
A Note on Dual Approximation Algorithms for Class

Constrained Bin Packing Problems∗

E. C. Xavier† F. K. Miyazawa†

August 20, 2008

Abstract

In this paper we present a dual approximation scheme for the class constrained shelf bin packing

problem. In this problem, we are given bins of capacity1, andn items ofQ different classes, each

item e with classce and sizese. The problem is to pack the items into bins, such that two items of

different classes packed in a same bin must be in different shelves. Itemsin a same shelf are packed

consecutively. Moreover, items in consecutive shelves must be separated by shelf divisors of sized.

In a shelf bin packing problem, we have to obtain a shelf packing such that the total size of items and

shelf divisors in any bin is at most 1. A dual approximation scheme must obtaina shelf packing of all

items intoN bins, such that, the total size of all items and shelf divisors packed in any binis at most

1 + ε for a givenε > 0 andN is the number of bins used in an optimum shelf bin packing problem.

Shelf divisors are used to avoid contact between items of different classes and can hold a set of items

until a maximum given weight. We also present a dual approximation scheme for the class constrained

bin packing problem. In this problem, there is no use of shelf divisors, buteach bin uses at mostC

different classes.

Key Words: Bin Packing, Approximation Algorithms.MSC number: 68W25

1 Introduction

In this paper we study class constrained bin packing problems, that are generalizations of the well known

NP-hard bin packing problem. We first consider the class constrained shelf bin packing (CCSBP) prob-

lem. In this problem we are given a tupleI = (L, s, c,Q, d, ∆), whereL = (1, . . . , n) is a list ofn items,

each iteme ∈ L with size0 < se ≤ 1 and classce ∈ {1, . . . , Q}, d is the size of a shelf division,∆ is the

maximum size of a shelf and the bins size is1.
1This research was partially supported by FAPESP (proc. 2008/01490-3), FAEPEX (proc. 31608) and CNPQ (proc.

478470/06-1, 472504/07-0, 306624/07-9).
2{ecx,fkm}@ic.unicamp.br — Institute of Computing — University of Campinas — UNICAMP, P.O. Box 6176,

13083-970, Campinas, SP, Brazil.

1



Given a list or set of itemsS we denote bys(S) the total size of items inS, i.e. s(S) =
∑

e∈S se.

A shelf packing P of an instanceI for theCCSBP problem is a packing of the items in a set of bins

P = {P1, . . . , Pk}, where the items packed in a binPi ∈ P are partitioned into shelves{Si
1, . . . , S

i
qi
} such

that for each shelfSi
j we haves(Si

j) ≤ ∆, all items inSi
j are of the same class and

∑qi

j=1(s(S
i
j) + d) ≤ 1.

The problem is to find a shelf packing that uses the minimum number of bins. The problem applies when

some items cannot be stored in a same shelf (like foods and chemical products) and therefore, they must

be separated by shelf divisors.

We also consider the class constrained bin packing problem,which we denote byCCBP. In this

problem we are given a tupleI = (L, s, c, C,Q) whereL = (1, . . . , n) is a list of n items, each item

e ∈ L with size0 < se ≤ 1 and classce ∈ {1, . . . , Q}, and a set of bins, each one with capacity1 and

C compartments. A packing for instanceI is a set of binsP = {P1, . . . , Pk} such that the number of

different classes of items packed in each binPi is at mostC and the total items size in each bin is at most

1. The problem is to find a packing of instanceI that uses the minimum number of bins.

In both problems we assume thatQ, the number of different classes in the input instance, is bounded

by a constant. The bin packing problem is a particular case ofCCBP andCCSBP when there is only one

class,d = 0 and∆ = 1. In Figure 1 we present an example of the two types of packingsconsidered.

Given an algorithmA for theCCBP or CCSBP problem and an instanceI, we denote byA(I) the

number of bins used by the algorithm to pack this instance. Wedenote by OPT(I) the number of bins

used by an optimum solution to pack the instanceI. In both notations the problem considered will be

clear from the context. Given an integert, we denote by[t] the set{1, . . . , t}.

