and mention some of the results that have appeared in thatlite.

We call each possible way of cutting a biow@ting pattern(or simplypattern). To represent
the patterns (and the cuts to be performed) we adopt the obomehat is generally used in this
context. We consider the Euclidean pldkg with thexy coordinate system, and assume that
the width of a rectangle is represented in thaxis, and the height is represented in fhaxis.
We also assume that the positioh 0) of this coordinate system represents the bottom left
corner of the bin. Thus a bin of width” and heightd corresponds to the region defined by
the rectangle whose bottom left corner is at the positiof) and the top right corner is at the
position (W, H). To specify the position of an itemin the bin, we specify the coordinates of
its bottom left corner. Using these conventions, it is ndfialilt to define more formally what
Is a pattern and how we can represent one.

A guillotine patternis a pattern that can be obtained by a sequence of guillatitseapplied
to the original bin and to the subsequent small rectanglasaite obtained after each cut (see
Figure 8.1).

Many practical applications have restrictions on the nunolbeutting stages to obtain the
final items, especially when the cost of the material to baslaw compared to the industrial
cost involved in the cutting process. We say that a pattefstagedif it is obtained after
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2

Figure 8.1: (a) Non-guillotine pattern; (b) Guillotine pan.

performingk stages of cutting (an eventual additional stage is alloweatder to separate an
item from a wasted area). In Figure 8.1(b) we hagestaged (guillotine) pattern (We consider
that the gray area is a wasted area). Following other papeheiliterature (see [12, 13, 46)),
we assume that the first cutting stage is performed in thediatal direction, for all problems
on staged patterns.

This paper is organized as follows. In Section 8.2, we foaushe Rectangular Knap-
sack (RK) problem, where we present dynamic programmingdakyorithms to obtain exact
solutions for it.

Section 8.3 is devoted to the Two-dimensional Cutting S{@€KS) problem. We describe
two algorithms for it, both based on the column generatiopr@gch. One of them uses a
perturbation strategy to deal with the residual instan@ésalso consider the variant of the 2CS
problem in which orthogonal rotations are allowed. In Set8.4 we study the BPV problem,
a variant of the 2CS problem where bins may have differesssaind values. In Section 8.5 we
study the Strip Packing (SP) problem. All algorithms basethe column generation approach
we present here make use of the exact algorithms of Sect2on 8.

Finally, in Section 8.6 we report on the computational ressule have obtained with the
presented algorithms, and in the last section we make somlead&marks. The computational
tests show that the algorithms we describe here find sokifienmedium size instances that
are very close to the optimum in small amount of time.

Observation: The results of this paper is an extension of the work done lyr&i18],
where he presented column generation algorithms for thestemged versions of the problems
RK, 2CS and BPV. In this paper we extend his work to considegesi patterns and also to the
SP problem. A paper containing the results presented heréharresults presented by Cintra
[18] was submitted to a journal.

8.2 Thek-staged rectangular knapsack problem

TheRectangular KnapsadRK) problem has been largely investigated since the sixt&lmore
and Gomory [27, 28] studied this problem (on guillotine ¢aisd they also introduced in 1965
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the variant withk-staged cuts [29]. In 1972, Herz [31] presented a recursgerighm to obtain
patterns, called canonical, making use of the so-callsdretization points Christofides and
Whitlock [15] showed a dynamic programming approach to cat@phe discretization points.
Some papers also consider exact tree search procedure8] [far3his problem. Arenales
and Morabito [3] proposed an exact branch and bound algoritsing an and-or-graph search
approach for non-guillotine patterns.

Wang [47] proposed an algorithm that generates cuttinggpettcombining smaller pieces
of patterns. Beasley [5] proposed a dynamic programmingacaa using the discretization
points of Herz for both the non-staged and the staged vexsibiine problem. Recently, Belov
and Scheithauer [8] presented a branch and cut algorithra f@riant restricted to 2-staged
(oriented) patterns. Lodi and Monaci [36] also investigadtes 2-staged version. For the variant
in which all items must be packed at most once, Jansen [38]rat a2 + ¢)-approximation
algorithm.

We describe now the algorithms we implemented for the RK lgrab For that, we present
first some concepts and results. We basically implementdberrence formulas proposed
by Beasley (using dynamic programming) combined with thecept of discretization points
defined by Herz [31]. This approach seems to be very effectiwgecould solve an instance of
the OR-Library whose optimal solution was unknown.

Let/ = (W, H,w, h,v) be an instance of the RK problem. We consider ifiat/, and the
entries ofw andh are all integer numbers. If this is not the case, we can olataiaquivalent
integral instance simply by multiplying the widths and/foe theights of the bin and of the items
by appropriate numbers.

A discretization point of the widtfrespectively of théeigh) is a values < W (respectively
j < H) that can be obtained by an integer conic combinatiomqf. .., w,, (respectively
hi, ..., hpy).

We denote byP (respectively?) the set of all discretization points of the width (respesiiy
height). Following Herz, we say thatanonical patterns a pattern for which all cuts are made
at discretization points.

We note that it suffices to consider only canonical pattefos dvery pattern that is not
canonical there is an equivalent one that is canonical)efir to them, the following functions
will be useful. For a rationat < W, letp(z) := max (i | i € P, i« < z) and for a rational
y < H, letq(y) :=max(j|j€Q, j<y).

We denote by (W, H, k, V), (respectivelyW (W, H, k, H)) the value of an optimal canoni-
cal guillotinek-staged pattern for a rectangle of dimensiiis /') where the first stage of cut
is done in the vertical (horizontal) direction, i.e, thegraetersH and) indicate the direction
of the first cutting stage: either horizontal or vertical €frlecurrence formulas to calculate these
values are given in what follows. In this formutguw, i) denotes the value of the most valuable
item that can be cut in a rectangle of dimensi¢ash); it is 0 if no item can be cut in such a
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rectangle.

V(w,h,0,V orH) =v(w,h)
V(wvha k7V> - maX{V(w,h, k - 17H)7 (V(w/a hvk - 17H) + V(p(w - ’(U/),h/, k,V) | ’LU/ S Pa w/ S w/z}a
V(w, h,k,H) = max{V(w,h,k — 1,V), (V(w, b,k — 1,V) + V(w,q(h — h'),k,H) | W' € Q, k' < h/2)}.

8.2.1 Discretization points

In this section we present, for completeness, an algorittatbled DDP (Discretization using
Dynamic Programming) to find the discretization points @& width (or height). The algorithm
is already known in the literature and a detailed descHipdibthis algorithm and other ones to
generate discretization points can be found in [18].

The presented algorithm finds the discretizations pointeefvidth. To find the discretiza-
tion points of the height, it is only needed to consider thiglmeof the items, inspite of the
width and to consider the height of the bin. The basic ide&isfdlgorithm is to solve a knap-
sack problem in which every iteinhas weight and value; (: = 1,...,m), and the knapsack
has capacityV. The well-known dynamic programming technique for the lgzagix problem
(see [23]) finds optimal values of knapsacks with (integapacities taking values fromto
W. Itis easy to see thatis a discretization point if and only if the knapsack with aeipy ;
has optimal value.

Input W, wy, ..., Wn.
Output a setP of discretization points.
P ={0}.

Forj=0toW doc; = 0.
Fori=1tomdo

Forj=w;toW
If ¢; < cj_w, +w; thene; = c¢;_y, +w;
Forj=1toW
If c; =jthenP =P U{j}.
ReturnP.

Algorithm 8.1: DDP

We note that the algorithm DDP requires ti®ém V). The algorithm DDP is suited for
instances in whichV' is not very large. In all the computational tests, preseitetection 8.6,
we used the algorithm DDP to generate the discretizationtpoi
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8.2.2 Thek-staged RK problem

In this section we present an exact algorithm to solve tloblem and a variant where rotations
are allowed.

Let I = (W, H,w, h,v), withw = (wq,...,wy), h = (hi,...,hy) andv = (vy,...,0,),
be an instance of the problem RK.

We denote byP (respectively)) the set of all discretization points of the width (respec-
tively height). We denote by(w, k) the value of the most valuable item that can be cut (or be
obtained without any cut) from a rectangle of dimensi@nsh), or 0 if no item can be cut (or
be obtained).

We describe in the sequel the algorithm SDP (Algorithm 8h2) solves the recurrence
formulas proposed for thie-staged RK problem. In the description of this algorithm wsuane
that the first stage of cuts is done in the horizontal directio

Let w,,;, (respectivelyh,,;,) be the minimum width (height) of the items in the instance.
Let P, be the set of valuese P such that < W — w,,;,,, and letQ), be the set of values € ()
suchthay < H — hy,. Let P = Py U{WW}, and letQ; = Qo U { H}. We can use the sef3
and(), instead of the set® and( in the above recurrence and possibly obtain an improvement
in the time to solve it, since no item can be to the right (retipely to the top) of a vertical
(respectively horizontal) cut done in a position greatentV' — w,,;,, (H — hpin)-

We have designed the algorithm in such a way that a patteresmonding to an optimal
solution can be easily obtained. For that, the algorithmestan a matrix, for every rectangle
of width p; € P, and heightg; € @, which is the direction (horizontal or vertical) and the
position of the first guillotine cut that has to be made in teigtangle. In case no cut should be
made in the rectangle, the algorithm stores the item thaésponds to this rectangle.

When the algorithm SDP halts, we have thdt:, , j) contains the optimal value that can
be obtained irk stages for a rectangle with dimensidps ¢;). Furthermoreguillotine(k, i, j)
indicates the direction of the first guillotine cut, apgkition(k, i, j), stores the corresponding
position (in thez-axis or in they-axis) of the first guillotine cut. luillotine(k,i,j) = nil,
then no cut has to be made in this rectangle. In this gase(i, j) (if nonzero) indicates which
item corresponds to this rectangle. The value of the optiolaition will be inV (&, r, s), where
r=|P| ands = |Q1].

