
Approximation Schemes for Knapsack Problems with Shelf

Divisions ∗

E. C. Xavier† F. K. Miyazawa†

February 23, 2006

Abstract

Given a knapsack of size K, non-negative values d and ∆, and a set S of items, each

item e ∈ S with size se and value ve, we define a shelf as a subset of items packed inside a bin

with total items size at most ∆. Two subsequent shelves must be separated by a shelf divisor

of size d. The size of a shelf is the total size of its items plus the size of the shelf divisor.

The Shelf-Knapsack Problem (SK) is to find a subset S′ ⊆ S partitioned into shelves with

total shelves size at most K and maximum value. The Class Constrained Shelf Knapsack

(CCSK) is a generalization of the problem SK, where each item in S has a class and each shelf

in the solution must have only items of the same class. We present approximation schemes for

the SK and the CCSK problems. To our knowledge, these are the first approximation results

where shelves of non-null size are used in knapsack problems.

Key Words: Approximation algorithms, approximation schemes, knapsack problem, shelf

packing.

1 Introduction

In this paper we present approximation schemes for knapsack problems where items are separated by

shelves. We first define these problems formally.

∗This research was partially supported by CNPq (Proc. 478818/03-3, 306526/04-2, 471460/04-4, and 490333/04-4),

ProNEx–FAPESP/CNPq (Proc. 2003/09925-5) and CAPES.
†Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 — Campinas–SP

— Brazil, {eduardo.xavier,fkm}@ic.unicamp.br.

1

Given a knapsack of size K, the size of a shelf divisor d, the maximum size of a shelf ∆, and a set

S of items, each item e ∈ S with size se and value ve, a shelf is defined as a subset of items packed

inside a bin with total items size at most ∆. The size of a shelf is the total size of its items plus

the size of a shelf divisor. We also consider a version where shelves must have size at least δ, where

0 < δ ≤ ∆. Since all shelves considered in this paper must have size at most ∆, we use the notation

δ-shelf to denote a shelf that must have size at least δ. The Shelf-Knapsack Problem (SK) is to

find a subset S ′ ⊆ S partitioned into shelves with total shelf size at most K and maximum total

value. The Class Constrained Shelf Knapsack Problem (CCSK) is a generalization of the

SK problem, where each item e ∈ S has a class ce and each shelf must have only items of the same

class.

The SK and CCSK problems are NP -hard since they are generalizations of the knapsack problem.

We note that the term shelf is used under another context in the literature for 2-D packing problems.

There are many practical applications for these problems. For example, when the items to be

packed must be separated by non-null shelf divisors (inside a bin) and each shelf cannot support more

than a certain capacity. The CCSK problem is adequate when some items cannot be stored in a

same shelf (like foods and chemical products). In most of the cases, the sizes of the shelf divisions

have non-negligible width. Although these problems are very common in practice, to our knowledge

this paper is the first to present approximation results for them.

An interesting application for the CCSK problem, where each shelf must be a δ-shelf, was intro-

duced by Ferreira et al. [5] in the iron and steel industry, where a raw material roll must be cut into

final rolls grouped by certain properties after two cutting phases. The rolls obtained after the first

phase, called primary rolls, are submitted to different processing operations (tensioning, tempering,

laminating, hardening etc.) before the second phase cut. Due to technological limitations, primary

rolls have a maximum and minimum allowable width and each cut generates a loss in the roll width.

In Table 1, we present some common characteristics for final rolls. We consider three classes in

this example, one for each different thickness. The hardness interval of items with the same thickness

are overlapped in a common interval to satisfy all hardness requirements. If there are items for which

hardness cannot be assigned to the same thickness class, a new class must be defined for these ones.

In the example of Table 1, we have a raw material roll of size K (1040 mm) that must be cut and

processed into the final items. This roll is first cut in three primary rolls according to the items in the

three different classes. Each primary roll is processed by different operations to acquire the required

thickness and hardness before obtaining the final rolls. Each cutting in the primary roll generates a

2

Width (mm) Hardness (kg ·mm−2) Thickness (mm)

250 50 to 70 4.50

200 60 to 75 4.50

60 32 to 39 3.50

60 32 to 41 3.50

60 20 to 30 2.50

60 24 to 35 2.50

Table 1: Characteristics of final rolls.

loss due to the width of the cutter knife and the trimming process. This loss corresponds to the size

of the shelf divisors. The items are obtained after the second cutting phase. In this application, we

only worry about the loss generated in the first cutting phase. The process is illustrated in Figure 1.

1040 mm

Raw Roll Material

First Phase Cut

Processing operations

Second Phase Cut

Final Products

Primary Rolls

Loss Loss Loss

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 1: The two-phase cutting stock problem.

Each processing operation has a high cost which implies items to be grouped before doing it, where

3

each group corresponds to one shelf. In the example above, we can consider three different classes

and six different items. The size of the raw roll material corresponds to the size of the knapsack and

the size of the shelf divisor corresponds to the loss generated by the first cutting phase. The values of

δ and ∆ are the minimum and maximum allowable width of the primary rolls. The value of an item

can be its sale value.

Recently, this problem was considered by Hoto et al. [7] and Marques and Arenales [3], where

exact and heuristic algorithms for the problem are presented. In [8], Hoto et al. considered the cutting

stock version of the problem where a demand of items must be attended by the minimum number

of bins. They use a column generation strategy, where the generation of each column reduces to the

class constraint shelf knapsack problem.