In [5], Hochbaum and Shmoys presented the concept of dual approximation algorithms where one has

to find an infeasible optimal solution, and the quality of thealgorithm is measured by how infeasible is

the generated solution. There are some cases where the restrictions of the problem are flexible in practice

and the concept of dual approximation algorithms can be applied.

A dual polynomial time approximation scheme (dual PTAS) fortheCCSBP problem is an algorithm

that, for all instancesI, produces solutions that uses at most OPT(I) bins, each bin with size at most

(1 + O(ε)) and each shelf of the bin with size at most(1 + O(ε))∆. A dual PTAS for theCCBP problem

is an algorithm that, for all instancesI, it produces solutions that uses at most OPT(I) bins, each bin with

size at most(1 + O(ε)). In both casesε is a fixed parameter given to the algorithm.

Woeginger [16] presented general properties in order to guarantee the existence of approximation

schemes by dynamic programming algorithms for some problems.

Packing problems with class constraints have many applications in multimedia storage systems, re-

source allocation [15, 11, 4, 8, 14, 17, 13, 3, 19] and in operations research like manufacturing systems

[7, 10, 1]. The CCSBP problem appears in the iron and steel industry [2, 9, 6, 20, 18].

The CCSBP problem admits an asymptotic polynomial time approximation scheme [20]. A knapsack

version of this problem also admits a PTAS [18]. This paper isthe first one to present a dual PTAS for the

CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice that a dual approximation scheme for

2



���
���
���

���
���
������
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��

��
��
����
��
��
����
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Packing for CCSBP Packing for CCBP

2

1

3

1

3

Items Divisor of size 1

Empty bin of size 8

Figure 1: In this example we have three classes of items represented by the different shapes. The first

packing is a solution for the CCSBP problem where we consider that ∆ = 3. The second packing is a

solution for the CCBP problem where we consider thatC = 2. Notice that withC = 2 we can not pack

the item of size 1 of the third class in the first bin, although there is room for it.

theCCBP problem was first presented by Shachnai and Tamir [12] also considering that the number of

different classes in the input instance is bounded by a constant. The complexity time of their algorithm is

O(n16Q/ε2

). In their paper they presented a dual PTAS using techniques that group small items together.

They also said: “We cannot adopt the technique commonly usedfor packing, where we first consider

large items and then add the small items”. In this paper we show how to adopt the traditional technique

and obtain a dual PTAS with an easier analysis, also considering thatQ is a fixed constant. Although

the easier analysis, the complexity time of our algorithm isO(TnO(2QQ(log1+ε 1/ε)1/ε)), whereT is the

complexity time to solve a linear program (see Section 3).

In section 2 we present a dual PTAS for the CCSBP problem using traditional techniques, and linear

programming to pack small items. In section 3 we use these ideas to obtain a dual PTAS for the CCBP

problem, leading to an algorithm with an easier analysis than the one presented by Shachnai and Tamir

[12].

3



2 A dual PTAS for the CCSBP Problem

In this section we present a dual PTAS for the CCSBP problem.

Let I = (L, s, c,Q, d, ∆) be an instance for theCCSBP problem. We first present a dual PTAS for

the case where the maximum size of a shelf plus the shelf divisor satisfy∆ + d ≤ ε.

Hochbaum and Shmoys [5] presented a dual PTAS, which we denote byAHS, for the classical bin

packing problem.

Consider an algorithm that constructs a list of shelvesS in a straightforward manner: For each class,

it packs the items of this class using the algorithmAHS considering shelves as bins, each one with size∆.

Since the algorithmAHS is a dual PTAS the number of generated shelves by the algorithm is at most the

number of shelves used in any optimal solution, which we denote by OPT(I)s. Moreover each generated

shelf has size at most(1 + ε)∆.

Given the list of shelvesS consider another algorithm that packs the shelves in the following manner:

It packs shelves (including the shelf divisors) in a bin until for the first time the total size of packed shelves

becomes greater than 1. Then it proceeds with a new bin. It is easy to prove the following result for this

algorithm.

Theorem 2.1 The presented algorithm is a dual PTAS for the CCSBP problem restricted to instances

where ∆ + d ≤ ε.

