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Abstract

In this paper we consider an experimental study of approximation algorithms for scheduling problems
in parallel machines minimizing the average weighted completion time. We implemented
approximation algorithms for the following problems: P|rj|2C;, P||2w,C;, P|r;|2wC;, R||2wC; and
R|r;|2w;C;. We generated more than 1000 tests over more than 200 different instances and present some
practical aspects of the implemented algorithms. We also made an experimental comparison on two
lower bounds based on the formulations used by the algorithms. The first one is a semidefinite
formulation for the problem R||2Zw,C; and the other one is a linear formulation for the problem
R|rj|2w;C;. For al tests, the algorithms obtained very good results. We notice that algorithms using
more refined techniques, when compared to algorithms with simple strategies, do not necessary lead to
better results. We also present two heuristics, based on approximation algorithms, that generate
solutions with better quality in almost al instances considered.

Keywords. approximation algorithms; practical analysis; scheduling.

Resumo

Neste artigo consideramos um estudo experimental de alguns agoritmos aproximados para problemas
de escalonamento em maquinas paralelas onde se deve minimizar o tempo de término ponderado das
tarefas. Foram implementados algoritmos aproximados para os seguintes problemas: P|r;| 2C;, P||2w,C;,
Plr;| 2w C;, R||2W;C; and R|r;| 2Zw,C;  Foram gerados mais de 1000 testes sobre mais de 200 insténcias
diferentes e com isso apresentamos aspectos praticos dos algoritmos implementados. Também fizemos
um estudo experimental sobre dois limitantes inferiores baseados em formulaces usadas pelos
agoritmos. A primeira € uma formulagdio semidefinida para o problema R||2wC; e a outra € uma
formulagdo linear para o problema R|r;| 2w;C;. Em todos os testes os algoritmos obtiveram resultados
muito bons. Notamos que algoritmos usando técnicas mais refinadas, quando comparados com
algoritmos que usam estratégias simples, ndo necessariamente geram solucGes melhores. Também
apresentamos duas heuristicas, baseadas nos agoritmos aproximados, que geram solucées de melhor
gualidade em quase todas as instancias consideradas.

Palavras-chave: algoritmos de aproximag&o; andlise pratica; escal onamento.
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1. Introduction

In this paper, we consider an experimental study of approximation algorithms for scheduling
problems. For al problems considered, a set of jobs must be scheduled, under some
restrictions, in a set of machines minimizing the average weighted completion time. All these
problems are NP-hard [S97] and we consider polynomial time approximation algorithms. We
have implemented some approximation agorithms to schedule jobs on parallel machines and
study their computational performance.

Given a polynomial time algorithm A and an instance | for a minimization problem, we
denote by A(l) the value of the solution returned by A when applied to theinstance |, and we
denote by OPT(l) the value of an optimal solution to . We say that an algorithm A has an
approximation factor a, or is an a-approximation, if A(1)/OPT(l) < a, for al instances I.
When the algorithm A is probabilistic and the inequality E[A(1)]/OPT(l) < e is valid, where
E[A(1)] is the expected value of the solution returned by algorithm, we say that A is a
probabilistic a.-approximation algorithm.

Given a polynomial time algorithm A, for fixed £ > 0, and an instance | for some problem
P, we say that A, is a polynomial time approximation scheme (PTAS) for a minimization
problem if for any &0 and any instance | we have AJ1)<(1+£OPT(l). If the algorithm is
also polynomial time in 1/e we say that A, isafully polynomial time approximation scheme
(FPTAS).

For all problems considered, we denote by J = {1,...,n} the set of jobs and M={1,...m} the set
of machines. For the case where the machines are unrelated, we denote by p;; the processing
time of the job j when executed on machine i. When all machines are identical, we denote
this processing time by p;. For some problems, there is arelease date r;, for each job j, which
is atime where the job j cannot be scheduled before. The value w; is the importance weight
of finishing thejob j earlier and the completion time of the job is denoted by C;.

Since we consider several scheduling problems, we use the notation |y, introduced by
Graham, Lawler, Lenstra & Rinnooy Kan [GLLR79], to denote each problem. In the
following, we detail the terms used in this paper under this notation. The term a corresponds
to the machine environment, P for identical machines or R for unrelated machines. The term
P tell us some restrictions about jobs, if they have relesse dates, r;, if the schedule is
preemptive (i.e., jobs can be interrupted and continued later), pmtn, etc. Finaly the term y
indicates the objective function we want to minimize.