Given an algorithm Aε, for some ε > 0, and an instance I for some problem P we denote by

Aε(I) the value of the solution returned by the algorithm Aε when executed on instance I and by

OPT(I) the value of an optimal solution for this instance. We say that Aε is a polynomial time

approximation scheme (PTAS) for a maximization problem if for any fixed ε > 0 and any instance I

we have Aε(I) ≥ (1− ε)OPT(I). If the algorithm is also polynomial in 1/ε we say that Aε is a fully

polynomial time approximation scheme (FPTAS).

Results: In this paper we present approximation schemes for the SK and CCSK problems. We show

that the CCSK problem cannot be approximated, unless P = NP , when each shelf must be a δ-shelf,

but there is a fully polynomial time approximation scheme when the number of different items sizes

in each class is bounded by a constant. To our knowledge, these are the first approximation results

where shelves of non-null width are used in these problems.

Related Work: Knapsack problems are well studied problems under the approximation algorithms

approach. In 1975, Ibarra and Kim [9] presented the first approximation scheme for the knapsack

problem. In [1], Caprara et al. presented approximation schemes for two restricted versions of the

knapsack problem, denoted by kKP and E-kKP. The kKP is the knapsack problem where the

number of items chosen in the solution is at most k and the E-kKP is the problem where the number

of items chosen in the solution is exactly k. Chekuri and Khanna [2] presented a PTAS for the

Multiple Knapsack Problem (MKP). In this problem we have a set B of bins, each bin j ∈ B with

capacity bj , and a set S of items, each item i with size si and value vi. The objective is to find a

subset U ⊆ S of maximum total value such that U has a feasible packing in B. In [10], Shachnai and

Tamir presented polynomial time approximation schemes for the class-constrained multiple knapsack

(CCMK) problem. The CCMK problem consists in: given a set of items S, each item with value,

4

class and size and a set B of m bins, each bin j ∈ B with capacity bj and an upper bound Cj on the

number of different classes to hold. The objective is to find a subset of S of maximum total value

partitioned into m parts S1, . . . , Sm, each part Sj with total size at most bj and at most Cj classes.

In [12], Xavier and Miyazawa presented approximation algorithms for the class constrained shelf bin

packing problem. In this problem, one has to pack a set of items in the minimum number of bins

such that items are divided into shelves inside the bins, and each shelf contains only items of a same

class.

Organization: In Section 2 we present a PTAS for the SK problem and in Section 3 we present a

PTAS for the CCSK problem. In Section 4 we consider the CCSK problem when the shelves are

δ-shelves. We present an inaproximability result and a fully polynomial time approximation scheme

for the special case when the number of different sizes in each class is bounded by a constant. In

Section 5, we present the concluding remarks.

2 A PTAS for the SK Problem

An instance I for the SK problem is a tuple (S, s, v, K, d, ∆) where S is a set of items, s and v are

size and value functions over S, respectively; K is the size of the knapsack; d is the size of a shelf

divisor, and ∆ is an upper bound for the size of each shelf. All values are non-negatives. We denote

by n the number of items in the set S.

Given a set of items T ⊆ S of an instance for the SK problem, we denote by s(T) the sum
∑

e∈T se

and by v(T) the sum
∑

e∈T ve.

A solution (U,U) of an instance I = (S, s, v, K, d, ∆) for the problem SK is a set U ⊆ S and

a partition U = {U1, . . . , Uk} of U , where each set Ui is a shelf such that s(Ui) ≤ ∆ and the size

s(U,U) :=
∑k

i=1(s(Ui)+d) of the solution is at most K. We say that U is a shelf packing of U . When

there is no need to specify the partition of the items into shelves, a solution (U,U) may be refereed

only by the set U . Using this notation, we define the value of a solution U as the value v(U).

The SK problem can be defined as follows: Given an instance I for the SK problem, find a solution

(U,U) of maximum value.

Given an instance I = (S, s, v, K, d, ∆) for the SK problem and a shelf packing U for U ⊆ S that

minimizes s(U,U), we denote by sp(U) this minimum size.

Some of the ideas used in the algorithm of this section have been proposed by Chekuri and Khanna

[2]. Given an instance I for the SK problem and an optimum solution O∗, the algorithm performs

5

two main steps. First, the algorithm finds a set U ⊆ S with v(U) ≥ (1− O(ε))v(O∗) such that this

set can be packed in a knapsack with shelves with size not greater than sp(O∗). This is shown in

the next subsection. In the second step, the algorithm obtains a solution (U ′,U) with U ′ ⊆ U and

v(U ′) ≥ (1− O(ε))v(U).

2.1 Finding the Items

The algorithm of this section, denoted by Find ε, is presented in Figure 2. The algorithm generates

a polynomial number of sets such that at least one has value very close to the optimal and its shelf

packing size is not greater than the size of an optimum solution. First, the algorithm performs two

reparameterization on the values of the items, steps 1–4. In the first reparameterization the algorithm

obtains items values that are non-negative integer values bounded by ⌊n/ε⌋, so that the value of any

solution is bounded by W = n⌊n/ε⌋. This is obtained using the same rounding technique presented

by Ibarra and Kim [9] for the knapsack problem. We define M = εV/n where V is the maximum

value of an item in S. For each item e ∈ S we define its value as v′
e = ⌊ve/M⌋. We denote by O′

an optimal solution for the reparameterized instance. Using the same ideas of Ibarra and Kim it is

not hard to see that v(O′) ≥ (1 − ε)v(O∗). The key idea is the fact that the value of the solution

O′ is at most a factor nM smaller than the value of the solution O∗, due to the floor function in the

rounding process. From now on, we only work with the reparameterized instance, since if we find

a solution with value greater than or equal to (1 − O(ε))v′(O′) for the reparameterized instance we

obtain a solution with value greater than or equal to (1−O(ε))v(O∗) for the original instance as the

next lemma states.