Proof. Notice that the algorithm packs all items in at most OPT(I)s shelves and each shelf has its size

increased by a factor of at mostε. The total size of items and shelf divisors that the algorithm has to pack

into bins is

s(L) + dOPT(I)s ≤ OPT(I).

Since the algorithm generated bins with size greater than 1,the algorithm packs all shelves in at most

OPT(I) bins. Since each shelf has size at mostε(1 + ε) ≤ 2ε, each generated bin has size at most

(1 + 2ε).

We now study the case where∆ + d ≥ ε.

Notice that the maximum number of shelves that can be packed in a bin when the shelves are com-

pletely filled up to∆ exactly, is at most
⌊

1
d+∆

⌋

, which is at most1
ε
. Another shelf, not completely filled,

can also be packed in the bin. This way, the maximum total sizeof items that can be packed in a bin is at

most∆(1/ε + 1). Then if there is any bin with more than2
ε
+ 2 shelves of a same class, it has at least two

shelves of this class with total items size at most∆. In this case, these two shelves can be combined into

only one shelf. Without loss of generality we assume that each bin in a solution for theCCSBP problem,

contains at most2
ε

+ 2 shelves of a same class.

Throughout the remaining of this section, we assume thatse for eache ∈ L, d, ∆ and the size of the

bins are rescaled, such that∆ = 1. We denote byB the new size of the bins.

Now we can apply the standard technique of rounding big itemswith an enumeration of packings for

them. Then we pack the small items using linear programming to get the PTAS. LetLb be the list of items

4



with size greater than or equal toε2 (big items) and letLs be the remaining items inL (small items). We

round down each item inLb as follows: each iteme ∈ Lb with size in the interval[ε2(1+ε2)i, ε2(1+ε2)i+1)

has its size rounded down toε2(1+ ε2)i, for i ≥ 0. The rounded items have at mostM = ⌈log(1+ε2) 1/ε2⌉

different sizes. The list of rounded items is denoted byLr.

We can generate a set of packings for the rounded big items in polynomial time as the next lemma

guarantees. In the lemma we use the fact that the number of subsets containing at mostp items from a set

of n items is
(

n+p
p

)

.

Lemma 2.2 Let I ′ = (Lr, s, c, Q, d, ∆ = 1, B) be an instance of the CCSBP problem considering the list

of rounded big items where the number of distinct items sizes in Lr is at most a constant M , the number

of different classes is bounded by a constant Q, and each item e ∈ Lr has size se ≥ ε2. Then there exists

a polynomial time algorithm that generates all possible shelf packings of Lr, with at most 2
ε

+ 2 shelves

of a same class in each bin. Moreover, each shelf in each generated packing has a sign that indicates if

small items can or cannot be packed in it.

Proof. The maximum number of big items that can be packed in a shelf is bounded byp = 1/ε2. Given a

class, the number of different shelves configurations is bounded byr′ =
(

p+M
p

)

, including the empty shelf

that can be used latter to pack only small items. For each shelf we have the possibility of packing or not

small items, then the number of shelves configurations is bounded by2r′. The number of different shelves

configurations can then be bounded byr = Q2r′. Since the number of shelves packed in a bin is bounded

by q = Q(2
ε

+ 2), the number of different bins configurations is bounded byu =
(

q+r
q

)

. Notice thatu is a

(large) constant since all the valuesp, q, r andu depend only onε, Q andM which are constants.

Therefore, the number of all feasible packings is bounded by
(

n+u
n

)

, which is bounded by(n + u)u,

which in turn is polynomial inn whereu = O((Q/ε)(Q/ε)1/ε
).

We will denote byALL the algorithm that generates all packings of the listLr according to Lemma

2.2. The algorithmALL generates a set, which we denote byP, of all possible packings of the rounded

big items.

Consider an optimal packingO for the original instanceI. Remove the small items from the packing

O and round down the big items according to the rounding procedure. Notice that the obtained packing

denoted byO′ belongs to the setP.

For each packing inP, it is then generated new packings where the small items are packed. Denote by

Small the algorithm that packs small items in each of the packings in P.

