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Abstract

In this paper we present a dual approximation scheme for the classainadtshelf bin packing
problem. In this problem, we are given bins of capadityandn items of ) different classes, each
item e with classc. and sizes.. The problem is to pack the items into bins, such that two items of
different classes packed in a same bin must be in different shelves. ihearsame shelf are packed
consecutively. Moreover, items in consecutive shelves must be segdmashelf divisors of sizd.

In a shelf bin packing problem, we have to obtain a shelf packing such thadtdl size of items and
shelf divisors in any bin is at most 1. A dual approximation scheme must abtielf packing of all
items intoV bins, such that, the total size of all items and shelf divisors packed in ang atrmost

1 + ¢ for a givene > 0 and N is the number of bins used in an optimum shelf bin packing problem.
Shelf divisors are used to avoid contact between items of differentedasgl can hold a set of items
until a maximum given weight. We also present a dual approximation schernieefolass constrained
bin packing problem. In this problem, there is no use of shelf divisorseacit bin uses at moét
different classes.
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1 Introduction

In this paper we study class constrained bin packing prablémat are generalizations of the well known
NP-hard bin packing problem. We first consider the classtcaingd shelf bin packing{CSBP) prob-
lem. In this problem we are given a tuple= (L, s, ¢, Q,d, A), whereL = (1,...,n) is alist ofn items,
each iteme € L with size0 < s, < 1 and class. € {1,...,Q}, dis the size of a shelf division) is the

maximum size of a shelf and the bins sizé.is
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Given a list or set of items we denote by(S) the total size of items iy, i.e. s(S) = > g Se.

A shelf packing P of an instancd for the CCSBP problem is a packing of the items in a set of bins
P ={P.,..., P}, where the items packed in a bit € P are partitioned into shelvgss;, .. ., S; } such
that for each shelf? we haves(S}) < A, all items inS; are of the same class apg’_, (s(S}) +d) < 1.
The problem is to find a shelf packing that uses the minimumbmirrof bins. The problem applies when
some items cannot be stored in a same shelf (like foods andichleproducts) and therefore, they must
be separated by shelf divisors.

We also consider the class constrained bin packing probmch we denote byCCBP. In this
problem we are given a tuple = (L, s,c,C, Q) whereL = (1,...,n) is a list of n items, each item
e € L with size0 < s, < 1 and class;, € {1,...,Q}, and a set of bins, each one with capaditgnd
C' compartments. A packing for instanéds a set of binsP = {P,, ..., P.} such that the number of
different classes of items packed in each Bins at mostC' and the total items size in each bin is at most
1. The problem is to find a packing of instantéhat uses the minimum number of bins.

In both problems we assume tl@t the number of different classes in the input instance, is\ded
by a constant. The bin packing problem is a particular cas& @ P andCCSBP when there is only one
class,d = 0 andA = 1. In Figure 1 we present an example of the two types of packingsidered.

Given an algorithmA for the CCBP or CCSBP problem and an instande we denote by4(7) the
number of bins used by the algorithm to pack this instance.défete by OPTI) the number of bins
used by an optimum solution to pack the instaricdn both notations the problem considered will be
clear from the context. Given an integefve denote byt| the set{1, ..., ¢}.

In [5], Hochbaum and Shmoys presented the concept of duabgippation algorithms where one has
to find an infeasible optimal solution, and the quality of #igorithm is measured by how infeasible is
the generated solution. There are some cases where theti@ssrof the problem are flexible in practice
and the concept of dual approximation algorithms can beegbpl

A dual polynomial time approximation scheme (dual PTAS)tferCCSBP problem is an algorithm
that, for all instanced, produces solutions that uses at most QB ins, each bin with size at most
(1+ O(e)) and each shelf of the bin with size at most- O(¢))A. A dual PTAS for theCCBP problem
is an algorithm that, for all instancédsit produces solutions that uses at most @B bins, each bin with
size at most1 + O(¢)). In both cases is a fixed parameter given to the algorithm.

Woeginger [16] presented general properties in order toagiee the existence of approximation
schemes by dynamic programming algorithms for some prahlem

Packing problems with class constraints have many apjgitain multimedia storage systems, re-
source allocation [15, 11, 4, 8, 14, 17, 13, 3, 19] and in apmra research like manufacturing systems
[7, 10, 1]. The CCSBP problem appears in the iron and steel indi&t9, 6, 20, 18].

The CCSBP problem admits an asymptotic polynomial time appration scheme [20]. A knapsack
version of this problem also admits a PTAS [18]. This pap#hnésfirst one to present a dual PTAS for the
CCSBP problem.