Lemma 2.1 Given an instance I for the SK problem, let I ′ be the instance obtained from I using the

value function v′ defined in steps 1–3 of the algorithm Find ε. Let O∗ and O′ be optimum solutions of I

and I ′, respectively. If U is a solution satisfying v′(U) ≥ (1−tε)v′(O′) then v(U) ≥ (1−(t+1)ε)v(O∗).

Proof. Let U be a solution satisfying v′(U) ≥ (1− tε)v′(O′) for some t > 0. From the definition of v′

we can bound the value of v(Q) for any set Q, as follows:

Mv′(Q) = M
∑

e∈Q

⌊ ve

M

⌋

≤
∑

e∈Q

ve = v(Q). (1)

Mv′(Q) = M
∑

e∈Q

⌊ ve

M

⌋

6

≥ M
∑

e∈Q

(ve

M
− 1

)

=
∑

e∈Q

ve −M |Q|

≥ v(Q)−Mn = v(Q)− εV. (2)

The proof of the lemma follows applying inequalities (1), (2) and the fact that v(O∗) ≥ V .

v(U) ≥ Mv′(U) ≥ (1− tε)Mv′(O′)

≥ (1− tε)Mv′(O∗) ≥ (1− tε)(v(O∗)− εV)

≥ (1− tε)(v(O∗)− εv(O∗)) = (1− tε)(1− ε)v(O∗)

≥ (1− (t + 1)ε)v(O∗).

The second reparameterization is a rounding step (step 4) where each item value is rounded down

to the nearest power of (1 + ε). From now on, we denote the value function after these steps by

v′′. Notice that after this rounding step, for each item e ∈ S we have v′′
e ≥ (1 − ε)v′

e and there

are h + 1 = ⌊log(1+ε)
n
ε
⌋ + 1 different values of items. The items are grouped by their values in sets

S0, . . . , Sh, such that items in the same set have the same value (steps 4–7).

In step 8, the algorithm performs an enumeration of all possible tuples (k0, . . . , kh) where ki ∈

[0, ⌈h/ε⌉] and
∑h

i=0 ki ≤ h/ε. These tuples are used to find sets Ui ⊆ Si, 0 ≤ i ≤ h such that

v(U0 ∪ . . . ∪ Uh) ≥ (1−O(ε))v′(O′). This is explained later.

In what follows, we show that the set of all possible tuples satisfying such conditions can be

obtained in polynomial time.

Lemma 2.2 Let f be the number of g-tuples of non-negative integer values such that the sum of the

values of the tuple is d. Then f =
(

d+g−1
g

)

.

Lemma 2.3 The number of different h-tuples (k0, . . . , kh) such that
∑h

i=0 ki = h
ε

is O(n
ε

O(1/ε)).

Proof. Let d = h
ε

and g = h. From Lemma 2.2, the number of possibilities to test, such that
∑

i ki = h
ε
,

is

f =

(

d + g − 1

g

)

≤

(

d + g
d+g
2

)

≤ e2d+g ≤ O(2
2

ε
h) ≤ O(

n

ε

O(1/ε)

). (3)

Since the upper bound of Lemma 2.3 is also an upper bound for the number of tuples such that
∑

i ki = t, for each t ∈ {1, . . . , h
ε
}, we can conclude that the number of tuples where

∑

i ki ≤
h
ε

can

be computed in polynomial time.

7

Algorithm Find ε(I)

Input: Instance I = (S, s, v, K, ∆) and a parameter ε > 0.

Output: A multset Q, such that there is at least one set U ∈ Q with value close to the

optimal.

1. Let n← |S|, V ← max{ve : e ∈ S}, M ← εV
n

, and h← ⌊log1+ε
n
ε
⌋.

2. For each e ∈ S do

3. v′
e ← ⌊ve/M⌋

4. v′′
e ← (1 + ε)k where (1 + ε)k ≤ v′

e < (1 + ε)k+1.

5. For each i ∈ {0, . . . , h} do

6. let Si be the set of items with value (1 + ε)i in S

7. let (ei
1, . . . , e

i
ni

) be the items in Si sorted in non-decreasing order of size.

8. Let Q ← ∅ and T be the set of all possible tuples (k0, . . . , kh) such that

ki ∈ {0, . . . ,
h
ε
} for 0 ≤ i ≤ h and

∑h
i=0 ki ≤ ⌈

h
ε
⌉.

9. For each integral value w in the interval [0, n⌊n/ε⌋] do

10. for each tuple (k0, . . . , kh) in T do

11. for each i ∈ {0, . . . , h} do

12. let Ui = {ei
1, . . . , e

i
j} such that v′′(Ui − ei

j) < ki(
εw
h

) ≤ v′′(Ui)

13. U ← (U0 ∪ . . . ∪ Uh)

14. Q ← Q+ U .

15. Return Q.

Figure 2: Algorithm to find sets with value close to v′(O′).

The algorithm generates sets U such that at least one has value v(U) ≥ (1− O(ε))v′(O′). Notice

that we do not know in advance the value v′(O′). The algorithm tries each possible value of v′(O′) in

the interval [0, . . . , n⌊n/ε⌋] (step 9).