The algorithm calculates the best solutions for thetaged problem and then uses this
information to calculate the best solutions of thetaged problem and so forth. There may
be a stage in which no cut has to be made: that happens wheeghsdiution of a given stage,
sayl, is the best solution of the previous stdge 1. In this case, the valu®’ is stored in the
corresponding entry qfuillotine, indicating that the solution is given by the previous stage

Consider that > s. The attributions of value to the variabiean be done iV (log ) time
by using binary search in the set of the discretization [goiBut we can use a vectof (resp.
Y), of sizeW (resp.H), and letX; (resp.Y;) containp(i) (resp.q(j)). Once the discretization
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Input An instancel = (W, H, w, h, v, k) of thek-staged RK problem.
Output An optimal k-staged solution fof.
Letp; < ... < p,, be the points inP;.
Letg; < ... < g, be the points irQ;.
Fori=1tor
Forj=1tos
V(0,4,7) = max ({oy | 1 < f < m, wy < p;andhy < ¢;} U {0}).
item(0,4,j) =max ({f |1 < f <m, wy <p;, hy <g;andvy =V (1,4,5)} U {0}).
guillotine (0,1, j) = nil.
If £iseventherd ='H else A ="V’
Forl=1tok
Fori=2tor
Forj=2tos
V(l,i,5) =V —1,i,j)
guillotine(l,i,7) ="P’
If A ="V then
n=max(f|1< f<sandg < |%]).
Fory=1ton
t=max(f|1<f<sandg; <g; —qy).
If V(I,4,5) <V(I—1,i,y)+ V(l,it) then
V(l,i,7) =V (I—1,i,y)+V(l,i,t), position(l,i, j) = g, andguillotine(l, i, j) =

'H'.
Else
n=max(f |1 < f<randp; <[5]).
Forz =1ton
t=max(f | 1< f<randps <pi—p.)
If Vi(I,i,5) <V(I—1,2,7)+ V(lt,j)then
V(l,i,j) =V(I-1,2,7)+V(l,t,j), position(l,i, j) = p, andguillotine(l, i, j) =
N

If A="'V'then A ="H else A ="V'.

Algorithm 8.2: SDP

points are calculated, it requires tirog11 + H) to determine the values in the vecto¥sand
Y. Using these vectors, each attribution to the varialolen be done in constant time and leads

to an implementation of the algorithm DP, using DDP as a autbwre, with time complexity

O(mW +mH + (g)(%s) - (@(%)). In any case, the amount of memory required by the

algorithm SDP i) (krs + W + H). We use this strategy in our implementation.
We can also use the algorithm SDP to solvekifstaged RK problem, in which orthogonal
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rotations of the items are allowed. For that, for each itém/, of width w;, heighth; and value
v;, we add another item of width;, heightw; and valuev;, wheneverv; # h;, w; < H and
h; < W. We denote the corresponding algorithm for this case by"SDP

8.3 The 2CS problem

We focus now on th&wo-dimensional Cutting Sto€RCS) problem. Gilmore and Gomory [27,
28, 29] in the early sixties were the first to propose the ugb@tolumn generation approach
for this problem. They proposed thiestaged pattern version and also considered the BPV
problem, the variant of 2CS with bins of different sizes.

Alvarez-Vales, Parajon and Tamarit [2] also presented@wgolgeneration approach for the
2CS problem. They used the dynamic programming algorithesgumted by Beasley and also
some meta-heuristic procedures. Puchinger and Raidl f2stigated the 3-staged version:
they applied the column generation approach using eithezedyg heuristic or an evolutionary
algorithm to generate columns.

Riehme, Scheithauer and Terno [44] designed an algoritlrth®2CS problem witlex-
tremely varying order demandsTheir algorithm is also based on the column generation ap-
proach and is restricted to2astaged problem. Vanderbeck [46] also proposed a column gen
eration approach for a cutting stock problem with severfiéiint restrictions. The solution
must be3-staged and unused parts of some stock can be used latenastonk. The problem
involves other practical restrictions.

For the special case in which the demands are all equal(&so known as bin packing
problem) Chung, Garey and Johnson [16] presented the fipsbajmation algorithm for this
problem, called HFF (Hybrid First Fit), shown to have asyotigtperformance bound at most
2.125. Later, Caprara [11] proved that HFF has asymptotic perdmice bound at mogt077;
and he also presented ar591-approximation algorithm (this is the best known resulttfus
problem). We observe that the algorithm HFF ig-ataged algorithm, and therefore may be
used as a subroutine to ahystaged problem fok > 2. These results are for the oriented case.
When orthogonal rotations are allowed, Miyazawa and Wayadia [38] presented a 2.64-
approximation algorithm. For the particular case in whithbans are squares and rotations
are allowed, Epstein [25] presente@.d5-approximation algorithm. In [19], we have shown
that some of the approximation algorithms for the bin paglgroblem can be modified for the
cutting stock problem. In this case the algorithms are ofpamial time and preserve the same
approximation factor of the original algorithms.

The column generation algorithms we presented in this@eetiere developed by Cintra
[18], but for completeness we also present these algorittere

To discuss the column generation approach, let us first flat@uhe 2CS problem as an
ILP (Integer Linear Program). Let = (W, H,w, h,d) be an instance for the 2CS problem.
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Represent each patteftior the instancd as a vectop;, whose:-th entry indicates the number
of times item: occurs in this pattern. The 2CS problem consists then inddegihow many
times each pattern has to be used to meet the demands andizsitii@ total number of bins
that are used.

Letn be the number of all possible patterns foand letP denote ann x n matrix whose
columns are the patterps, . . ., p,. If we denote byl the vector of the demands, then we have
the following ILP formulation: minimiz&_"_, z; subject toPr = d andx; > 0 andz; integer
forj =1,...,n. (The variabler; indicates how many times the patteris selected.)

The well-known column generation method proposed by Gitnaoxd Gomory [27] consists
in solving the relaxation of the above ILP, shown below. Tdesiis to start with a few columns
and then generate new columnsigfonly when they are needed.

minimize T+ ...+zx,
subject to  Px =d (8.1)
IIZ']ZO ]:1,,71

We can use the algorithm SDP (for the RK problem) to genemtecolumns (withk-staged
guillotine patterns). Ify; is the dual value corresponding to each itemh < i < m, then we
want a pattern that maximizés" | y;z;, wherez; is the number of times itemis used in the
pattern. We describe in the sequel the algorithm Simplext@ét solves (8.1) (Algorithm 8.3).

Input An instancel = (W, H, w, h, d) of the 2CS problem.
Output An optimal solution for (8.1), where the columnsBfare patterns for.
Subroutine The algorithm SDP for the RK problem.

1 Letz = d and B be the identity matrix of order.

2 Solvey™B = 17.

3 Generate a new columnexecuting the algorithm SDP with paramet&rsH, w, h, y.
41f yT~ < 1, returnB andz and halt ¢ corresponds to the columns Bj.

5 Otherwise, solvéBw = z.

6Lett:min(% |1 <j<m, w;>0).

7Tlets=min(j|1<j<m, L =1).

8 Fori=1tom do ’

8-1Bi,s = Z;.
8.2If i = sthenz; = t; otherwisex; = z; — w;t.
9 Go to step 2.

Algorithm 8.3: SimplexCG

We implemented this algorithm using subroutine SDP deedrib Section 8.2.
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We describe now a procedure to find an integer solution froensthlutions obtained by
SimplexCG. The procedure is iterative. Each iteration starts withrestancel/ of the 2CS
problem and consists basically in solving (8.1) with Simx@e&, obtainingB andz. If x
is integral, we returnB andx and halt. Otherwise, we calculaté = (z3,...,z" ), where
xf = |z;] (i = 1,...,m). For this new solution, possibly part of the demand of teei is not
fulfilled. More precisely, the demand of each itéthat is not fuffilled isd; = d;—> 7", B; ;7.
Thus, if we takel* = (df, ..., d},), we have a residual instané¢e = (W, H, w, h, d*) (we may
eliminate from/* the items with no demand).

If somez; > 0 for somei € {1,...,m}, part of the demand is fulfilled by the solution
x*. In this case, we retur® andx, we let/ = I* and start a new iteration. iff = 0 for all
i € {1,...,m}, no part of the demand is fulfilled by*. We solve then the instandeé with the
algorithm M-HFF (Modified HFF) that corresponds to the aithjon HFF modified to consider
demands for the items, see [19]. We present in what followstgorithm CG (Algorithm 8.4)
that implements the iterative procedure we have described.

Note that, in each iteration, either part of the demand i@lled or we go to step 4. Thus,
after a finite number of iterations the demand will be mett(p&it eventually in step 4). In
fact, it is easy to prove that step 3.6 of the algorithm CG exexed at most: times (see [18]).

We observe that the algorithm M-HFF can be implemented toimupolynomial time,
see [19]. As its asymptotic performance bound is at n20%t7 (see [11]), we may expect
that using M-HFF we produce solutions of good quality.

Input An instancel = (W, H, w, h, d) of the 2CS problem.
Output A solution for /.

1 Execute the algorithm SimplexG®vith parameter$V, H, w, h, d obtainingB andz.
2Fori=1tomdox} = [z;].
31If xF > 0forsomei, 1 < i < m, then
3.1ReturnB andzj, ..., z;, (but do not halt).
3.2Fori =1tomdo
3.2.1Forj =1tomdod; = d; — B, jx}.
33Letm/ =0,w" =(),h =()andd = ().
3.4Fori = 1tom do
3.4.1If d; > 0thenm/ =m/ + 1, w' = w'||(w;), K" = K'||(h;) andd’ = d'||(d;).
3.51f m’ = 0 then halt.
3.6Letm =m/,w=w',h="h,d=d and go to step 1.
4 Return the solution of algorithm M-HFF executed with parter&lV, H, w, h, d.

Algorithm 8.4: CG

We note that the algorithm CG can be used to solve the vari@@$, called BP, in which
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orthogonal rotations of the items are allowed. For thatpieeive call the algorithm SDP, in step
3 of SimplexCG, it suffices to make the transformation explained at the drieation 8.2.2.
We will call SimplexCQG the variant of SimplexC&with this transformation. It should be
noted however that the algorithm M-HFF, called in step 6 of @&es not use the fact that the
items can be rotated.

We use a simple algorithm for the variant of 'BiR which all items have demand 1. This
algorithm, calledFirst Fit Decreasing Height using RotatioffFDHR), has asymptotic ap-
proximation bound at most 4, as have been shown by Cintra8h [Substituting the call to
M-HFF with a call to FFDHR, we obtain the algorithm CGR, thatai specialized version of
CG for the BP problem.

We also tested another modification of the algorithm CG (ah@®R). This is the fol-
lowing: when we solve an instance, and the solution retubye8implexCG rounded down is
equal to zero, instead of simply submitting this instanddblFF (or FFDHR), we use M-HFF
(or FFDHR) to obtain ayoodpattern, and update the demands; if there is some item farhwhi
the demand is not fulfilled, we go to step 1. Té@odpattern used is the one with the largest
occupated area of the bin.

Note that, the basic idea is fwerturb the residual instances whose relaxed LP solution,
rounded down, is equal to zero. With this procedure, it iseexgd that the solution obtained
by SimplexCG for the residual instance has more variables with valuetgreahan 1. The
algorithm C@, described in what follows (Algorithm 8.5), incorporatastmodification.