We also present a dual PTAS for the CCBP problem. Notice that bagysoximation scheme for
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Figure 1: In this example we have three classes of items septed by the different shapes. The first
packing is a solution for the CCSBP problem where we considérdha 3. The second packing is a
solution for the CCBP problem where we consider that 2. Notice that withC' = 2 we can not pack
the item of size 1 of the third class in the first bin, althoulgére is room for it.

the CCBP problem was first presented by Shachnai and Tamir [12] alasidering that the number of
different classes in the input instance is bounded by a aahsthe complexity time of their algorithm is
O(an/g2)_ In their paper they presented a dual PTAS using technidueggtoup small items together.
They also said: “We cannot adopt the technique commonly fmedacking, where we first consider
large items and then add the small items”. In this paper wevstaw to adopt the traditional technique
and obtain a dual PTAS with an easier analysis, also consglénat() is a fixed constant. Although
the easier analysis, the complexity time of our algorithnDi{g'nC2°Qles11- 1/2)/)) whereT is the
complexity time to solve a linear program (see Section 3).

In section 2 we present a dual PTAS for the CCSBP problem usidgitnaal techniques, and linear
programming to pack small items. In section 3 we use thesesitteobtain a dual PTAS for the CCBP
problem, leading to an algorithm with an easier analysia tha one presented by Shachnai and Tamir
[12].



2 A dual PTASfor the CCSBP Problem

In this section we present a dual PTAS for the CCSBP problem.

Let ] = (L,s,c,Q,d,A) be an instance for the CSBP problem. We first present a dual PTAS for
the case where the maximum size of a shelf plus the shelfadisitisfyA + d < e.

Hochbaum and Shmoys [5] presented a dual PTAS, which we édiyatl ; 5, for the classical bin
packing problem.

Consider an algorithm that constructs a list of shelyes a straightforward manner: For each class,
it packs the items of this class using the algoritdms considering shelves as bins, each one with aize
Since the algorithrd ;¢ is a dual PTAS the number of generated shelves by the algor#tat most the
number of shelves used in any optimal solution, which we tkehp OPT/),. Moreover each generated
shelf has size at most + ¢)A.

Given the list of shelves consider another algorithm that packs the shelves in thewdoig manner:

It packs shelves (including the shelf divisors) in a bin Lioti the first time the total size of packed shelves
becomes greater than 1. Then it proceeds with a new bin. #sg ® prove the following result for this
algorithm.

Theorem 2.1 The presented algorithm is a dual PTAS for the CCSBP problem restricted to instances
where A +d < e.

Proof. Notice that the algorithm packs all items in at most QPT shelves and each shelf has its size
increased by a factor of at mastThe total size of items and shelf divisors that the algamitias to pack
into bins is

s(L) + dOPT(I), < OPT(I).

Since the algorithm generated bins with size greater thahelalgorithm packs all shelves in at most
OPT(I) bins. Since each shelf has size at mgst+ ¢) < 2¢, each generated bin has size at most
(1+2e). O

We now study the case whefe+ d > ¢.

Notice that the maximum number of shelves that can be packaddin when the shelves are com-
pletely filled up toA exactly, is at mostdﬁj , Which is at most%. Another shelf, not completely filled,
can also be packed in the bin. This way, the maximum totalafizems that can be packed in a bin is at
mostA(1/e + 1). Then if there is any bin with more than- 2 shelves of a same class, it has at least two
shelves of this class with total items size at mastin this case, these two shelves can be combined into
only one shelf. Without loss of generality we assume thal éatin a solution for th€ CSBP problem,
contains at mosg + 2 shelves of a same class.

Throughout the remaining of this section, we assumedh&ir eache € L, d, A and the size of the
bins are rescaled, such that= 1. We denote by3 the new size of the bins.

Now we can apply the standard technique of rounding big iteftisan enumeration of packings for
them. Then we pack the small items using linear programnumggt the PTAS. LeL, be the list of items
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with size greater than or equal 46 (big items) and lef, be the remaining items ih (small items). We
round down each item if, as follows: each item € L, with size in the intervale?(1+¢2)", e2(1+¢2)")
has its size rounded down #&(1 + )", for i > 0. The rounded items have at magt= [log, ) 1/¢”]
different sizes. The list of rounded items is denoted by

We can generate a set of packings for the rounded big itemslym@mial time as the next lemma
guarantees. In the lemma we use the fact that the number sétsutontaining at mogtitems from a set
of n items is("7).
Lemma22 Let ' = (L,,s,c,Q,d,A =1, B) beaninstance of the CCSBP problem considering the list
of rounded big items where the number of distinct items sizesin L, is at most a constant M, the number
of different classesis bounded by a constant (), and each iteme € L, hassize s, > 2. Then there exists
a polynomial time algorithm that generates all possible shelf packings of L,., with at most g + 2 shelves
of a same class in each bin. Moreover, each shelf in each generated packing has a sign that indicates if
small items can or cannot be packed in it.