Consider the sets O′
i = O′ ∩ Si, i = 0, . . . , h. The idea of steps 9–14 of the algorithm is to obtain

subsets Ui with values very close to v′′(O′
i) using the tuples (k0, . . . , kh) ∈ T (T is the set of all

valid tuples) generated in step 8. There is a tuple with integer values ki ∈ {0, . . . ,
h
ε
} such that

ki
εv′(O′)

h
≤ v′′(O′

i) < (ki + 1) εv′(O′)
h

as the next lemma states.

Lemma 2.4 If O′ is an optimal solution using v′ function, then there exists a tuple (k0, . . . , kh) ∈ T

such that for each i we have ki ∈ {0, . . . ,
h
ε
} and

8

(i) ki
εv′(O′)

h
≤ v′′(O′

i) < (ki + 1) εv′(O′)
h

,

(ii)
∑h

i=1 ki
εv′(O′)

h
≥ (1− 3ε)v′(O′) and

(iii)
∑h

i=1 ki ≤ h/ε.

Proof. Let O′ = O′
0 ∪ . . . ∪ O′

h where O′
i = Si ∩ O′, for 0 ≤ i ≤ h. For each i, let ki =

⌊

v′′(O′

i)h

εv′(O′)

⌋

. To

prove item (i), we use basic facts from the floor function to bound v′′(O′
i).

ki
εv′(O′)

h
=

⌊

v′′(O′
i)h

εv′(O′)

⌋

εv′(O′)

h

>

(

v′′(O′
i)h

εv′(O′)
− 1

)

εv′(O′)

h

= v′′(O′
i)−

εv′(O′)

h
.

Therefore, v′′(O′
i) < (ki + 1) εv′(O′)

h
. Also note that

ki
εv′(O′)

h
=

⌊

v′′(O′
i)h

εv′(O′)

⌋

εv′(O′)

h

≤
v′′(O′

i)h

εv′(O′)

εv′(O′)

h

= v′′(O′
i).

The proof of the item (ii) is the following:

h
∑

i=0

ki
εv′(O′)

h
≥

h
∑

i=0

(

v′′(O′
i)−

εv′(O′)

h

)

= v′′(O′)− 2εv′(O′)

≥
v′(O′)

1 + ε
− 2εv′(O′)

≥ (1− 3ε)v′(O′).

To prove item (iii), note that if
∑h

i=0 ki > h/ε, then we would obtain a contradiction:

v′(O′) ≥ v′′(O′) ≥
h

∑

i=0

v′′(O′
i)

≥
h

∑

i=0

ki
εv′(O′)

h
> v′(O′).

9

Now we show how the algorithm obtains the items. Given a set Si and a value ki, the algorithm

takes items in non-decreasing order of size until the total value v′′ of the items becomes greater than

or equal to ki
εv′(O′)

h
(steps 10–14). All possible sets are added to Q, that is returned by the algorithm

Findε.

The next lemma states that at least one of the sets obtained in this way has value very close to

the optimal v′(O′) and has shelf packing size at most sp(O′).

Lemma 2.5 If O′ is an optimum solution for an instance (S, s, v′, K, d, ∆) then there exists a set

U ∈ Q obtained by the algorithm Find ε such that v′(U) ≥ (1− 3ε)v′(O′) and sp(U) ≤ sp(O′).

Proof.

Let (k0, . . . , kh) be a tuple satisfying Lemma 2.4. For each set Si, the algorithm takes items in

non-decreasing order of size until it obtains a set Ui with total value that is greater than or equal

to ki
εv′(O′)

h
. Since Ui and O′

i are subsets of Si and all items of Si have the same value, we have that

ki
εv′(O′)

h
≤ v′′(Ui) ≤ v′′(O′

i). The algorithm never takes more items than the set O′
i, i.e., |Ui| ≤ |O

′
i| and

the items of Ui are taken in non-decreasing order of size. Therefore, we conclude that sp(U) ≤ sp(O′),

i.e, the number of shelves needed to pack the set U is not greater than the number of shelves needed

to pack the set O′, and the total size of shelves used to pack U is not greater than the total size of

shelves used to pack O′.

From Lemma 2.4 we have

v′(U) ≥ v′′(U) =

h
∑

i=0

v′′(Ui)

≥
h

∑

i=0

ki
εv′(O′)

h

≥ (1− 3ε)v′(O′).

At last, the algorithm generates a polynomial number of sets, at least one with value (1 −

O(ε))v′(O′) that can be packed optimally. In the next section we show how these sets are packed.

2.2 Packing the Items.

In the previous section we have obtained at least one set U of items such that its total value is very

close to v′(O′) and sp(U) ≤ K. Now we present an algorithm to obtain a solution (U ′,U) with U ′ ⊆ U

10

such that v′(U ′) ≥ (1−O(ε))v′(O′). To obtain a shelf packing of U ′, we use the algorithm of Chekuri

and Khanna for the multiple knapsack problem [2], which we denote by ACK . We assume that the

input of algorithm ACK is a set U of items, a value ∆ which is the size of the knapsacks and a value

j which is the number of knapsacks. The algorithm returns a subset U ′ ⊆ U partitioned in subsets

U ′ = U ′
1 ∪ . . . ∪ U ′

j such that for each i : 1 ≤ i ≤ j, s(U ′
i) ≤ ∆. The algorithm for packing the set U

is given in the Figure 3.

Algorithm Pack ε(U)

Input: set of items U each item e ∈ U with size se and value ve.