Input An instancel = (W, H, w, h, d) of 2CS.
Output A solution for /.
1 Execute the algorithm SimplexG@®vith parameter$V, H, w, h, d obtainingB andz.
2Fori=1tomdoz; = |;].
3If z7 > 0 for somei, 1 < i <m, then
3.1ReturnB andz7, ...,z (but do not halt).
3.2Fori = 1tom do
3.2.1Forj =1tomdod; = d; — B; jx}.
33Letm' =0,w = (), =()andd = ().
3.4Fori =1tom do
3.4.1If d; > 0thenm’ =m/ + 1, w' = w'||(w;), K = K'||(h;) andd’ = d'||(d;).
3.51f m’ = 0 then halt.
3.6Letm =m',w=w',h="hn',d=d and go to step 1.
4 Return a pattern generated by the algorithm M-HFF, exeouttédparameters
W, H,w, h, d, that has the smallest wasted area, and update the demands.
5 If there are demands to be fulfilled, go to step 1.

Algorithm 8.5: CG?
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It should be noted that with this modification we cannot gnta anymore that we have to
make at mostn + 1 calls to SimplexCG. It is however, easy to see that the algorithm?Gi&
fact halts, as each time step 1 is executed, the demand desrstaictly. After a finite number
of iterations the demand will be fulfilled and the algorithaltk.

8.4 The 2CS problem with bins of different sizes

In this section we adapt the algorithm CG for the BPV probléet./ = (W, H,V,w, h,d) be
an instance of the BPV, whei& = (W,,....W}), H = (Hy,...,H,) andV = (V},...,V})
are lists of size indicating the height, width, and value of each bin type < i < b. We
can also represent each pattgrof the instancd as a vectop;, whosei-th entry indicates the
number of times itemi occurs in this pattern. The BPV problem consists then indiegihow
many times each pattern has to be used to meet the demandsramizenthe total value of the
bins that are used. Letbe the number of all possible patterns foand letP denote ann x n
matrix whose columns are the pattefns. . ., p,. If we denote byl the vector of the demands,
then the following is an ILP formulation for the BPV probleminimizezyz1 V;x; subject to
Pz = dandz; > 0 andz; integer forj = 1,...,n. (The variabler; indicates how many times
pattern; is selected andl; is the value of the bin type used in pattgin The following is the
corresponding relaxed formulation.

minimize Viei+ ...+ V,z,
subject to  Px =d (8.2)
;>0 g=1,...,n

In this case, we can also use the algorithm SDP to produckotud patterns. Ify; is the
dual value corresponding to each itepl < 7 < m, then we want a pattern that maximizes
> yizi, Wherez; is the number of times itemis used in the pattern. But in this case we
have to solve the SDP problem to each possible bingiaad a columry enters in the basis if
E;Z1 Yizi > Vg

The algorithms of this section are an extension of the algams of the previous section. A
more detailed description of these algorithms was done hyr&j18].

We describe in the sequel the algorithm Simplex@laat solves (8.2) (Algorithm 8.6). In
this algorithm, we have a vectgrof sizem that indicates the bin associated with each column
of the matrix B. This way, we can reconstruct a solution considering theovet; and the
entries ofB, guillotine andposition. In the algorithm SimplexCgwe used subroutine SDP to
solve the RK problem.
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Input An instancel = (W, H, V, w, h, d) of the BPV problem.
Output An optimal solution for (8.2), where the columns Bfare the patterns faf.
Subroutine The algorithm SDP for the RK problem.

1Let f be a vector of sizen wheref; is the smallest index of j such that < W, andh; < H;.
2 Letx = d and B be the identity matrix of order.
3Solvey’ B =V},
4Fori=1tobdo
4.1 Generate a new columnexecuting the algorithm SDP with paramet®rs H;, w, h, y.
4.21f yTz > V;, go to step 6.
5ReturnB, f andx and halt { corresponds to the columns Bj.
6 Solve Bw = z.
7Lett:min(% |1 <j<m, w;>0).
8Lets=min(j|1<j<m, =L =1).
9letf, =i ’
10Fori = 1tom do
10.1B; 5 = 2.
10.2If ¢« = s thenxz; = ¢; otherwisez; = x; — w;t.
11Goto step 3.

Algorithm 8.6: SimplexCG

The algorithm CGV (Algorithm 8.7) that solves the BPV prahlaising the algorithm
SimplexCG is very similar to the algorithm CG of Section 8.3, and therefwe omit the
details.

We also considered the variants of the algorithm CGV, whemag have orthogonal rota-
tions, and when the residual instance is solved wigedurbationmethod. In the latter case,
to generate a pattern we use a bin for which the frac% (for: = 1,...,b) attains the
minimum value. o

8.5 The SP problem and the column generation method

The strip packing problem is mostly considered in the liigna for the special case in which
the demands are all equal to Many approximation algorithms have been proposed for this
problem. Coffman, Garey, Johnson and Tarjan [21] presdhtedlgorithms NFDH and FFDH
for the oriented case with asymptotic performance boundsd2las, respectively. Algorithms
with better performance bounds were obtained by Baker, Bramnd Katseff [4] and also by
Kenyon and Rémila [34]5/4 and(1 + ¢). Recently, a PTAS for the SP problem with rotations
was obtained by Jansen and van Stee [32]. In 2005, Seiden aadiger [45] presented an
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Input An instancel = (W, H, V,w, h, d) of BPV.
Output A solution for /.
1 Execute the algorithm SimplexG®vith parameters3, w, h, d obtaining3, b andz.
2Fori =1tomdoxz; = |z;].
3If 27 > 0 for somei, 1 < i < m, then
3.1ReturnB, b andz7, ...,z (butdo not halt).
3.2Fori =1tomdo
3.2.1Forj =1tomdod; = d; — B, ;x}.
33Letm’ =0,h = (), w =()andd = ().
3.4Fori =1tom do
3.4.1If d; > 0thenm/ =m/ + 1, w' = w'||(w;), K = K'||(h;) andd’ = d'||(d;).
3.5If m’ = 0 then halt.
3.6Letm =m/,w=w,h=~hn,d=d and go to step 1.
4LetV* =min (5% [i=1,...,b) andj = min (i | 775 = V")

5 Return the solution of algorithm M-HFF executed with partev&@V/;, H,;, w, h, d.

Algorithm 8.7: CGV

analysis of the quality of &-stage guillotine strip packing versus a globally optimusaaking.
They showed that fok = 2 no algorithm can guarantee any bounded asymptotic perfarena
ratio. Whenk = 3 (resp.k = 4) an asymptotic performance ratio arbitrarily close 169103
(resp.1) can be obtained. Although some of the approximation allgors above have bounds
very close ta, most of these results are more of theoretical relevandeer@pproaches include
genetic algorithms [40], branch and bound and integer tipeagramming models [35, 37].

All algorithms for the SP problem mentioned above consilat €ach item has demamd
Although the column generation approach can be easily egphpdi the problem SP, it is less
investigated under this approach. One of the main advastafghis approach is the possibility
to consider larger values of demands, as this case has madumstiial applications.

Let I = (W, H,w, h,d) be an instance of the SP problem. We consider that the first cut
stage is done in the horizontal direction of the strip; farthore, two subsequent cuts must be
at a distance at mog{. We call H-patterna pattern corresponding to a packing between two
subsequent horizontal cuts (that has to be at a maximummdesia).

Let p1, po, ..., p, be the set of all possibl& -patterns. Denote by/; the height of thef-
patternp; and letP be the matrix whose columns are the pattenn®s, . . ., p,,. In this case, the
following is an ILP formulation for the SP problem: minimi2€’_, H;z; subject toPr = d
andz; > 0 andz; integer forj = 1,...,n. To solve this ILP we can use the same approach
we used for the problem BPV. In fact, we can reduce the SP @nobd the BPV problem. For
that, note that eacH -pattern with height{; corresponds to a bin with dimensiofi&, /) and
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value preciselyH;.

Let@ = {q, ..., qs} be the set of all discretization points of the heigh{this will be the
maximum height of the bins).

For 2-staged cutting patterns, we can consiesis the maximum height of an item, that
is, H = max(hq, ..., hy). Inthis case() is the set of the heights of the items. If there are
different heights, we hav# -patterns (bins) with widthl; = W and heightH;, for 1 <i < s.

The algorithm we propose to solve the SP problem, called @& basically the algorithm
CGV with two modifications. First, the residual instanceassed with the algorithm FFDH.
Second, every call to the algorithm SimplexCsolves only one instance of the RK problem,
consisting of a knapsack of sizé/, H).

We note that, looking at the entries ©f, guillotine and position produced by algorithm
SDP (algorithm for the staged RK problem) we can obtain smhgtfor each height id): we
just have to access positio(id/, ;) of these variables, for eaéh € @, 1 < i < s. This last
modification is very important, ascan be very large and solving instances of the RK problem
for each of thes different bins would consume a lot of time. We did not use ttiea for the
BPV problem since it is not always better to solve only instmof RK with the largest bin
dimensions.

Note that, in the BPV problem, the instances may consistrf bf different widths. Con-
sider, for example, an instance consisting:dfins: one bin with sizér, r?), another one with
size(r?,r) and some other — 2 bins with dimensions smaller than for some integer-. If
we call the algorithm DP for a bin of dimensiof&, %) and assume that the number of dis-
cretization points is linearly proportional to the dimearss of the bin, then the algorithm will
consume time) (kr°®). But if we solve for each of the bins, the algorithm will conseitime
O(kxrd).

The reader should note that the first cutting phase is dormmatically by the column
generation algorithm by choosing the best bins in a solutidrerefore, the algorithm SDP is
called with the first cutting phase in the vertical directeomd one cutting phase less than the
number of stages of the instance.

We implemented the algorithm CGS and its variant C@G& the orthogonal rotation case)
and CG8 with a perturbed residual instance. In the algorithm €@g§ood way to perturb the
instance is to generate a level by the algorithm FFDH withimirm wasted area (considering
the height of the level). When rotations are allowed we usalgarithm, which we denote by
FFDHRZ2, to generate a perturbed instance. This algorithrksilike the algorithm FFDH, but
if an item cannot be packed in any of the existing levels theralgorithm tries to pack it in the
other orientation before creating a new level.
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8.6 Computational results

In the next subsections we present the computational sssiained with the implementations
of the algorithms we have described. All algorithms werelengented in C language. The
computational tests were run on a computer with processer Bentium 1V, clock of 1.8GHz,
memory of 512Mb and operating systdrmux using the LP solver CLP (COIN-OR Linear
Program Solver) [22].