All problems we consider are non-preemptive, although algorithms for preemptive problems
are used to find intermediate solutions.

There are many papers describing approximation agorithms for scheduling problems, but
few consider practical performance analysis. In [HS01], Hepner & Stein presented an
implementation of a PTAS for the problem 1Jr;|2C;. Savelsbergh et al. [SUW98] aso
presented an experimental study of approximation algorithms for the problem 1|r;|2w;,C; and
a variant of this problem when the average weighted flow time is minimized, i.e. problem
1ir;|2w(C—)). Recently, Vredeveld & Hurkens [VHO2] presented an experimental
comparison of approximetion algorithms for the problem R|[2Ww,C; and some dominance
relations between linear and quadratic formulations for this problem. Baev et al. [BMEQ2]
presented a practical comparison for the problem Plprec|2w,C; where the jobs have
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precedence constraints. They also show how algorithms for this problem can be used in the
scheduling phase in profile-based program compilation. They used some instances extracted
from the SPECint95 compiler benchmark and showed that the best solutions are within 5.7%
of optimal.

We implemented agorithms for the following problems: P|r|2C;, P||2w,C;, Prj|2wC;,
R||2w,C; and R|r;|2w;C;. For the problem PJr;|2C; we implemented the algorithm devel oped
by Phillips et al. [PSW98]. This algorithm is combinatorial and is based on a heuristic for the
preemptive case. For the problem P||2wC; we implemented the algorithm of Kawaguchi &
Kyan [KK86], that is based on a list scheduling heuristic. For the problems PJr;|2w;,C; and
Rir;|2w;C; we implemented algorithms of Schulz & Skutella [SS02]. The algorithm for the
first problem is combinatorial and the agorithm for the second problem is based on a
solution of a linear program. Both agorithms are probabilistic. Finally, for the problem
R||2w,C; we implemented the algorithm developed by Skutella [S98] that is based on a
solution of a semidefinite program.

We chose to implement these algorithms because they are well known approximation
algorithms, with good time complexity and good approximation factors. Also, the set of
algorithms chosen, treat problems that have common cases and this permits to compare them.
Some problems we consider are particular cases of others. So, implemented algorithms for
more general problems are aso compared with algorithms for more restricted problems.
There are other approximation algorithms for some of these problems like the polynomial
time approximation schemes for parallel machines presented by Afrati et al. [Afrati et al.,
1999]. These schemes appear to have only theoretical interest, since their running times are
given by high degree polynomials. In fact, most of these schemes require an enumeration
step that isintolerable in practice.

To our knowledge, this paper is the first to consider a practical comparison of approximation
algorithms for scheduling problems with parallel machines and release dates (problems
PIrjl2C; and R|r;|2w;C;). We aso consider a practical study of two formulations that provide
lower bounds for the problem R||Zw;C;. Notice that Vredeveld & Hurkens [VHO2], aso
studied these formulations presenting dominance relations among them, but they considered
an exponential size linear formulation. In this paper we consider the same formulation with a
small modification which leads to aformulation of polynomial size.

All agorithms are implemented in C. For the algorithms that require solutions of linear or
quadratic programs we use the Xpress-MP library, of Dash Optimization [D02]. Based on the
practical results, we propose a simple modification on the algorithm presented by Schulz &
Skutella [SS02] for the problem RJrj|2W,C; and on the algorithm of Kawaguchi & Kyan
[KK86]. In the tests we considered, we show that these heuristics obtain solutions with better
quality.

The paper is organized as follows. In section 2 we describe the implemented algorithms and
give some insight of how they work. In section 3 we compare two lower bounds for the
problem R|[2wC; with different number of machines. In section 4 we present the
computational results of the implemented algorithms.
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2. Algorithms

In this section we describe the algorithms and the way they are implemented. We do not
show how their approximation factors are obtained. The interested reader can find more
details about the approximation results of these algorithms in the references.

2.1 Algorithm PSW for the problem PJr;| 2C;

The algorithm of this section, which we denote by PSW, was developed by Phillips et al.
[PSW98]. The algorithm PSW finds a solution in two phases. In the first phase, it obtains an
approximate solution for the preemptive version of this problem and in the second phase it
uses an agorithm that converts the preemptive schedule to a non-preemptive one. The
preemptive version of this problem is aready NP-hard, and a solution is generated by a
2-approximation algorithm. The algorithm that converts the preemptive schedule to a
non-preemptive one, produces a new schedule that is at most three times worse than the
preemptive schedule. This leads to a 6-approximation algorithm for the problem PJr;|2C
(see [PSW93]).