Output: Packing of U ′ ⊆ U with v′(U ′) ≥ (1− O(ε))v′(O′) and size at most K.

Subroutine: ACK (algorithm to pack the items into bins).

1. let U ′ ← ∅ and V ← 0

2. for j = 1 to n do

3. let P = P1 ∪ . . .∪ Pj be the solution returned by the execution of ACK(U, ∆, j).

4. let S ←
∑j

i=1(s(Pi) + d)

5. if S ≤ K and V ≤ v′(P) then

6. let U ′ ← P and V ← v′(P)

7. return U ′.

Figure 3: Algorithm to obtain a packing with almost optimum value.

Lemma 2.6 If U ′ = U ′
1 ∪ . . .∪U ′

j is the packing generated by the algorithm Pack ε with items U ′ ⊆ U

then v′(U ′) ≥ (1− ε)v′(U) and
∑j

i=1(s(U
′
i) + d) ≤ K.

Proof. Let P∗ = P ∗
1 ∪ . . . ∪ P ∗

q be an optimal shelf packing for an optimal solution O′. From the

proof of Lemma 2.5 it is easy to construct an injection f : U → O′ where s(e) ≤ s(f(e)) for each

item e ∈ U . That is, we can construct a shelf packing for the set U using the partition of P∗. When

the algorithm Pack ε performs the call ACK(U, ∆, q), we obtain a solution P = P1 ∪ . . .∪Pq such that

v′(P) ≥ (1 − ε)v′(U), since ACK is a PTAS, and
∑q

i=1(Pi + d) ≤
∑q

i=1(P
∗
i + d), since an injection

f exists. The algorithm Pack ε returns a solution such that v′(U ′) ≥ v′(P), and therefore the lemma

follows.

11

2.3 The Algorithm

The PTAS for the problem SK is presented in Figure 4. For each value in the interval [0, n⌊n
ε
⌋], the

algorithm Findε generates a polynomial number of sets U , at least one of the sets with value very

close to the value of an optimal solution O′ and has a packing of size at most the size of the optimal.

For all possibilities of U it uses the algorithm Pack ε to pack these sets. The solution returned by the

algorithm is the packing of a set U ′ with maximum value satisfying the condition that its packing

size is not greater than the capacity of the knapsack.

Algorithm ASKε(I)

Input: Instance I = (S, s, v, K, ∆, d).

Output: A solution U ′ of I with v′(U ′) ≥ (1− O(ε))v′(O′).

1. Let Q ←Findε(I).

2. Let U ′ ← ∅ and v′(U ′)← 0.

3. For each U ∈ Q do

4. Q←Pack ε(U)

5. if v′(Q) > v′(U ′) then U ′ ← Q.

6. Return U ′.

Figure 4: Approximation Scheme for the problem SK.

The time complexity of algorithm Find ε is dominated by the time to execute steps 9–14, which

is M = O(n2(log1+ε
n
ε
)O(n

ε
O(1/ε)). Therefore, the number of sets returned by algorithm Findε is also

bounded by M . The time complexity of algorithm Pack ε is O(nTCK(n, ǫ)) where TCK(n, ǫ) is the

time complexity of the PTAS ACK , presented by Chekuri and Khanna [2]. We can conclude with the

following theorem.

Theorem 2.7 The algorithm ASKε is a PTAS for the SK problem.

3 Approximation Scheme for the CCSK Problem

Now we consider the class constrained version of the SK problem, which we denote by CCSK. We

assume the same notation used for the SK problem.

In this case, an instance I for the CCSK problem is a tuple (S, s, v, K, d, ∆, c) where c is a class

function over S.

12

A solution (U,U) of an instance I for the problem CCSK is a set U ⊆ S and a partition U =

{U1, . . . , Uk} of U , where each set Ui is a shelf such that s(Ui) ≤ ∆ and all items in Ui have the same

class. Two subsequent shelves must be separated by a shelf divisor and the total size of the solution

must be at most K. The goal is to obtain a solution of maximum value. We present an approximation

scheme for the problem CCSK given that there is an algorithm that solve another problem we call

Small.

Problem Small: Given an instance I for the CCSK problem, where all items are of the same class

and given a value w, find a solution (U,U) of I with value w and smallest size, if one exists.

We say that an algorithm SSε is ε-relaxed for the problem Small if given an instance I and a

value w, the algorithm generates a solution (U,U) with all items of the same class with (1−O(ε))w ≤

v(U) ≤ w and sp(U) ≤ sp(O), where O is a solution with value w and smallest size. Such solution

(U,U) is called an ε-relaxed solution.

It is not hard to see that we can use the same ideas of the algorithm ASKε to obtain an ε-relaxed

algorithm for the problem Small. Given a set of items of class j and a value w the algorithm

generates a polynomial number of sets such that at least one has value very close to w and its packing

size is smaller than the packing of an optimal set. The algorithm returns the smallest packing such

that its value is at least (1 − O(ε))w and at most w. If none exists, then the minimum size of a

solution is ∞, since in this case no solution with value w exists. The following lemma is valid.

Lemma 3.1 There exists an ε-relaxed algorithm for problem Small.

In Figure 5 we present an approximation scheme for CCSK using a subroutine for the problem

Small.

In steps 1–3 the original instance is reparameterized in such a way the item values are non-negative

integer values bounded by ⌊n/ε⌋. Therefore, the value of any solution is bounded by W = O(n2/ε).