For all problems we have performed computational testsideriag staged guillotine pat-
terns with and without orthogonal rotations. Following etlpapers in the literature (see
[12, 13, 46]), we assume that the first cutting stage is peréorin the horizontal direction.

8.6.1 Computational results for the RK problem

The performance of the algorithm SDP was tested with thentgts of RK available in the
OR-LIBRARY! (see Beasley [7] for a brief description of this library). Wensidered the 13
instances of RK, callegcutl,. . .,gcutl3available in this library. For all these instances, with
exception of instancgcutl13 optimal solutions had already been found [5]. We consitiéne
the SDP algorithm with the number of stades {2, 3,4}.

In [20], Cintra and Wakabayashi already found an optimaltsoh for instanceycut13 but
considering non-staged patterns. Using the algorithm SBRownd optimal solutions for the
instancegcutl3for the staged patterns considered. We notice that theisoltdund with 3-
staged patterns already corresponds to an optimal solufithout restriction on the number
of stages. This solution was found in less than 22 secondssasttbwn in Figure 8.2. In all
these instances the value of each item is precisely its @agarara and Monaci [14] and Fekete
and Schepers [26] could not find an optimal solution for thigance in 1800 seconds in recent
machines (a Pentium 11l 800MHz and Pentium IV 2.8GHz with ldbimemory, respectively).
We recall that their approaches are for the more generahgett which the cuts need not be
guillotine. We note that, in this general case, our appre@achbe used to obtain a lower bound.

Since the algorithm solves all instances of the OR-LIBRARY few seconds, we construct
other four instancesg€utl4 — gcutly based on the available instances. We join the items
instancegcutl3with the items of instancegcut9, gcutl0, gcutlandgcul2 obtaining the new
instances. For each one of these new instances we consalenagsack with size (3500,3500).
In Table 8.1 we give some information about the instances.

The computational results are shown in Table 8.2. The coltWaste” shows —for each
solution found— the percentage of the area of the bin thad doecorrespond to any item. The
column “Time” indicates the time required to solve the inst& the entry) indicates that the

http://mscmga.ms.ic.ac.uk/info.html
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555x496 555x496

555x496 555x496

555x496 555x496

555x755 555x755

555x755 556x755

Figure 8.2: The optimal solution fgrcutl3found by the algorithm SDP witB-staged patterns.
The small squares have dimensigAgs, 200) and the squares in the bottom have dimensions
(555,496) and (555, 755).

time required is less than000001 seconds. On the average, the waste for 2-staged patterns was
less than 1% larger than the waste for 4-staged patternssptee utilization comparing 3- and
4-staged patterns are very close. The solutions that dlifflewaste are the solutions of instances
gcut8, gcutl4, geutl5, gecutEhdgeutlZ Moreover, all solutions found with 4-staged patterns

of instancegcutlthroughgcutl3also correspond to optimal solutions for the unrestricteskc

as one can compare to the results in [20].

To run tests for the case in which orthogonal rotations dmveld, we considered the in-
stancegcutl, . .,gcutl? and named them correspondinglyggsitlr, . .,gcutl7r(meaning that
rotations are allowed). The performance algorithm SDPHesé instances is presented in table
8.3. We remark that, comparing with the problem withouttiotes, for some instances the time
increased and the waste decreased (on the average les$4haslne would expect.

For these instances, we can also note that the solutionsAwgthged patterns correspond
to optimal solutions for the unrestricted case (see [20¢epk for instancgcutl4r The dif-
ferences on space utilization from the 3-staged to the destgatterns are also very small,
differing in the instancegcut3r, gcut8r, gcutl4r, gcutl5randgcutl6r
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Quantity | Dimensions

Instance| of items of the bin r s
geutl 10 (250, 250) 28 9
gcut2 20 (250, 250) 39 52
geut3 30 (250, 250) 81 42
gcut4 50 (250, 250) 85 84
geuts 10 (500, 500) 19 27
gcut6 20 (500, 500) 34 42
geut7 30 (500, 500) 66 33
gcut8 50 (500, 500) 97 136
gcut9 10 (1000, 1000)| 31 11
gcutlo 20 (1000, 1000)| 29 55
gcutll 30 (1000, 1000)| 69 109
gecutl2 50 (1000, 1000)| 155 | 124
gcutl3 32 (3000, 3000)| 1457 | 2310
gcutl4d 42 (3500, 3500)| 2390 | 2861
gcutls 52 (3500, 3500)| 2422 | 2933
gecutle 62 (3500, 3500)| 2559 | 2943
gcutl? 82 (3500, 3500)| 2676 | 2953

Table 8.1: Instances information.

105

Quant 2-staged 3-staged 4-staged
of Dimensions | Optimal Time Optimal Time Optimal Time

Inst. items| of the bin Solution | Waste | (sec) Solution | Waste | (sec) Solution | Waste | (sec)
geutl 10 (250, 250) 56460 9.66% 0 56460 9.66% 0 56460 9.66% 0
gcut2 20 (250, 250) 60076 | 3.878% 0 60536 | 3.142% 0 60536 | 3.142% 0
gcut3 30 (250, 250) 60133 | 3.787% 0 61036 | 2.342% 0 61036 | 2.342% 0
gcutd 50 (250, 250) 61698 | 1.283% 0 61698 | 1.283% | 0.01 61698 | 1.283% 0
gcuts 10 (500, 500) 246000 | 1.600% 0 246000 | 1.600% 0 246000 | 1.600% 0
gcuté 20 (500, 500) 235058 |5.977% 0 238998 | 4.401% 0 238998 | 4.401% 0
geut7 30 (500, 500) 242567 |2.973% 0 242567 |2.973% 0 242567 |2.973% | 0.017
gcut8 50 (500, 500) 245758 | 1.697% 0 245758 | 1.697% 0 246633 | 1.347% | 0.071
gcut9 10 | (1000, 1000)| 971100 | 2.890% 0 971100 | 2.890% 0 971100 | 2.890% 0
gcutl0 | 20 | (1000, 1000)| 982025 | 1.798% 0 982025 | 1.798% 0 982025 | 1.798% 0
gcutll | 30 | (1000, 1000)| 974638 | 2.536% 0 980096 | 1.990% 0 980096 | 1.990% 0
gcutl2 | 50 | (1000, 1000)| 977768 |2.223% | 0.01 979986 | 2.001% 0 979986 |2.001% | 0.01
gcutl3 | 32 | (3000, 3000)| 8906216 | 1.042% | 21.82 | 8997780 | 0.025% | 32.98 | 8997780 | 0.025% | 43.72
gcutld | 42 | (3500, 3500) | 12216788 | 0.271% | 124.55 | 12239634 | 0.085% | 175.96 | 12242100 | 0.064% | 264.41
geutl5 | 52 | (3500, 3500) | 12215614 | 0.281% | 137.21 | 12239904 | 0.082% | 189.53 | 12242100 | 0.064% | 289.98
geutlé | 62 | (3500, 3500) | 12210837 | 0.320% | 177.21 | 12243100 | 0.056% | 239.24 | 12244511 | 0.045% | 371.60
geutl?7 | 82 | (3500, 3500) | 12232948 | 0.139% | 223.13 | 12246422 | 0.029% | 290.07 | 12246694 | 0.027% | 456.00

Table 8.2: Performance of the algorithm SDP for 2-, 3- antbdred patterns.
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Qty. 2-staged 3-staged 4-staged

of | Dimensions| Optimal % Time Optimal % Time Optimal % Time
Inst. items| of the bin Solution | Waste | (sec) Solution | Waste | (sec) Solution | Waste | (sec)
geutlr | 10 (250, 250) 58136 6.982 0 58136 6.982 0 58136 6.982 0
geut2r | 20 (250, 250) 60611 3.022 0 60611 3.022 0 60611 3.022 0
gecut3r | 30 (250, 250) 60485 3.224 0 61399 1.762 0 61626 1.398 0
gecutdr | 50 (250, 250) 62265 0.376 0.01 62265 0.376 0.01 62265 0.376 0.01
geutsr | 10 (500, 500) 246000 1.600 0 246000 1.600 0 246000 1.600 0

geutér | 20 | (500, 500) 240951 | 3.620 0 240951 | 3.620 0 240951 | 3.620 0
geut7r | 30 | (500, 500) 245866 | 1.654 | 0.01 245886 | 1.654 | 0.01 245866 | 1.654 0
gcut8r | 50 | (500, 500) 247260 | 1.096 0.01 247462 | 1.015 0.02 247787 | 0.885 0.02
gcutdr | 10 | (1000, 1000)| 971100 | 2.890 0 971100 | 2.890 0 971100 | 2.890 0
gcutlOr | 20 | (1000, 1000)| 982025 | 1.798 0 982025 | 1.798 0 982025 | 1.798 0
gcutllr | 30 | (1000, 1000)| 980096 | 1.990 0.02 980096 | 1.990 0.03 980096 | 1.990 0.04
gcutl2r | 50 | (1000, 1000)| 988694 | 1.131 0.03 988694 | 1.131 0.05 988694 | 1.131 0.06
gcutl3r | 32 | (3000, 3000)| 8997780 | 0.025 | 106.3 | 9000000 0.0 129.64 | 9000000 0.0 226.75
gcutldr | 42 | (3500, 3500) | 12240515 0.077% | 322.77 | 12247700 | 0.019% | 418.26 | 12247796 | 0.018% | 702.19
geutl5r | 52 | (3500, 3500) | 12242904 | 0.058% | 337.27 | 12248176 | 0.015% | 437.72 | 12250000 | 0.000% | 725.21
geutlér | 62 | (3500, 3500) | 12243100 | 0.056% | 368.20 | 12249625 | 0.003% | 465.92 | 12250000 | 0.000% | 800.55
geutl7r | 82 | (3500, 3500) | 12242998 | 0.057% | 393.52 | 12250000 | 0.000% | 495.39 | 12250000 | 0.000% | 829.92

Table 8.3: Performance of the algorithm SDP for 2-, 3- antbdied patterns with rotations.
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8.6.2 Computational results for the 2CS problem

We did not find instances for the 2CS problem in the OR-LIBRAR¥ tested the algorithms
CG and C@ with the instancegjcutl, ..., gcutl? associating with each iterma randomly
generated demantg between 1 and 100 (varying demands). We called these irestgoatld,
..., gcutl2d

In the tables of the results, LB denotes the lower bound (gxethe rounded up solution
of (8.1)) for the value of an optimal integer solution.

We used the algorithm CGwith subroutine SDP ank = 2, 3, 4.

The tests for this case are presented in tables 8.4-8.9.lIkests, the algorithms CG and
C(E obtained solutions in a small amount of time.