Proof. The maximum number of big items that can be packed in a shbtfunded by = 1/£%. Given a
class, the number of different shelves configurations is\ded by’ = (p*;)M), including the empty shelf
that can be used latter to pack only small items. For each sledhave the possibility of packing or not
small items, then the number of shelves configurations isithed by2:’. The number of different shelves
configurations can then be boundediby: Q2r'. Since the number of shelves packed in a bin is bounded
by g = Q(g + 2), the number of different bins configurations is bounded. by (q;””). Notice thatu is a
(large) constant since all the values;y, » andu depend only o, Q and M which are constants.

Therefore, the number of all feasible packings is bounded'dy), which is bounded byn + u)*,
which in turn is polynomial im whereu = O((Q/¢)(@/9)'%). 0

We will denote byALL the algorithm that generates all packings of the listaccording to Lemma
2.2. The algorithmALL generates a set, which we denotellyyof all possible packings of the rounded
big items.

Consider an optimal packin@ for the original instancé. Remove the small items from the packing
O and round down the big items according to the rounding pnaeedNotice that the obtained packing
denoted by)’ belongs to the sék.

For each packing if®, it is then generated new packings where the small itemsaaiesa. Denote by
Small the algorithm that packs small items in each of the packings i

LetP = {P,..., P} € P be a shelf packing of a list of itemis. and suppose we have to pack a list
L, of small items intgP. The packing of the small items is obtained from a solutioa bhear program.
LetN; C {1,...,Q} be the set of possible classes that are packed in thg lsind letSi, . . . ,Sjgc be the
shelves of class € NV; in the bin F; of the packingP. For each shelS;iC, define a non-negative variable
'¢. The variabler’® indicates the total size of small items of clasthat is to be packed in the shedf.
Note that here we only consider the shelves that can be ugeattosmall items. Denote by(Si°) the
total size of big items already packed in the sHgff Consider the following linear program denoted by
LPS1:



s(S1) +al <A Vielk],ce N;, j€[ng, (1)
D (s(S) + it +d) <B Vi€ [k], (2) (LPS1)
ceN; j=1
k  nge
D> <s(L) VeelQ) (3)
e Vielk, ce [N i€l ()

whereL¢ is the set of small items of clagsn L,.

The constraint (1) guarantees that the amount of space nsth shelf is at mogtand constraint
(2) guarantees that the amount of space used in each bin issainThe constraint (3) guarantees that
variables;;@c are not greater than the total size of small items. The nuwibariables in LPS1 is bounded
by O(n@2/¢) and the number of constraints is bounded’ .2/ + n + Q).

Notice that sinc&)’ € P at least this packing has a solution in LPS1 where all smathst can be
packed.

Now we have a description of the algorithBmall: Given a packing® € P, and a listL, of small
items, the algorithm first solves the linear program LPSH ten packs small items in the following
way: For each variable!® the algorithm packs, while possible, small items of clasgo shelfS of the
bin P;, so that the total size of the packed small items is at m}'ﬁsff g2,

A complete description of the dual-PTAS algorithm that gates the complete packing is given in
Figure 2. The algorithm returns a packing that uses the mimmumber of bins and that packs all items
in bins.

Since(@ ande are constants, the size Bfis bounded by a polynomial in. Since the complexity
time to solve LPS1 is polynomial, the presented algorithm da@olynomial time complexity. Now we
conclude with the following theorem.

Theorem 2.3 The presented algorithmisa dual PTASfor the CCSBP problemwhen A + d > e.

Proof. LetO = {Py,..., P;} be an optimal packing for an instanéef the CCSBP problem (notice
that OPT/) = k). Round down the big items according to the rounding we hagsgnted and remove
the small items fron® obtaining another packinG’. ClearlyO’ € P and has an indication of the shelves
where small items were packed.

Notice that there is enough room to pack all small item&inThe algorithmSmall packs all small
items inO’ in such a way that each shelf has its size increased by atahost

When the algorithm considers the big items with their origsiaes, the size in each shelf of
increases by at most again.

Since the maximum number of shelves in a biféis- 2)Q, then the total size of each bin is increased
to at mostB + (2 +2)Q2¢* < (14 (2 +2)Q2¢%)B 0
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ALGORITHM Dual-PacK/)
Input: Instancel = (L, s,c,@Q,d, A, B) where the maximum capacity of a shelf is
A =1;
Output: A shelf packingP.
Subroutines: AlgorithmsALL andSmall.
1. PartitionL into a list L; containing items with size? (big items) andL with

the remaining items (small items). . '
2. Foreach itene in L, with size in[e2(1 +£2),€2(1 + £2)**1), round down its
size toe?(1 + £2)%.
Let L, be the list of the rounded big items.
Let P be the set of all possible packings obtained with the algorithm ALL over

the instancd = (L,, s, ¢, Q,d, A, B).
For each packin@® € P do

Find a solutiomx* for LPS1 considering the packirf@.