This leads to a polynomial time algorithm using a dynamic programming approach with only O(ε)

loss on the total value of the solution found by the algorithm.

In steps 4–8, the algorithm generates ε-relaxed solutions for each problem Small obtained from

the reparameterized instances of each class and each possible value w. The solutions are stored in

variables Aj,w, for each class j and each possible value w.

In steps 9–15 problem CCSK is solved using dynamic programming. There is a table Tj,w indexed

by classes j and all possible values w. It stores the smaller solution using items of classes {1, . . . , j}

that has value w. The basic idea is to solve the following recurrence:

13

Algorithm Gε(I) where I = (S, c, s, v, K, d, ∆)

Subroutine: SSε (ε-relaxed algorithm for problem Small).

1. % reparameterize the instance by value

2. Let n← |S|, V ← max{ve : e ∈ S}, M ← εV /n and W ← n⌊n/ε⌋.

3. For each item e ∈ S do v′
e ←

⌊

ve

M

⌋

4. % generate an ε-relaxed solution for each class

5. For class j ← 1 to m do

6. for value w ← 1 to W do

7. let Sj be the set of items in S with class j

8. Aj,w ← SSε(Sj , s, v
′, K, d, ∆, w).

9. % Find a solution with classes {1, . . . , j} for each possible value w.

10. For class 1 do

11. for value w ← 1 to W do

12. T1,w ← A1,w.

13. For class j ← 2 to m do

14. for value w ← 1 to W do

15. Tj,w ←(solution in {Tj−1,w, Aj,w, min1≤k<w{Tj−1,k +Aj,w−k}} of

value in [(1− ε)w, w] and minimum size).

16. Let U be the solution Tm,w, 1 ≤ w ≤ V with maximum value w and size s(U) ≤ K.

17. Return U .

Figure 5: Generic algorithm for CCSK using subroutine for problem Small.

Tj,w := min{Tj−1,w, Aj,w, min
1≤k<w

{Tj−1,k + Aj,w−k}}.

Finally, given that there are m classes, in steps 16–17 a solution generated with maximum value

w is returned.

To prove that Gε is an approximation scheme we consider that algorithm SSε, used as subroutine,

is an ε-relaxed algorithm for the problem Small.

Lemma 3.2 If algorithm Gε uses an ε-relaxed algorithm as subroutine and if Oj,w is a solution using

classes {1, . . . , j}, with w := v′(Oj,w) and minimum size, then Tj,w exists and v′(Tj,w) ≥ (1− ε)w and

14

s(Tj,w) ≤ s(Oj,w).

Proof. We can prove this fact by induction on the number of classes. The base case consider only

items with class 1 and can be proved from the fact that subroutine SSε is an ε-relaxed algorithm

(that is, T1,w = A1,w).

Consider a solution Oj,w with value w := v′(Oj,w) using items of classes {1, . . . , j}.

If Oj,w uses only items of class j, then we have a solution Aj,w which is obtained from subroutine

SSε, which by assumption is an ε-relaxed algorithm. Therefore, v′(Aj,w) ≥ (1 − ε)v′(Oj,w) and

s(Aj,w) ≤ s(Oj,w).

If Oj,w uses only items of classes 1, . . . , j − 1, by induction, Tj−1,w exists and v′(Tj−1,w) ≥ (1 −

ε)v′(Oj,w) and s(Tj−1,w) ≤ s(Oj,w).

If Oj,w uses items of class j and items of other classes, denote by O1 and O2 two solutions obtained

partitioning Oj,w such that O1 contains the items of class different than j and O2 contains the items

of class j. Let k := v′(O1). By induction, there are solutions Tj−1,k and Aj,w−k such that

v′(Tj−1,k) + v′(Aj,w−k) ≥ (1− ε)k + (1− ε)(w − k) = (1− ε)v′(Oj,w) and

s(Tj−1,k) + s(Aj,w−k) ≤ s(O1) + s(O2) = s(Oj,w).

Theorem 3.3 If I is an instance for the problem CCSK and SSε is an ε-relaxed polynomial time

algorithm for the problem Small then the algorithm Gε with subroutine SSε is a polynomial time

approximation scheme for CCSK. Moreover, if SSε is also polynomial time in 1/ε, the algorithm Gε

is a fully polynomial time approximation scheme.

Proof. Let O be an optimum solution for instance I. Let Tm,w be a solution found by the algorithm

(remember that it uses rounded items).

v(Tm,w) =
∑

e∈Tm,w

ve ≥
∑

e∈Tm,w

v′
eM = Mv′(Tm,w)

≥ M(1− ε)w ≥ M(1− ε)
∑

e∈O

v′
e

≥ M(1− ε)
∑

e∈O

(
ve

M
− 1) ≥ M(1− ε)(

∑

e∈O

ve

M
− n)

= (1− ε)(
∑

e∈O

ve − nM) = (1− ε)(OPT− εV)

≥ (1− ε)(OPT− εOPT)

≥ (1− 2ε)OPT.

15

Since the solution returned by the algorithm Gε has value v(Tm,w), we have that Gε(I) ≥ (1−2ε)OPT.

Let m and n be the number of classes and the number of items, respectively. Since W = n⌊n/ε⌋,

the time complexity of steps 5–8 of algorithm Gε, is O(mn2/ε · TSS(n, ǫ)), where TSS(n, ǫ) is the time

complexity of subroutine SSε. For a given class j and value w the solution Tj,w, in step 15, can be

computed in time O(w), and the time complexity of steps 13–15 is O(mn4/ε2). The overall time

complexity of the algorithm Gε is O(mn4/ε2 + mn2/ε · TSS(n, ǫ)). Therefore, if SSε has polynomial

time in n (and in 1/ε) then algorithm Gε is a (fully) polynomial time approximation scheme.