Solution Difference Columns | Solution | Improvement
Instance| of CG LB fromLB | Time (sec)| Generated of M-HFF | over M-HFF
gcutld 295 295.0| 0.000% 0.03 19 322 8.39%
gcut2d 345 345.0| 0.000% 0.37 137 360 4.17%
gcut3d 343 342.0| 0.292% 1.10 388 374 8.29%
gcut4d 845 845.0| 0.000% 4.02 828 878 3.76%
gcutsd 207 207.0| 0.000% 0.03 19 224 7.59%
gcuted 375 375.0| 0.000% 0.14 77 395 5.06%
gcut7d 600 600.0| 0.000% 0.59 278 642 6.54%
gcutsd 720 720.0| 0.000% 3.35 592 765 5.88%
gcutod 135 135.0| 0.000% 0.07 48 141 4.26%
gcutlod 315 315.0| 0.000% 0.14 79 328 3.96%
gcutlld 349 349.0| 0.000% 0.68 224 375 6.93%
gcutl2d 676 675.0| 0.148% 4.03 660 722 6.37%

Table 8.4: Performance of the algorithm CG with 2-stagetepas.

For the2-staged cutting, the algorithms CG and ‘C&btained optimum solutions for all
instances, except for two of them (on the average, the diffex from LB wag$).036%). When
compared to the solution of M-HFF, the improvement Was% on the average. This is a great
improvement, since M-HFF is also restricted to 2-stagetbpas.

For the 3-staged problem, algorithm €&und one more optimal solutiog¢ut10d com-
paring to the results of algorithm CG. For the 4-staged dasealgorithm CG found a better
solution to instancgcutd7dthan the one found by the algorithm €G0n the other hand the
algorithm CG@ found an optimal solution to instangeutl1ldwhile CG does not.

The algorithms had a good performance both in terms of thétgwéd the solution and in
terms of the time required. The improvement of the algoritb@t for the 4-staged case, over
M-HFF was, on the average,89%, for example.
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Solution Difference Columns | Solution | Improvement
Instance| of CG LB from LB | Time (sec)| Generated of M-HFF | over M-HFF
geutld 295 295.0| 0.000% 0.03 21 322 8.39%
gcut2d 345 345.0| 0.000% 0.45 173 360 4.17%
geut3d 343 342.0| 0.292% 1.31 534 374 8.29%
gcut4dd 845 845.0| 0.000% 5.99 1506 878 3.76%
gcutbd 207 207.0| 0.000% 0.03 21 224 7.59%
gcutéd 375 375.0| 0.000% 0.16 86 395 5.06%
geut7d 600 600.0| 0.000% 0.71 357 642 6.54%
gcut8d 720 720.0| 0.000% 3.50 693 765 5.88%
gcutod 135 135.0| 0.000% 0.08 57 141 4.26%
gcutl0d 315 315.0| 0.000% 0.21 122 328 3.96%
gecutlld 349 349.0| 0.000% 0.79 289 375 6.93%
gcutl2d 676 675.0| 0.148% 5.28 1167 722 6.37%

Table 8.5: Performance of the algorithm C@ith 2-staged patterns.

We also tested the algorithms with rotations on the instagcetldr, .., gcutl2dr See
tables 8.10-8.15.

Notice that the algorithm CGRobtains better solutions than the algorithm CGR in several
instances. For the algorithm CBRn the 2-staged case, the difference from the lower bound
was 0.220%, on the average and the improvement over the FFDHR algontias 10.14%.
These numbers are very close to the ones we can obtain for #rel3l-staged version.
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Solution Difference Columns | Solution | Improvement
Instance| of CG LB fromLB | Time (sec)| Generated of M-HFF | over M-HFF
gcutld 294 294.0| 0.000% 0.04 24 322 8.70%
gcut2d 345 345.0| 0.000% 0.34 101 360 4.17%
gcut3d 333 333.0| 0.000% 0.87 285 374 10.96%
gcut4d 837 836.0| 0.120% 5.44 1015 878 4.67%
gcutsd 198 197.0| 0.508% 0.05 29 224 11.61%
gcuted 344 343.0| 0.292% 0.20 100 395 12.91%
gcut7d 591 591.0| 0.000% 0.46 203 642 7.94%
gcut8d 692 690.0| 0.290% 7.02 985 765 9.54%
gcutod 132 131.0| 0.763% 0.08 49 141 6.38%
gcutlod 294 293.0| 0.341% 0.12 58 328 10.37%
gcutlld 331 330.0| 0.303% 1.42 379 375 11.73%
gcutl2d 673 672.0| 0.149% 4.32 601 722 6.79%

Table 8.6: Performance of the algorithm CG with 3-stagetepas.

Solution Difference Columns | Solution | Improvement
Instance| of CG LB fromLB | Time (sec)| Generated of M-HFF | over M-HFF
gcutld 294 294.0| 0.000% 0.04 26 322 8.70%
gcut2d 345 345.0| 0.000% 0.38 135 360 4.17%
gcut3d 333 333.0| 0.000% 1.30 506 374 10.96%
gcut4d 837 836.0| 0.120% 8.19 1878 878 4.67%
gcutsd 198 197.0| 0.508% 0.06 41 224 11.61%
gcuted 344 343.0| 0.292% 0.22 113 395 12.91%
gcut7d 591 591.0| 0.000% 0.52 229 642 7.94%
gcut8d 692 690.0| 0.290% 8.88 1563 765 9.54%
gcutod 132 131.0| 0.763% 0.10 70 141 6.38%
gcutlod 293 293.0| 0.000% 0.13 73 328 10.67%
gcutlld 331 330.0| 0.303% 2.28 710 375 11.73%
gcutl2d 673 672.0| 0.149% 4.95 885 722 6.79%

Table 8.7: Performance of the algorithm C@ith 3-staged patterns.



110Capitulo 8. Artigo:Algorithms for Two-Dimensional Cutting Stock and Stripl@ag Problems Using Dy

Solution Difference Columns | Solution | Improvement
Instance| of CG LB fromLB | Time (sec)| Generated of M-HFF | over M-HFF
gcutld 294 294.0| 0.000% 0.04 23 322 8.70%
gcut2d 345 345.0| 0.000% 0.46 133 360 4.17%
gcut3d 332 332.0| 0.000% 0.87 260 374 11.23%
gcut4d 837 836.0| 0.120% 4.27 668 878 4.67%
gcutbd 198 197.0| 0.508% 0.05 28 224 11.61%
gcutéd 344 343.0| 0.292% 0.19 98 395 12.91%
gcut7d 592 591.0| 0.169% 0.27 103 642 7.79%
gcut8d 691 690.0| 0.145% 9.68 1247 765 9.67%
gcutad 131 131.0| 0.000% 0.05 35 141 7.09%
gcutl0od 294 293.0| 0.341% 0.14 70 328 10.37%
gcutlld 331 330.0| 0.303% 1.26 285 375 11.73%
gcutl2d 673 672.0| 0.149% 5.06 640 722 6.79%

Table 8.8: Performance of the algorithm CG with 4-stagetepas.

Solution Difference Columns | Solution | Improvement
Instance| of CG LB from LB | Time (sec)| Generated of M-HFF | over M-HFF
geutld 294 294.0| 0.000% 0.04 25 322 8.70%
gcut2d 345 345.0| 0.000% 0.49 157 360 4.17%
geut3d 332 332.0| 0.000% 1.76 621 374 11.23%
geutdd 837 836.0| 0.120% 7.27 1606 878 4.67%
gcutsd 198 197.0| 0.508% 0.06 40 224 11.61%
gcutéd 344 343.0| 0.292% 0.26 136 395 12.91%
gcut7d 593 591.0| 0.338% 0.61 295 642 7.63%
gcut8d 691 690.0| 0.145% 10.33 1539 765 9.67%
gcutod 131 131.0| 0.000% 0.08 55 141 7.09%
gecutlod 294 293.0| 0.341% 0.17 93 328 10.37%
gcutlld 330 330.0| 0.000% 1.88 535 375 12.00%
geutl2d 673 672.0| 0.149% 5.70 927 722 6.79%

Table 8.9: Performance of the algorithm C@ith 4-staged patterns.
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Solution Difference Columns | Solution | Improvement
Instance | of CG LB from LB | Time (sec)| Generated of M-HFF | over M-HFF
gcutldr 291 291.0| 0.000% 0.03 21 291 0.00%
geut2dr 283 282.0| 0.355% 3.01 263 314 9.87%
geut3dr 318 316.0| 0.633% 2.83 580 347 8.36%
geut4dr 837 836.0| 0.120% 5.50 722 846 1.06%
geutbdr 175 175.0| 0.000% 0.07 33 198 11.62%
geutédr 302 302.0| 0.000% 0.44 156 371 18.60%
geut7dr 543 542.0| 0.185% 0.69 178 623 12.84%
gcut8dr 650 650.0| 0.000% 6.76 602 734 11.44%
gcutodr 126 125.0| 0.800% 0.07 38 143 11.89%
gcutlOdr| 271 270.0| 0.370% 0.37 128 301 9.97%
gcutlldr| 300 299.0| 0.334% 6.15 388 342 12.28%
gcutl2dr| 602 601.0| 0.166% 21.55 835 696 13.51%

Table 8.10: Performance of the algorithm CGR with rotatiand 2-staged patterns.

Solution Difference Columns | Solution | Improvement
Instance | of CGR’ | LB from LB | Time (sec)| Generated of FFDHR | over FFDHR
geutldr 291 291.0| 0.000% 0.05 26 291 0.00%
gcut2dr 283 282.0| 0.355% 3.69 359 314 9.87%
geut3dr 317 316.0| 0.316% 4.35 1023 347 8.65%
geutddr 837 836.0| 0.120% 9.47 1523 846 1.06%
geutsdr 175 175.0| 0.000% 0.09 45 198 11.62%
geutédr 302 302.0| 0.000% 0.45 166 371 18.60%
geut7dr 543 542.0| 0.185% 0.72 193 623 12.84%
geut8dr 650 650.0| 0.000% 6.85 630 734 11.44%
geutodr 126 125.0| 0.800% 0.10 61 143 11.89%
gecutl0dr 271 270.0| 0.370% 0.45 177 301 9.97%
gcutlldr 300 299.0| 0.334% 8.32 677 342 12.28%
gecutl2dr 602 601.0| 0.166% 24.55 1207 696 13.51%

Table 8.11: Performance of the algorithm CGMRth rotations and 2-staged patterns.
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Solution Difference Columns | Solution | Improvement
Instance | of CGR’ | LB from LB | Time (sec)| Generated of FFDHR | over FFDHR
gcutldr 291 291.0| 0.000% 0.04 22 291 0.00%
gcut2dr 283 282.0| 0.355% 3.50 256 314 9.87%
gcut3dr 315 313.0| 0.639% 3.28 585 347 9.22%
geutddr 836 836.0| 0.000% 6.62 782 846 1.18%
gcutsdr 175 174.0| 0.575% 0.10 48 198 11.62%
gcutedr 302 301.0| 0.332% 0.78 228 371 18.60%
geut7dr 544 542.0| 0.369% 1.63 350 623 12.68%
gcut8dr 651 650.0| 0.154% 11.92 716 734 11.31%
gcutodr 123 122.0| 0.820% 0.08 39 143 13.99%
gcut10dr 270 270.0| 0.000% 0.35 89 301 10.30%
gcutlldr 299 298.0| 0.336% 5.99 321 342 12.57%
gcutl2dr 603 601.0| 0.333% 35.15 976 696 13.36%

Table 8.12: Performance of the algorithm CGR with rotatiand 3-staged patterns.