Pack the items irlL ¢ into P using algorithmSmall.

Round up the big items i® to their original sizes.
Return the packing® € P with the minimum number of bins and where all
items are packed.

> w

© 0 N o U

Figure 2: The dual-PTAS algorithm.

3 A dual PTASfor the CCBP Problem

In this section we present a dual PTAS for th@BP problem using the same ideas of the previous section
leading to an algorithm with an easier analysis than the oaggmted by Shachnai and Tamir [12].

Let L, be the set of items i, with size greater than or equal to(big items) and let.., be the
remaining items in_ (small items). We round down each itemiip as follows: each itena € L; with
size in the intervale(1 + €)%, (1 + ¢)™*1) has its size rounded down £¢1 + <), for i > 0. The rounded
items have at most/ = [log,. 1/¢] different sizes. The list of rounded items is denoted by

It is not hard to prove the following lemma that is similar terhma 2.2.

Lemma3.l Let I = (L,, s, ¢, C, Q) bean instance of the CCBP problem after the rounding step, where
the number of distinct itemssizesin L, isat most a constant M/, the number of different classesis bounded
by a constant (), and eachiteme € L, hassize s, > . Then there exists a polynomial time algorithm that
generates all possible packings of L,.. Moreover, each bin of each generated packing has an indication of
the possible classes that may be used to pack the small items.

Proof. The number of big items that can be packed in a bin is boungied & 1/=. The number of
distinct types of big items is bounded By(Q). The number of different configurations of bins is bounded
by ' = (””;Q“), including the empty bin. If we also consider additionakskes to pack small items in
each configuration, the number of different configuratiensdaunded by = 29, which is a constant.
Notice that we only consider configurations that satisfydlass constraints.
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The number of all feasible packings is boundedbY'), which is bounded byn + )", which in turn
is polynomial inn wherer = O(29Q(log, . 1/¢)'/). 0

The algorithm generates a set, which we denoté?pgf all possible packings of the rounded big
items. For each one of these packings the algorithm packsmfadl items in the following way: Let
P = {P,..., P} be a packing of the list of item&, and suppose we have to pack a listof small
items, with size at most, into P. The packing of the small items is obtained from a solutioa 6hear
program. LetN; C {1,...,Q} be the set of possible classes that may be used to pack thieitemal in
the bin P; of the packingP. For each class € N;, define a non-negative variahlé. The variabler’
indicates the total size of small items of clas® be packed in the bi#®;. Denote bys(F;) the total size
of big items already packed in the bif. Consider the following linear program denoted by LPS2:

k
maXE E x,

i=1 ceN;
P) + L<i Vielk 1
s(F) ;x (K] (1) (LPs2)
k
> T <s(L) VeelQl (2)
T >0 vielk,ce[N] (3)

whereL¢ is the set of small items of clagsn L,.

The constraint (1) guarantees that the items packed in eadatisfy its capacities and constraint (2)
guarantees that the total use of variahtess not greater than the total size of small items for eachsclas
c. In this linear program, the number of variables is boundgdi@ and the number of constraints is
bounded by + Q.

Given a packingP, and a listL, of small items, the algorithm first solves the linear progla®$2,
and then packs small items in the following way: For eachaldeiz’, it packs, while possible, the small
items of class into the binP;, so that the total size of the packed small items is at mpste.

We then consider the original size of the big items in eaclhefgenerated packings. In this case, the
size of each bin increases by at most a factar. of

The algorithm returns a packing that uses the minimum nurobdiins and that packs all items
in bins of size at mos{l + (C' + 1)e). The number of packings in the sBtcan be bounded by
Ty = O(n2°QMos14-1/9)%) | et T, be the worst complexity time to solve a linear program LPSBe T
complexity time of the entire algorithm can be bounded’l§{/;73), which is polynomial sincé&) ande
are constants and the complexity tiffigis polynomial.

We conclude with the following theorem.

Theorem 3.2 The presented algorithmis a dual PTASfor the CCBP problem.

Proof. LetO = { Py, ..., P} be an optimal packing for an instantef the CCBP problem. Round down
the big items according to the rounding we have presentedemdve the small items aP obtaining
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another packing)’. ClearlyO’ € P and has an indication of the classes of small items that werkequl
on it. There is enough room to pack all small itemgh So the variables sums to the total size of
small items. During the packing of the small items we inceethg size of each bin by at mastor each
class in the bin. When the algorithm packs the big items wigir thriginal size, the size of each bind
increases by at mostagain. So the total size of each bin is increased to at fiost(C' + 1)e). 0
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