Let P = {P1, . . . , Pk} ∈ P be a shelf packing of a list of itemsLr and suppose we have to pack a list

Ls of small items intoP. The packing of the small items is obtained from a solution ofa linear program.

Let Ni ⊆ {1, . . . , Q} be the set of possible classes that are packed in the binPi and letSic
1 , . . . , Sic

nic
be the

shelves of classc ∈ Ni in the binPi of the packingP. For each shelfSic
j , define a non-negative variable

xic
j . The variablexic

j indicates the total size of small items of classc that is to be packed in the shelfSic
j .

Note that here we only consider the shelves that can be used topack small items. Denote bys(Sic
j ) the

total size of big items already packed in the shelfSic
j . Consider the following linear program denoted by

LPS1:

5



max
k

∑

i=1

∑

c∈Ni

nic
∑

j=1

xic
j

s(Sic
j ) + xic

j ≤ ∆ ∀ i ∈ [k], c ∈ Ni, j ∈ [nic], (1)
∑

c∈Ni

nic
∑

j=1

(s(Sic
j ) + xic

j + d) ≤ B ∀ i ∈ [k], (2)

k
∑

i=1

nic
∑

j=1

xic
j ≤ s(Lc

s) ∀ c ∈ [Q], (3)

xic
j ≥ 0 ∀ i ∈ [k], c ∈ [Ni], j ∈ [nic] (4)

(LPS1)

whereLc
s is the set of small items of classc in Ls.

The constraint (1) guarantees that the amount of space used in each shelf is at most1 and constraint

(2) guarantees that the amount of space used in each bin is at mostB. The constraint (3) guarantees that

variablesxic
j are not greater than the total size of small items. The numberof variables in LPS1 is bounded

by O(nQ2/ε) and the number of constraints is bounded byO(nQ2/ε + n + Q).

Notice that sinceO′ ∈ P at least this packing has a solution in LPS1 where all small items can be

packed.

Now we have a description of the algorithmSmall: Given a packingP ∈ P, and a listLs of small

items, the algorithm first solves the linear program LPS1, and then packs small items in the following

way: For each variablexic
j the algorithm packs, while possible, small items of classc into shelfSic

j of the

bin Pi, so that the total size of the packed small items is at mostxic
j + ε2.

A complete description of the dual-PTAS algorithm that generates the complete packing is given in

Figure 2. The algorithm returns a packing that uses the minimum number of bins and that packs all items

in bins.

SinceQ andε are constants, the size ofP is bounded by a polynomial inn. Since the complexity

time to solve LPS1 is polynomial, the presented algorithm has a polynomial time complexity. Now we

conclude with the following theorem.

Theorem 2.3 The presented algorithm is a dual PTAS for the CCSBP problem when ∆ + d ≥ ε.

Proof. Let O = {P ∗

1 , . . . , P ∗

k } be an optimal packing for an instanceI of theCCSBP problem (notice

that OPT(I) = k). Round down the big items according to the rounding we have presented and remove

the small items fromO obtaining another packingO′. ClearlyO′ ∈ P and has an indication of the shelves

where small items were packed.

Notice that there is enough room to pack all small items inO′. The algorithmSmall packs all small

items inO′ in such a way that each shelf has its size increased by at mostε2.

When the algorithm considers the big items with their original sizes, the size in each shelf ofO′

increases by at mostε2 again.

Since the maximum number of shelves in a bin is(2
ε
+ 2)Q, then the total size of each bin is increased

to at mostB + (2
ε

+ 2)Q2ε2 ≤ (1 + (2
ε

+ 2)Q2ε2)B

6



ALGORITHM Dual-Pack(I)

Input: InstanceI = (L, s, c, Q, d,∆, B) where the maximum capacity of a shelf is

∆ = 1;

Output: A shelf packingP.

Subroutines: AlgorithmsALL andSmall.

1. PartitionL into a listLb containing items with sizeε2 (big items) andLs with

the remaining items (small items).
2. For each iteme in Lb with size in[ε2(1 + ε2)i, ε2(1 + ε2)i+1), round down its

size toε2(1 + ε2)i.
3. Let Lr be the list of the rounded big items.