Solution Difference Columns | Solution | Improvement
Instance | of CGR’ | LB from LB | Time (sec)| Generated of FFDHR | over FFDHR
gcutldr 291 291.0| 0.000% 0.05 27 291 0.00%
gcut2dr 283 282.0| 0.355% 4.24 331 314 9.87%
gcut3dr 315 313.0| 0.639% 5.13 1056 347 9.22%
gcutddr 836 836.0| 0.000% 9.67 1344 846 1.18%
gcutsdr 175 174.0| 0.575% 0.14 69 198 11.62%
geutedr 301 301.0| 0.000% 1.04 330 371 18.87%
geut7dr 543 542.0| 0.185% 2.10 509 623 12.84%
gcut8dr 651 650.0| 0.154% 13.57 967 734 11.31%
gcutodr 123 122.0| 0.820% 0.10 53 143 13.99%
gcut10dr 270 270.0| 0.000% 0.35 92 301 10.30%
gcutlldr 299 298.0| 0.336% 6.41 417 342 12.57%
gcutl2dr 602 601.0| 0.166% 35.66 1142 696 13.51%

Table 8.13: Performance of the algorithm CGMth rotations and 3-staged patterns.



8.6. Computational results 113
Solution Difference Columns | Solution | Improvement
Instance | of CGR’ | LB from LB | Time (sec)| Generated of FFDHR | over FFDHR
geutldr 291 291.0| 0.000% 0.05 21 291 0.00%
geut2dr 283 282.0| 0.355% 1.95 174 314 9.87%
geut3dr 315 313.0| 0.639% 3.05 439 347 9.22%
geutddr 836 836.0| 0.000% 6.41 583 846 1.18%
geuthdr 175 174.0| 0.575% 0.13 53 198 11.62%
geutedr 302 301.0| 0.332% 0.54 147 371 18.60%
geut7dr 543 542.0| 0.185% 1.87 348 623 12.84%
geut8dr 652 650.0| 0.308% 14.51 691 734 11.17%
geut9dr 123 122.0| 0.820% 0.09 42 143 13.99%
gcutl0dr 270 270.0| 0.000% 0.45 103 301 10.30%
geutlldr 299 298.0| 0.336% 11.84 386 342 12.57%
geutl2dr 603 601.0| 0.333% 40.92 903 696 13.36%

Table 8.14: Performance of the algorithm CGR with rotatiand 4-staged patterns.

Solution Difference Columns | Solution | Improvement
Instance | of CGR’ | LB from LB | Time (sec)| Generated of FFDHR | over FFDHR
geutldr 291 291.0| 0.000% 0.05 26 291 0.00%
geut2dr 283 282.0| 0.355% 2.22 274 314 9.87%
geut3dr 314 313.0| 0.319% 6.85 1103 347 9.51%
geutddr 836 836.0| 0.000% 12.81 1446 846 1.18%
geuthdr 175 174.0| 0.575% 0.14 65 198 11.62%
geutedr 302 301.0| 0.332% 0.74 230 371 18.60%
geut7dr 542 542.0| 0.000% 2.46 568 623 13.00%
geut8dr 651 650.0| 0.154% 18.35 1159 734 11.31%
geut9dr 123 122.0| 0.820% 0.11 58 143 13.99%
gcutl0dr 270 270.0| 0.000% 0.44 109 301 10.30%
geutlldr 299 298.0| 0.336% 20.08 996 342 12.57%
geutl2dr 602 601.0| 0.166% 47.96 1535 696 13.51%

Table 8.15: Performance of the algorithm CGMRth rotations and 4-staged patterns.
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8.6.3 Computational results for theBPV problem

We have tested the algorithm C&With the instancegcutld, . ., gcut12d defining three dif-
ferent bins. For each bin in the original instances, we defireeothers. Given an instance,
let (W, H) be the bin dimensions of this instance. In our modified ingtanone bin has di-
mensions(1.2W, 0.8 H) and the other has dimensio(it 11V, 0.9H). The value of each bin
corresponds to its ard& x H.

For thek-staged version of he BPV problem, we present tests for trrigthm CGV with
k = 2,3,4 (see tables 8.16—-8.18). We do not present the results oldbeathm CGV since
CGV? got better results in several instances.

Solution Difference Columns
Instance| of CGW LB from LB | Time (sec)| Generated
gcutld | 14880000 | 14822812.5| 0.386% 0.58 397
gcut2d | 16820625| 16740781.3| 0.477% 1.31 492
gcut3d | 20267500 | 20149803.6| 0.584% 21.83 7877
geutdd | 46591875 | 46523511.2| 0.147% 60.56 11569
gcutbd | 42022500 | 41667500.0| 0.852% 0.17 110
gcutéd | 78167500 | 77621562.5| 0.703% 0.96 539
geut7d | 124257500| 123946562.5 0.251% 2.90 1316
gcut8d | 161575000| 161074884.1 0.310% 23.67 3958
gcut9d | 131830000| 130802500.00 0.786% 0.12 86
gcutl0d | 262470000| 260444166.7, 0.778% 0.81 434
gcutlld | 304440000| 303137516.6 0.430% 18.58 6926
gecutl2d | 611230000| 609519416.7| 0.281% 36.65 5452

Table 8.16: Performance of the algorithm CQVith 2-staged patterns.

For k = 2 (resp.3 and4) the difference of the solution obtained by the algorithomirthe
lower bound was 06.498% (resp.0.505% and0.437%) on the average. The algorithm CGV
with k£ = 3 (resp. k = 4) has an increase &1, 56% (resp. 143.68%) of computational time
when compared witlh = 2, on the average.

When orthogonal rotations are allowed in the BPV problempate that it becomes harder
to solve the instances. We can see that the large instarqgéisereeveral minutes to be solved.
See tables 8.19-8.21.
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Solution Difference Columns
Instance| of CGW LB from LB | Time (sec)| Generated
geutld | 14880000 | 14822812.5| 0.386% 0.45 310
gcut2d | 15768125| 15679972.9| 0.562% 6.37 2587
geut3d | 19914375| 19830115.7| 0.425% 8.72 3086
geutdd | 46413750 | 46269759.9| 0.311% 103.53 19002
geutbd | 41737500 | 41517500.0| 0.530% 0.70 493
geutéd | 74440000 | 73967812.5| 0.638% 3.96 2116
geut7d | 123135000| 122531666.7| 0.492% 9.16 3940
gcut8d | 155612500| 155267743.8) 0.222% 91.62 15493
gecut9d | 130730000| 129600000.00 0.872% 0.18 119
geutl0d | 254160000| 252596666.7 0.619% 1.61 1030
gecutlld | 295270000| 292967500.00 0.786% 17.55 5627
gecutl2d | 603220000| 601848214.3 0.228% 66.44 9763

Table 8.17: Performance of the algorithm CQWith 3-staged patterns.

Solution Difference Columns
Instance | of CGVRP LB from LB | Time (sec)| Generated
geutldr | 13908750 | 13828125.0| 0.583% 0.67 416
geut2dr | 15474375 15432371.3| 0.272% 37.05 4616
gcut3dr | 19436875 | 19310805.3| 0.653% 45.33 12159
gcutddr | 44905000 | 44767392.4| 0.307% 166.68 21902
geutbdr | 40382500 | 40087187.5| 0.737% 0.74 341
geutédr | 71162500 | 70839625.0| 0.456% 5.49 2411
gecut7dr | 115312500( 114817716.3] 0.431% 56.78 13326
gcut8dr | 153410000( 152634892.3] 0.508% 394.05 28128
gecut9dr | 121040000( 119568000.00 1.231% 1.14 756
gecutl0dr| 249260000( 247872857.1] 0.560% 5.68 1545
gecutlldr| 289430000 286973906.4{ 0.856% 290.64 23447
gecutl2dr| 564650000 562898801.3] 0.311% 690.59 28565
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Table 8.19: Performance of the algorithm CGAMRith rotations and 2-staged patterns.
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Solution Difference Columns
Instance| of CGW LB from LB | Time (sec)| Generated
gcutld | 14880000 | 14822812.5| 0.386% 0.44 307
gcut2d | 15730625| 15673933.2| 0.362% 8.03 3163
gcut3d | 19864375| 19769831.3| 0.478% 40.23 12327
geutdd | 46343750 | 46257603.4| 0.186% 125.23 18410
geutbd | 41737500 | 41517500.0| 0.530% 0.68 489
gcuted | 74187500 | 73967812.5| 0.297% 2.27 1005
geut7d | 122745000| 122295271.7 0.368% 9.09 3715
gcut8d | 155832500| 155221710.8 0.393% 117.61 17864
gcut9d | 129360000| 128389230.8 0.756% 1.01 727
gcutl0d | 254130000| 252565036.20 0.620% 2.76 1649
gcutlld | 294200000| 292879166.7 0.451% 33.78 8413
gecutl2d | 602360000| 599851250.0 0.418% 68.63 7886

Table 8.18: Performance of the algorithm CQWith 4-staged patterns.