From Lemma 3.1 and Theorem 3.3, we can conclude the following theorem.

Theorem 3.4 There exists a PTAS for the CCSK problem.

4 Approximation Results for the SK Problem with δ-shelves

In this section, we consider the SK problem when each shelf must have size in [δ, ∆]. As mentioned

before, this case has applications in the iron and steel industry [5].

We first prove an inapproximability result for the SK problem with δ-shelves. This result also

extends to the CCSK problem with δ-shelves. Furthermore, we present a FPTAS for the case when

the number of different items size in each class is bounded by a constant k.

4.1 Inapproximability of the problem SK with δ-shelves

We present a gap-introducing reduction to prove the inapproximability of this case (see [11]). The

proof is made by reducing the partition problem to the SK problem.

Lemma 4.1 There is a gap-introducing reduction transforming instance I1 of the Partition Problem

(PP) to an instance I2 of the SK problem such that:

• If there exists a partition for instance I1 then OPT (I2) = δ, and

• if there is no partition for instance I1 then OPT (I2) = 0.

Proof. Let I1 = (S, s) be the instance of Partition Problem where each item e ∈ S has size se. We

construct an instance I2 such that OPT (I2) ∈ {0, δ}. Let I2 = (S, s′, v, K, 0, ∆, δ) be an instance for

the SK problem obtained from I1 as follows: For each item e ∈ S we have ve = seα and s′e = seα,

16

where α is an integer constant. Clearly, there exists a partition for instance (S, s) if and only if there

exists a partition of instance (S, s′). Let δ =
P

e∈S s′e
2

, ∆ = δ + (α − 1) and K = ∆. Notice that the

size of a shelf divisor is zero.

First note that any size s′e is a multiple of α and therefore, any solution of I2 is also multiple of α.

Since δ is multiple of α, we have δ < ∆ < δ + α and we conclude that there is no solution to instance

I2 with size greater than δ.

If instance I1 can be partitioned, then the optimal solution of instance I2 has value δ and the

knapsack is filled until δ. If instance I2 can not be partitioned, then the only solution with size

multiple of α that respects the limits δ and ∆ has value 0 and it packs no items.

Theorem 4.2 There is no r-approximation algorithm for the problem SK with δ-shelves when 0 <

δ ≤ ∆, for any r > 0, unless P = NP .

4.2 Approximation Scheme for a special case of the problem CCSK with

δ-shelves

In this section we consider a special case of the problem CCSK with δ-shelves, where the number of

different items sizes for each class is bounded by a constant k. As we show in the next theorem, this

special case is NP-hard.

Theorem 4.3 The problem restricted to instances with at most a constant k of different sizes in each

class is still NP -hard.

Proof. The theorem is valid since the knapsack problem is a particular case when each item is of a

different class and ∆ =∞, δ = 0 and d = 0.

We present a fully polynomial time approximation scheme for this problem. The algorithm is the

same as presented in the section 3. In this case, we only need to present an ε-relaxed algorithm to

solve problem Small, used as subroutine by the algorithm Gε, that is polynomial time both in the

input size and in 1/ε. In fact, we show that an algorithm for the problem Small does not need to

compute solutions for every value w to obtain a fully polynomial time approximation scheme for the

CCSK problem.

17

4.2.1 The k-Pack Problem

Before presenting the algorithm to solve problem Small, consider the problem, denoted by

k-Pack, which consists in packing n one-dimensional items with at most a constant k of different

items sizes into the minimum number of bins of size ∆, each bin filled by at least δ.

The algorithm to solve problem k-Pack uses a dynamic programming strategy combined with the

generation of all configurations of packings of items into one bin. In Figure 6 we present the algorithm

that generates a function B that returns the minimum number of bins to pack an input list, under

the restrictions of the problem k-Pack. For our purposes, we also need that the function B returns

the partition of the input list into bins. For simplicity, we let to the interested reader its conversion

to an algorithm that also returns the partition of the input list into bins.

In step 3, the algorithm generates all possible subsets of items that can be packed into one bin.

Notice that the number of different tuples is O(nk) and the algorithm just need to test each one

of these tuples if they satisfy the properties of the bin, i.e, δ ≤
∑k

i=1 qisi ≤ ∆. The overall time

complexity of these steps is O(nk). In each iteration of the while command, steps 5–10, the algorithm

uses the knowledge of instances that uses i bins to compute instances that uses i+1 bins. Notice that

each set Qi can have at most O(nk) tuples. The time complexity of the entire algorithm is O(n2k+1).

The following theorem is straightforward.

Theorem 4.4 The algorithm Pk generates a function that returns the minimum number of bins to

pack any sublist of the input list L of problem k-Pack. Moreover, the algorithm Pk has a polynomial

time complexity.

4.2.2 Solving Problem Small

The following lemma states the relationship of a solution for problem Small and the problem

k-Pack.

Lemma 4.5 If O = (L, P) is an optimum solution of an instance I = (S, s, v′, K, d, ∆, δ, w) for the

problem Small, L ⊆ S and P = (P1, . . . , Pj) then j ≥ B(L), where B(L) is the minimum number of

bins to pack L into bins of size ∆, filled by at least δ.