4. Let P be the set of all possible packings obtained with the algorithm ALL over

the instanceI = (Lr, s, c, Q, d,∆, B).
5. For each packingP ∈ P do

6. Find a solutionx∗ for LPS1 considering the packingP.

7. Pack the items inLs intoP using algorithmSmall.

8. Round up the big items inP to their original sizes.

9. Return the packingP ∈ P with the minimum number of bins and where all

items are packed.

Figure 2: The dual-PTAS algorithm.

3 A dual PTAS for the CCBP Problem

In this section we present a dual PTAS for theCCBP problem using the same ideas of the previous section

leading to an algorithm with an easier analysis than the one presented by Shachnai and Tamir [12].

Let Lb be the set of items inL with size greater than or equal toε (big items) and letLs be the

remaining items inL (small items). We round down each item inLb as follows: each iteme ∈ Lb with

size in the interval[ε(1 + ε)i, ε(1 + ε)i+1) has its size rounded down toε(1 + ε)i, for i ≥ 0. The rounded

items have at mostM = ⌈log(1+ε) 1/ε⌉ different sizes. The list of rounded items is denoted byLr.

It is not hard to prove the following lemma that is similar to Lemma 2.2.

Lemma 3.1 Let I = (Lr, s, c, C,Q) be an instance of the CCBP problem after the rounding step, where

the number of distinct items sizes in Lr is at most a constant M , the number of different classes is bounded

by a constant Q, and each item e ∈ Lr has size se ≥ ε. Then there exists a polynomial time algorithm that

generates all possible packings of Lr. Moreover, each bin of each generated packing has an indication of

the possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is bounded by p = 1/ε. The number of

distinct types of big items is bounded byMQ. The number of different configurations of bins is bounded

by r′ =
(

p+MQ+1
p

)

, including the empty bin. If we also consider additional classes to pack small items in

each configuration, the number of different configurations is bounded byr = r′2Q, which is a constant.

Notice that we only consider configurations that satisfy theclass constraints.

7



The number of all feasible packings is bounded by
(

n+r
n

)

, which is bounded by(n+ r)r, which in turn

is polynomial inn wherer = O(2QQ(log1+ε 1/ε)1/ε).

The algorithm generates a set, which we denote byP, of all possible packings of the rounded big

items. For each one of these packings the algorithm packs thesmall items in the following way: Let

P = {P1, . . . , Pk} be a packing of the list of itemsLr and suppose we have to pack a listLs of small

items, with size at mostε, intoP. The packing of the small items is obtained from a solution ofa linear

program. LetNi ⊆ {1, . . . , Q} be the set of possible classes that may be used to pack the small items in

the binPi of the packingP. For each classc ∈ Ni, define a non-negative variablexi
c. The variablexi

c

indicates the total size of small items of classc to be packed in the binPi. Denote bys(Pi) the total size

of big items already packed in the binPi. Consider the following linear program denoted by LPS2:

max
k

∑

i=1

∑

c∈Ni

xi
c

s(Pi) +
∑

c∈Ni

xi
c ≤ 1 ∀ i ∈ [k] (1)

k
∑

i=1

xi
c ≤ s(Lc

s) ∀ c ∈ [Q], (2)

xi
c ≥ 0 ∀ i ∈ [k], c ∈ [Ni], (3)

(LPS2)

whereLc
s is the set of small items of classc in Ls.

The constraint (1) guarantees that the items packed in each bin satisfy its capacities and constraint (2)

guarantees that the total use of variablesxi
c is not greater than the total size of small items for each class

c. In this linear program, the number of variables is bounded by nQ and the number of constraints is

bounded byn + Q.

Given a packingP, and a listLs of small items, the algorithm first solves the linear programLPS2,

and then packs small items in the following way: For each variablexi
c, it packs, while possible, the small

items of classc into the binPi, so that the total size of the packed small items is at mostxi
c + ε.

We then consider the original size of the big items in each of the generated packings. In this case, the

size of each bin increases by at most a factor ofε.