Solution Difference Columns
Instance | of CGVRP LB from LB | Time (sec)| Generated
gcutldr | 13823750 | 13790625.0| 0.240% 0.70 407
gcut2dr | 15158750 | 15083409.1| 0.499% 33.76 2676
gcut3dr | 19235000 | 19120561.8| 0.599% 45.67 8410
gcutddr | 44672500 | 44627391.4| 0.101% 307.66 31450
gcuthdr | 38887500 | 38456458.3| 1.121% 2.42 1044
gcutédr | 70090000 | 69717232.1| 0.535% 12.23 3892
gcut7dr | 115220000| 114605812.2] 0.536% 52.29 10316
gcut8dr | 151917500| 151467609.8 0.297% 502.60 32303
gcut9dr | 120290000( 119104183.00 0.996% 0.41 210
gcutl0dr| 247580000| 246552500.00 0.417% 5.55 2065
gcutlldr| 283940000| 282079863.6) 0.659% 269.26 16320
gcutl2dr| 561610000 559820015.8 0.320% 1003.48 39675

Table 8.20: Performance of the algorithm CGMRith rotations and 3-staged patterns.
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Solution Difference Columns
Instance | of CGVRP LB from LB | Time (sec)| Generated
geutldr | 13823750 | 13790625.0| 0.240% 0.83 415
geut2dr | 15161875 15083409.1| 0.520% 46.73 3010
gcut3dr | 19181875 19118423.5| 0.332% 96.76 16255
gecutddr | 44723750 | 44575105.3| 0.333% 253.43 27104
geutbdr | 38890000 | 38454765.6| 1.132% 472 1662
geutédr | 70192500 | 69599732.1| 0.852% 10.45 2639
gecut7dr | 114867500 114503487.9) 0.318% 70.18 12339
gcut8dr | 151745000( 151462312.9) 0.187% 605.13 30285
gecut9dr | 119730000( 118806666.7| 0.777% 2.73 1198
geutl0dr| 248620000( 246552500.00 0.839% 9.25 3409
gcutlldr| 283560000( 281851974.2] 0.606% 628.87 27379
gecutl2dr| 561640000 559820015.8) 0.325% 1328.03 32554
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Table 8.21: Performance of the algorithm CGAMRith rotations and 4-staged patterns.
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8.6.4 Computational results for the SP problem

For the problem SP, we have used the instagecesld, . .,gcutl2dconsidering the maximum
distance between two horizontal cuts of the strip as thehwadlithe bin.

Although the instances for the SP problem required conasdgmore time than the (same)
instances for the 2CS problem, the corresponding timedrextjby the latter were still small
and acceptable in practice.

The results for algorithm CGSor 2-, 3- and4-staged cutting are shown in tables 8.22,
8.23 and 8.24, respectively. The lower bound correspontteetoptimal fractional solution of
formulation 8.2.

Solution Difference| Average | Columns | Solution | Improvement
Instance| of CGY LB from LB | Time (sec)| Generated of FFDH | over FFDH
gcutld 51604 | 51583.0| 0.041% 0.06 43 54323 5.01%
gcut2d 77436 | 77369.5| 0.086% 0.26 141 77436 0.00%
gcut3d 80206 | 80112.5| 0.117% 4.50 1479 83529 3.98%
gcutdd | 196480 | 196422.5| 0.029% 3.74 702 205250 4.27%
gcutsd 91177 | 91177.0| 0.000% 0.04 29 96693 5.70%
gcutéd | 168148 | 167987.5 0.096% 0.18 93 181578 7.40%
gcut7d | 243241 | 243076.0; 0.068% 0.65 232 259462 6.25%
gcut8d | 332924 | 332669.3] 0.077% 3.57 534 344732 3.43%
gcut9d | 122836 | 122532.5| 0.248% 0.08 66 129706 5.30%
gcutlod | 272919 | 272680.5] 0.087% 0.22 119 286790 4.84%
gcutlld | 315026 | 314747.5| 0.088% 1.50 332 338271 6.87%
gcutl2d | 573806 | 573590.0| 0.038% 8.88 610 605126 5.18%

Table 8.22: Performance of the algorithm CGfth 2-staged patterns.

For the 2-staged problem, all instances were solved in lems 10 seconds. On the av-
erage, the difference between the solutions found by theritthgn an the lower bound was
only 0.081% and an optimal solution for instangeut5dwas found. The improvement of the
algorithm CGS over FFDH was, on the average, ©485%. These improvements are very
significant, since algorithm FFDH also produces 2-stagédisos.

For the 3-staged problem, the most difficult instargeu¢12 take 151 seconds to be com-
pleted. On the average, the difference between the sotufmmd by the algorithm and the
lower bound wa$).113% and the average improvement over FFDH wai$ %.

For the 4-staged problem, the difference between the solifound by the algorithm CGS
an the lower bound was116% and the improvement over FFDH wag4%, on the average.

We also performed tests when orthogonal rotations are atlowlhe results of the tests
can be found in tables 8.25, 8.26 and 8.27. On the averageliffeeence between the solu-
tions found by the algorithm CGSRand the lower bound wa&114%, 0.204% and0.261%
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Solution Difference| Average | Columns | Solution | Improvement
Instance| of CGS’ LB from LB | Time (sec)| Generated of FFDH | over FFDH
gcutld 51432 | 51332.8 | 0.193% 0.25 188 54323 5.32%
gcut2d 77436 | 77369.5| 0.086% 0.31 116 77436 0.00%
geut3d 77790 | 77728.7| 0.079% 10.51 3297 83529 6.87%
gcut4dd 195307 | 195249.5| 0.029% 8.40 1233 205250 4.84%
gcutsd 87249 | 87164.4| 0.097% 0.09 61 96693 9.77%
gcutéd 158137 | 158104.5| 0.021% 0.32 132 181578 12.91%
geut7d 236508 | 236412.8| 0.040% 1.28 319 259462 8.85%
gcut8d 310748 | 310493.8| 0.082% 42.55 4861 344732 9.86%
gcutod 120479 | 119988.6| 0.409% 0.33 245 129706 7.11%
gcutlOd | 260388 | 260259.5| 0.049% 0.33 131 286790 9.21%
geutlld | 305348 | 304918.0| 0.141% 9.96 1386 338271 9.73%
geutl2d | 559870 | 559132.5| 0.132% 151.08 9748 605126 7.48%

Table 8.23: Performance of the algorithm CGfth 3-staged patterns.

respectively for the 2-, 3- and 4-staged problem. Compantiythe solutions generated by the
FFDHR2 we obtain on the average an improvementiaf2%, 13.41% and13.42% respectively
for the 2-, 3- and 4-staged problem.
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Solution Difference| Average | Columns | Solution | Improvement
Instance| of CGS LB from LB | Time (sec)| Generated of FFDH | over FFDH
gcutld 51432 | 51332.8| 0.193% 0.23 178 54323 5.32%
gcut2d 77436 | 77369.5| 0.086% 0.40 126 77436 0.00%
gcut3d 77446 | 77287.0| 0.206% 19.80 4516 83529 7.28%
gcutdd | 195307 | 195249.5| 0.029% 9.70 1118 205250 4.84%
gcutsd 87249 | 87164.4| 0.097% 0.11 62 96693 9.77%
gcutéd | 158137 | 158104.5| 0.021% 0.40 149 181578 12.91%
gcut7d | 236508 | 236412.8| 0.040% 1.48 314 259462 8.85%
gcut8d | 310672 | 310493.8| 0.057% 47.28 4544 344732 9.88%
gcut9d | 119861 | 119426.2| 0.364% 0.20 131 129706 7.59%
gcutlOd | 260388 | 260259.5| 0.049% 0.39 132 286790 9.21%
gcutlld | 305348 | 304918.0| 0.141% 13.80 1557 338271 9.73%
gcutl2d | 559159 | 558531.9| 0.112% 201.51 10422 605126 7.60%

Table 8.24: Performance of the algorithm CGfth 4-staged patterns.

Solution Difference| Average | Columns Solution Improvement
Instance | of CGSR LB from LB | Time (sec)| Generated of FFDHR2 | over FFDHR2
gcutldr 50612 | 50589.0 | 0.045% 0.10 54 54323 6.83%
gcut2dr 60311 | 60192.0 | 0.198% 1.18 347 74744 19.31%
gcut3dr 77385 | 77296.3| 0.115% 5.88 1193 83529 7.36%
gcutddr | 175996 | 175930.4| 0.037% 32.11 3501 191383 8.04%
gcutsdr 78530 | 78370.8| 0.203% 0.56 235 96530 18.65%
gcutédr | 138207 | 138041.0f 0.120% 0.97 224 181578 23.89%
gcut7dr | 226312 | 226163.8/ 0.066% 3.28 531 244742 7.53%
gcut8dr | 300696 | 300499.3| 0.065% 29.54 1419 326197 7.82%
gcut9dr | 119584 | 119417.0f 0.140% 0.22 102 129657 7.77%
gcutlOdr| 236531 | 236278.2| 0.107% 1.20 193 265322 10.85%
gcutlldr| 286164 | 285661.6/ 0.176% 10.53 555 326275 12.29%
gcutl2dr| 549751 | 549181.6| 0.104% 130.30 2908 605126 9.15%

Table 8.25: Performance of the algorithm CGSith rotations and 2-staged patterns.
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Solution Difference| Average | Columns Solution Improvement
Instance | of CGSR LB from LB | Time (sec)| Generated of FFDHR2 | over FFDHR2
gcutldr 50433 | 50329.0| 0.207% 0.44 250 54323 7.16%
gcut2dr 59369 | 59138.7 | 0.389% 491 1220 74744 20.57%
gcut3dr 75447 | 75227.5| 0.292% 80.03 11692 83529 9.68%
gcutddr | 173796 | 173588.0| 0.120% 127.54 11925 191383 9.19%
gcutsdr 74885 | 74706.0 | 0.240% 0.40 140 96530 22.42%
gcutédr | 135952 | 135450.9| 0.370% 4.77 1227 181578 25.13%
gcut7dr | 221258 | 221137.5| 0.054% 7.39 847 244742 9.60%
gcut8dr | 294465 | 294188.3| 0.094% 353.28 13965 326197 9.73%
gcut9dr | 116404 | 115994.6| 0.353% 0.55 231 129657 10.22%
gcutlOdr| 233321 | 233253.7| 0.029% 2.14 211 265322 12.06%
gcutlldr| 278144 | 277452.3| 0.249% 232.55 7009 326275 14.75%
gcutl2dr| 541926 | 541610.5| 0.058% 1179.61 20669 605126 10.44%

Table 8.26: Performance of the algorithm C@Sith rotations and 3-staged patterns.