Proof. Notice that items packed in the optimum solution O are separated by shelf divisors of size d

and the size of a shelf is at least δ and at most ∆. Items in shelves can be considered as a packing

into bins of size ∆ occupied by at least δ. Since B(L) is the minimum number of such bins to pack

L, the number of shelves of L is at least B(L).

18

Algorithm Pk(L, δ, ∆)

1. Let s1, . . . , sk the k different sizes occurring in list L.

2. Let di be the number of items in L of size si, i = 1, . . . , k.

3. Let Q1 be the set of all tuples (q1, . . . , qk) such that 0 ≤ qi ≤ di, i = 1, . . . , k

and δ ≤
∑k

i=1 qisi ≤ ∆.
4. let i← 1

5. while (d1, . . . , dk) /∈ Qi do

6. Qi+1 ← ∅

7. for each q′ ∈ Q1 and q′′ ∈ Qi do

8. q ← q′ + q′′

9. if q /∈ Qi then Qi+1 ← Qi+1 ∪ {q}

10. i← i + 1

11. let B(q)← j for all q ∈ Qj , 1 ≤ j ≤ i

12. return B

Figure 6: Algorithm to find the minimum number of bins to pack any subset of L.

Corollary 4.6 If O = (L, P) is an optimum solution of an instance I = (S, s, v′, K, d, ∆, δ, w) for

the problem Small, then sp(O) ≥ s(L) + B(L)d.

In Figure 7, we present an algorithm for solving a relaxed version of the problem Small, which

is sufficient to our purposes. The algorithm first considers all possible configurations of solutions

for the problem Small, without considering the value of each item. This step is performed by a

subroutine to solve problem k-Pack. Instead of finding each possible attribution of values for each

configuration, the algorithm only generates valid configurations with maximum value. For a given

value w, the algorithm only returns a solution if the value is a maximum value for some configuration.

Notice that we return the smallest packing that has the given value.

Theorem 4.7 If I is an instance for the CCSK problem with at most k different items sizes in each

class and algorithm Gε is executed with subroutine k-SS then Gε(I) ≥ (1− ε)OPT(I).

Proof. Consider an optimum solution O to the instance I with the function value v′. Let Qc be the

set of items of class c used in this optimal solution. This set of items corresponds to a configuration

qc that is packed optimally by Corollary 4.6. The algorithm k-SS returns items of maximum value

19

Algorithm k-SS(S, s, v′, K, d, ∆, δ, w)

Subroutine: Pk (Subroutine to solve problem k-Pack).

1. Let B ← Pk(S, δ, ∆).

2. Let s1, . . . , sk the k different sizes occurring in list S.

3. Let di be the number of items in S of size si, i = 1, . . . , k.

4. Let Q be the set of all tuples (q1, . . . , qk) such that 0 ≤ qi ≤ di, i = 1, . . . , k.

5. For each q = (q1, . . . , qk) ∈ Q do

6. let P (q) the packing obtained using function B(q) placing for each size

sj , qj items of L with size sj and greatest values.
7. Let Qw ← {q ∈ Q : w = v(P (q))}.

8. If Qw 6= ∅ then

9. return q ∈ Qw such that s(q) is minimum

10. else

11. return ∅.

Figure 7: An ε-relaxed algorithm for δ-shelves.

corresponding to this configuration. If the algorithm k-SS does not return this optimal solution to

Gε, it finds another configuration with the same value but with smaller size. It follows from Theorem

3.3 that the optimal solution found by algorithm Gε with the subroutine k-SS is a FPTAS to CCSK.

5 Concluding Remarks

In this paper we have presented approximation schemes for shelf knapsack problems. These prob-

lems have many applications, and to the best of our knowledge, this is the first paper to present

approximation results for them.

6 Acknowledgements

We would like to thank the anonymous referees that present helpful suggestions which improved the

presentation of this paper.

20

References

[1] A. Caprara, H. Kellerer, U. Pferschy and D. Pisinger. Approximation algorithms for knapsack

problems with cardinality constraints. European Journal of Operational Research, 123:333–345,

2000.

[2] C. Chekuri and S. Khanna. A ptas for the multiple knapsack problem. In Proceedings of the

Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 213–222, 2000.

[3] F. P. Marques and M. Arenales. The constrained compartmentalized knapsack problem. To appear

in Computer & Operations Research.

[4] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ǫ in linear time.

Combinatorica, 1(4):349–355, 1981.

[5] J. S. Ferreira, M. A. Neves, and P. Fonseca e Castro. A two-phase roll cutting problem. European

Journal of Operational Research, 44:185–196, 1990.

[6] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1 knapsack

problem: worst-case and probabilistic analysis. European Journal of Operational Research, 15:100–

109, 1984.

[7] R. Hoto, N. Maculan, M. Arenales and F. P. Marques. Um novo procedimento para o cálculo de

mochilas compartimentadas. Investigação Operacional, 22:213–234.

[8] R. Hoto, M. Arenales and N. Maculan. The one dimensional compartmentalized cutting stock

problem: a case study. To appear in European Journal of Operational Research.

[9] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset

problems. Journal of the Association for Computing Machinery, 22:463–468, 1975.

[10] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained packing

problems. Journal of Scheduling, 4(6):313–338, 2001.

[11] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[12] E. C. Xavier and F. K. Miyazawa. A one-dimensional bin packing problem with shelf divi-

sions. Second Brazilian Symposium on Graphs, Algorithms and Combinatorics. Electronic Notes

in Discrete Mathematics, 19:329–335, 2005.

21