The algorithm returns a packing that uses the minimum numberof bins and that packs all items

in bins of size at most(1 + (C + 1)ε). The number of packings in the setP can be bounded by

T1 = O(n2QQ(log1+ε 1/ε)1/ε
). Let T2 be the worst complexity time to solve a linear program LPS2. The

complexity time of the entire algorithm can be bounded byO(T1T2), which is polynomial sinceQ andε

are constants and the complexity timeT2 is polynomial.

We conclude with the following theorem.

Theorem 3.2 The presented algorithm is a dual PTAS for the CCBP problem.

Proof. LetO = {P ∗

1 , . . . , P ∗

k } be an optimal packing for an instanceI of theCCBP problem. Round down

the big items according to the rounding we have presented andremove the small items ofO obtaining

8



another packingO′. ClearlyO′ ∈ P and has an indication of the classes of small items that were packed

on it. There is enough room to pack all small items inO′. So the variablesx sums to the total size of

small items. During the packing of the small items we increase the size of each bin by at mostε for each

class in the bin. When the algorithm packs the big items with their original size, the size of each bin inO′

increases by at mostε again. So the total size of each bin is increased to at most(1 + (C + 1)ε).

References

[1] M. Dawande, J. Kalagnanam, and J. Sethuranam. Variable sized bin packing with color constraints.

In Proceedings of the 1th Brazilian Symposium on Graph Algorithms and Combinatorics, volume 7

of Electronic Notes in Discrete Mathematics, 2001.

[2] J. S. Ferreira, M. A. Neves, and P. Fonseca e Castro. A two-phase roll cutting problem.European J.

Operational Research, 44:185–196, 1990.

[3] S. Ghandeharizadeh and R. R. Muntz. Design and implementation of scalable continous media

servers.Parallel Computing Journal, 24(1):91–122, 1998.

[4] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A.Zhu. Approximation algorithms for data

placement on parallel disks. InProceedings of SODA, pages 223–232, 2000.

[5] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedulling problems:

practical and theoretical results.journal of the ACM, 34(1):144–162, 1987.

[6] R. Hoto, M. Arenales, and N. Maculan. The one dimensional compartmentalized cutting stock

problem: a case study.European Journal of Operational Research, 183(3):1183–1195, 2007.

[7] J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S. Lee. The surplus inventory matching

problem in the process industry.Operations Research, 48(4):505–516, 2000.

[8] S. R. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel disks.J.

Algorithms, 60(2):144–167, 2006.

[9] F. P. Marques and M. Arenales. The constrained compartmentalized knapsack problem.Computer

& Operations Research, 34(7):2109–2129, 2007.

[10] M. Peeters and Z. Degraeve. The co-printing problem: A packing problem with a color constraint.

Operations Research, 52(4):623–638, 2004.

[11] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack problem.

Algorithmica, 29:442–467, 2001.

9



[12] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained packing

problems.Journal of Scheduling, 4(6):313–338, 2001.

[13] H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment and parallelism con-

straints.Algorithmica, 32(4):651–678, 2002.

[14] H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector packing

with application to data placement. InProceedings of 6th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems, RANDOM-APPROX, volume 2764 ofLecture

Notes in Computer Science, pages 165–177, 2003.

[15] H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing.Theoretical Computer

Science, 321(1):103–123, 2004.

[16] G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of a fully

polynomial time approximation scheme (fptas)?INFORMS Journal on Computing, 12(1):57–74,

2000.

[17] J. L. Wolf, P. S. Wu, and H. Shachnai. Disk load balancingfor video-on-demand-systems.ACM

Multimedia Systems Journal, 5:358–370, 1997.

[18] E. C. Xavier and F. K. Miyazawa. Approximation schemes for knapsack problems with shelf divi-

sions.Theoretical Computer Science, 352(1-3):71–84, 2006.

[19] E. C. Xavier and Flávio Keidi Miyazawa. The class constrained bin packing problem with applica-

tions to video-on-demand.Theoretical Computer Science, 393(1-3):240–259, 2008.

[20] E. C. Xavier and Flávio Keidi Miyazawa. A one-dimensional bin packing problem with shelf divi-

sions.Discrete Applied Mathematics, 156(7):1083–1096, 2008.

10