Solution Difference| Average | Columns | Solution Improvement
Instance | of CGSR LB from LB | Time (sec)| Generated of FFDHR2 | over FFDHR2
gcutldr 50433 | 50329.0| 0.207% 0.47 255 54323 7.16%
gcut2dr 59420 | 59124.5| 0.500% 10.75 2222 74744 20.50%
gcut3dr 75396 | 75162.2 | 0.311% 50.26 7261 83529 9.74%
gcutddr | 173687 | 173534.3| 0.088% 259.84 20740 191383 9.25%
gcutsdr 74717 | 74391.0| 0.438% 0.46 155 96530 22.60%
gcutédr | 135952 | 135450.9| 0.370% 6.17 1332 181578 25.13%
gcut7dr | 221258 | 221137.5| 0.054% 8.19 791 244742 9.60%
gcut8dr | 294578 | 294188.1| 0.133% 764.96 23291 326197 9.69%
gcut9dr | 116296 | 115927.8| 0.318% 0.51 164 129657 10.30%
gcutlOdr| 233582 | 233066.7| 0.221% 5.24 376 265322 11.96%
gcutlldr| 278362 | 277230.7| 0.408% 206.29 5251 326275 14.68%
gcutl2dr| 541998 | 541540.0/ 0.085% 935.73 12450 605126 10.43%

Table 8.27: Performance of the algorithm CGSfith rotations and 4-staged patterns.
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8.7 Concluding remarks

In this paper we presented algorithms for the RK, 2CS, BPVZ3Pgroblems and their variants
RK", BP", BPV" and SP (where orthogonal rotations of the items are allowed) uguifotine
staged patterns.

For the RK problem we presented the (exact) pseudo-polyaiasgorithms SDP fork-
staged patterns. We have also mentioned how to use SDP ®thelproblem RK

We extend the work of [18] by using column generation basgdrahms to solve the 2CS
and BPV problems using staged patterns, and also extendsd #igorithms to solve the SP
problem. These algorithms use, as subroutines, the &goi8DP to generate the columns.
The algorithms combines different techniques: Simplexhoetwith column generation, an
exact algorithm for the discretization points, and appraation algorithms for the last residual
instance. An approach of this nature has shown to be proghiaimd has been used to tackle
the one-dimensional cutting stock problem [48, 17].

The algorithm for the SP problem was obtained adapting th@rihm for the BPV problem.
We have used the same strategy used in the algorithms forGBead BPV problems. The
residual instances were solved with an approximation élgar(FFDH) or another algorithm
we proposed (called FFDHR?2) when rotations are allowed.

For almost all instances tested, the algorithms that usetarpation method found solutions
of a slightly better quality than CG (respectively CGR) a ttost of a slight increase in the
running time.

A natural development of our work would be to adapt the apgragsed in the algorithm
CG for the version with arbitrary orthogonal cutting pattefthe cuts need not be guillotine).
One can find an initial solution using homogeneous patteires;columns can be generated
using any of the algorithms that have appeared in the luezdor the two-dimensional cutting
stock problem with value [6, 3]. To solve the last residugt@amce one can use approximation
algorithms [16, 11, 34].

One can also use column generation for the variant of 2CS inhathe quantity of items
in each bin is bounded. This variant, proposed by Christefated Whitlock [15], is called
restricted two-dimensional cutting stock problerBach new column can be generated with
any of the known algorithms for the restricted two-dimensaiocutting stock problem with
value [15, 41], and the last residual instance can be solvddtine algorithm M-HFF. This
restricted version with guillotine cut requirement caroabe solved using the ideas we have
just described: the homogeneous patterns and the pattexhsged by M-HFF can be obtained
with guillotine cuts, and the columns can be generated \mghelgorithm of Cung, Hifi and Le
Cun [24].

As a final remark we mention that we did not use a heuristicquare to solve the column
generation step. Therefore, we could obtain optimal fometi solutions for all the instances



8.8. Bibliography 123

we have considered. These optimal fractional solutionsigceexcellent lower bounds for the
optimal solutions, which turned out to be in most of the tegsy close to the solutions found
by the algorithms.

We performed many tests and compared the solutions obténédge different variants of
the problems. On average, we noted an increase in commaéatiole and decrease of space
occupation when we considered 2-, 3- and 4-staged patt@snsell as when rotations were
considered. It is interesting to note that very few paperssicier 4-staged patterns. Finally,
we observe that for all tests performed, the algorithms wademented found optimal or quasi-
optimal solutions in a reasonable amount of time, showiagttiey may be useful for practical
purposes
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Capitulo 9

Conclusoes e Trabalhos Futuros

Neste trabalho apresentamos algoritmos para diversokeprab de empacotamento. O princi-
pal foco do trabalho foi o desenvolvimento de algoritmospgteximacéao e heuristicas baseadas
no método de geragao de colunas.

No Capitulo 4 apresentamos o problema que chamam@dads Constrained Shelf Bin
Packing(CCSBP). Este problema é uma generaliza¢édo do prolddémpmackingonde itens tém
classes diferentes e devemos empacotar os itens separsupdo-prateleiras. Este problema
possui aplicacdes na industria de metais [16]. Apresergaigoritmos aproximadqwaticos
para este problema, e também um esquema de aproximacao gasga em que 0 numero de
classes diferentes € limitado por uma constante. Comadh@hbauro permanece em aberto a
guestao da existéncia de um esquema de aproximacgao paaanciso numero de classes faz
parte da entrada.

No Capitulo 5 consideramos dois problemas: o CCSBP e o pnatilen packingcom res-
tricdes de classes. Apresentamos esquemas de aproximagidgedra ambos os problemas.
Neste caso buscamos solugBes para a versdo dual, que padiewisaeis para o problema
original, usando no maximo a quantidade de recipientes deaatucdo 6tima da verséo ori-
ginal. A medida da qualidade da solucao gerada esté rettdorom o grau de inviabilidade
da solucdo. Como possivel trabalho futuro pode-se tentgropresquemas de aproximacgoes
duais com complexidade de tempo mais baixa, ja que a condpldxide tempo dos algoritmos
propostos € muito alta.

No Capitulo 6 apresentamos o problebnirapackingcom restricdo de classes, denotado por
CCBP, com aplicagbes para um problema de construcdo de sersidereideo sob demanda.
Apresentamos algoritmos aproximados praticos para estd@gona e exibimos resultados de
testes computacionais com tais algoritmos. Também apgeesen algoritmos aproximados
para a versaonline do problema. Por fim, apresentamos um esquema de aproxirpagio
0 caso em que o numero de classes diferentes da entradaa@tmibr uma constante. Aqui
também fica em aberto a existéncia de um esquema de aproriaddo o numero de classes
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diferentes faz parte da entrada. Um esquema de aproximagacegte problema pode levar
a um esquema de aproximagao para o problema CCSBP. Por adtroum resultado de
inaproximabilidade também pode ajudar a construir um tadalsemelhante para o problema
CCSBP.

No Capitulo 7 apresentamos algoritmos de aproximacao paexsao do problemain
packingonde os itens possuem demandas, problemas que sdo coshegitieratura como
problemas deutting stock Neste capitulo mostramos como adaptar varios algoritrrapb-
ximacgao desenvolvidos para problemas sem demanda para @rds ha demanda para os
itens. Dentre os resultados deste capitulo destacamosquarea de aproximacao assintotico
para o problema&utting stockunidimensional e um algoritmo com fator de aproximacao as-
sint6tico2.077 para o problemautting stockbidimensional. Neste ponto, destacamos que a
complexidade computacional do problemacdéing stoclkesta em aberto. Apesar de sabermos
que este problemalP-dificil, ndo se sabe se a verséo de deciséo do problemanes® e

Finalmente no Capitulo 8, apresentamos algoritmos paldemas de empacotamento bi-
dimensional. Nestes problemas séo considerados cortbstinaveis e em estagios. Apresen-
tamos algoritmos exatos para problema da mochila bidimeakbaseados em programacéo
dindmica. Consideramos também o probldnmapackingbidimensional com demandas e o
problemastrip packingbidimensional com demandas. Para estes problemas apiesstieu-
risticas baseadas no método de geracédo de colunas. Umghgssito para trabalhos futuros é
estender os algoritmos descritos para problemas tridimesis. Para tanto, deve-se construir
algoritmos eficientes para o problema da mochila tridinweredi que serd usada na parte de
geracao de colunas.

Algoritmos de aproximacao séo vistos por muitas pessoa® cesultados tedricos sem
grande aplicabilidade pratica. Nesta tese apresentargossahlgoritmos aproximados prati-
cos e fizemos alguns testes computacionais (ver Capitulo$jesultados destes testes mos-
tram que tais algoritmos produzem solucdes de excelentelgdea, podendo ser utilizados na
pratica. Varios algoritmos aproximados sao de facil imgetacéo e em geral produzem so-
lucBes cujos valores estdo muito mais préximos do 6timo aoagufatores de aproximacgao
demonstrados [39, 43]. Tais algoritmos podem ser usadassine como heuristicas primais
em algoritmos exatos (veja [1] como exemplo).

Também h& um grande interesse de investigacao tedricéoredda a algoritmos de apro-
ximacgao. Neste caso busca-se saber, para um determindaderpap qual o melhor fator de
aproximacao que pode ser obtido por um algoritmo para estdgmna. Nesta linha pode-se
projetar algoritmos aproximados ou provar resultados aeroximabilidade [25, 5, 39]. A par-
tir de tais resultados criou-se uma teoria de complexidadedrla em classes de aproximacao
(veja por exemplo [5]). Tais resultados trazem uma maicddummentacdo tedrica para a questao
de seP é igual aNP. Hoje sabemos, por exemplo, que a existéncia de algum FPaRSuma
enorme quantidade de problemas equivaleria a mostraPggeNP. Com os recentes resul-
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tados sobre provas verificaveis probabilisticamente [2],33abemos que diversos problemas
nao admitem sequer aproximacao constante a menas gusP.

Nesta tese também investigamos heuristicas baseadas adondétgeracao de colunas. A
grande vantagem desta abordagem € trabalhar com progiase®s$ que fornecem limitantes
duais muito préximos do 6timo. Para o problecudting stockunidimensional existe uma con-
jectura famosa, para a formulag&o correspondente a apadaaro Capitulo 7 (formulacéo 8.1),
conhecida como MIRUPModified Integer Round-Up Propeitgue diz o seguinte: O valor de
uma solucao inteira 6tima para uma instancgo cutting stockunidimensional € no maximo o
teto da funcéo objetivo do programa linear adicionado deatiog resultados corroboram com
esta conjectura [34, 35, 40]. Para o caso bidimensional @stescem dois estagios Riehrae
al. [33] apresentam uma verséo da conjectura MIRUP, (mas nesteacliciona-se 2 ao valor do
teto do programa linear) e resultados computacionais damplorte a conjectura. Uma maior
investigacao sobre a qualidade do limitante dual fornepala formulacéo 8.1 para o problema
bidimensional pode ser um interessante trabalho. ComosymeoCapitulo 7, as heuristicas
propostas, baseadas na solucéo deste programa lineaerabtiexcelentes resultados.
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