The agorithm for the preemptive schedule is based on the following idea: at any time,
execute m jobs with the shortest remaining amount of work. The time complexity of the
implemented algorithm, which we denote by Preemptive, is O(n(logn + m)).

Once this preemptive schedule is generated, the algorithm generates a list M;, for each
machine i, of jobs ordered by their preemptive completion times. For each machine i, the
algorithm PSW generates a non-preemptive schedule with jobs in the order specified by M;,
under the condition that no job starts before its release date. The time complexity of the
implemented algorithm is O(nlogn +m) plus the time complexity to generate the preemptive
schedule.

2.2 Algorithm KK for the problem P||2w;C

The algorithm of this section is an extension of the optimal algorithm for the problem
1|2wC;. The problem 1|[2w,C; can be solved optimally with the following algorithm
developed by Smith [S56]: order jobs in non-decreasing order of p/w; and schedule the jobs
in this order. The approximation algorithm for the paralel machine case is an extension:
order jobs in non-decreasing order of p/w; and schedule jobs in this order every time a
machine becomes free. Kawaguchi & Kyan [KK86] have shown that this algorithm generates

schedules with a factor of (\/5 +1)/2 of the optimal. The implemented algorithm, which we
denote by KK, has time complexity O(nlogn + nlogm).

2.3 Algorithm SZSK for the problem Pr;| 2w C;

The algorithm SZSK is a probabilistic 2-approximation algorithm and was developed by
Schulz & Skutella[SS02]. For each instance, the algorithm SZSK is executed 100 times and
the best generated schedule is returned. In our experiments, we observed that more
executions leads to very small improvements. The algorithm is related to the linear
formulation for a single machine problem presented below. We have variables y;, for each
job j and for each time interval (t, t+1] that a job can run. We aso have variables C;, that
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represent the finishing time of job j. The constant T is an upper bound for the completion
time of any job. The relaxed linear program, denoted by LPS is the following:

Min Z VVJC]
jed
T .
(LPS thrj Yii= P Vi ed,
Y Ws1 t=0,..T,
T
Ci=pl2+ Up Y, yu(t+1/2) Vi ed,
t=rj
Yii= 0 VjeJand t=0,..,r-1,
Yie =0 Vjiedand t=rj,...T.

The linear program (LPS) can be solved using a combinatorial algorithm [SS02]. Suppose
we have only one machine that is m times faster than the machines considered. Consider the
processing times of the jobs to be m times smaller. Construct a preemptive schedule for this
single machine with the new processing times using the following rule: at any time, generate
a preemptive schedule on the new single machine by scheduling, among the available jobs,
the one with the smallest ratio pj/w;. The resulting schedule corresponds to an optimal
solution for the formulation. Each variable y;; receives value 1 if job j is processed during
time [t-1,t) in the generated schedule.

Notice that the algorithm Preemptive is easily modified to solve this formulation and can be
implemented to run in O(nlogn). After this, we construct a schedule based on probabilistic
assignments. We choose for each job j, a variable ¢ uniformly distributed from the interval
[0,1]. Then, we consider the probabilistic finishing time, i.e., the first time in the schedule
where the total amount of work done is p,¢;. We denote this value by Cj(¢4). The algorithm
SZSK attributes each job j uniformly and independently to one of the m machines. For each
machine the algorithm schedules jobs in nondecreasing order of values Cj(g;). The time
complexity of the algorithm SZSK is O(nlogn + m).

2.4 Algorithm SK for the problem R||2W,C

The algorithm of this section, which we denote by SK, is a probahilistic 2-approximation
algorithm based on a semidefinite formulation. The algorithm was presented by Skutella
[S98] and uses a quadratic program. This program has binary variables &;, such that a job j
isto be processed in machine i, if and only if, a; = 1, and variables C; that represent the
finishing time of job j. We also have a function ({ that specifies the execution order of a job
pair j,k in machine i. The job j must be processed before k in machine i if wj/p; = Wi/pi .
The quadratic program is the following:

Min szJ wG;
G= Z.”ll aj(Pit Y. akpix) vied
k(]
a; {01} VieM vjed
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Skutella have shown that this formulation is equivalent to the following quadratic
formulation:

Minc'a+ % a'Da
m .
> a=1 vj ed,
a=0,

where a e R ™ is a vector of all variables a; lexicographically ordered with respect to the
natural order 1,2,...,m of the machines, and then for each machine i, the jobs are ordered
according to (. The vector c e ® ™ is given by ¢; =w;p; and D = (dgjypk) iS @ symmetric
(mn x mn)-matrix given by: (i) 0 if i=j or j=k; (i) wpi if i=h and k ¢ j; (iii) wp;
if i=h and j ¢k

This problem can be solved in polynomia time if, and only if, matrix D is positive
semidefinite. This motivates the construction of a new formulation, which we call QSP:

Min%:c'a+ Y a'(D+diag(c))a
(QsP)
>Uoa=1 vjed,

a >0,

where (D +diag(c)) is positive semidefinite and diag(c) is a diagonal matrix with the
Vector C.

Given a solution for QSP, each job j is assigned to machine i with probability &; and in
each machine i the execution order is given by the function ¢. In our implementation, this
assignment is performed 100 times and the algorithm returns the best generated schedule.
For the special case of identical parallel machines, the optima solution of the above
formulation is given by a; = 1/m. In this case, we implemented a combinatorial agorithm
attributing each job to a machine with probability 1/m. This combinatorial algorithm is
denoted by SK-C. The time complexity of the agorithm is O(nlogn + m) plus the time
complexity to solve the semidefinite program QSP.

2.5 Algorithm SZSK2 for RJrj|2w;C;

The agorithm for the problem R|r;|2w;C; is aso a probabilistic algorithm, and was presented
by Schulz and Skutella [SS02]. The algorithm, denoted by SZSK2, is based on the solution
of alinear formulation and is a generalization of the algorithm SZSK. The formulation uses
an upper bound T on the completion time of any job and uses variables C;, representing the
finishing time of each job j, and variables yy; that indicates if job j is being executed in
machinei at timeinterval (t,t+1] for each time interval. The formulation has exponential size,
but it can be made of polynomial size with a small loss in the objective function, using
interval times that increase exponentialy in their size. In this case, we have binary variables
y;i indicating the execution of job j in machinei at interval |, = (1+8)™,(1+8)]. The size of
an interva |, is denoted by |I;|. For simplicity, we denote (1+8)' by B. The relaxed
formulation, denoted by LPSS isthe following:
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Min Z?:l \NJCJ
(LPSY
zinll ZLO Oy = 1 v e,
ZjeJ Yir <1 i eM and 1=0,...L,
G =20 X (GulllpAa+ veyslil) Vi el,
yii =0 MieM, vjed £=<rj-1,

Vi =0 WeM, v eJ, I1=0,...L.

The agorithm solves the linear program LPSS and assign each job j to a machine-interval
pair (i,1;)) a random with probability (y;|li[)/p;. The jobs assigned to a machine i are
scheduled in non-decreasing order of intervals assignment. If there is more than one job
assigned to the same pair (i, 1), the algorithm schedules them in the order of their values j.
For agiven £>0, setting £ =¢&/2 this algorithm has a probabilistic (2+&)-approximation factor.
As in the algorithm SK, the probabilistic assignment step is executed 100 times and the best
generated schedule is returned. The time complexity of this algorithm is O(nmlogg.T +
nlogn) plus the time complexity to solve the linear program LPSS. Since this algorithm is
executed with different values of &, we denote by SZSK 2, the algorithm SZSK 2 with the given
value of & That is, the algorithm SZSK 2, ; is the algorithm SZSK2 with value of £=0.1.

2.6 TwoHeuristic Algorithms

In this section we present a new agorithm denoted by HEL for the problem R|r;|2w;C;. It isa
simple modification of the algorithm SZSK2. We also present an extended heuristic of the
agorithm KK for the problem P|r;| 2w;C;, denoted by HE2.

In [HP83], Hariri and Potts presented a simple heuristic algorithm for problem 1|r;|2w;,C
used to find an upper bound for a branch and bound algorithm. The agorithm is as follows:
Let Sbethe set of all (unsequenced) jobs, H=0 and k=0 and find T=min; s{r;}.
Lettheset S ={j|jeS, rj <T}andfind ajobieS such that wi/p; = max; s-{w;/p;}.
Let k = k+1 and sequencejobi at positionk; let T =T +p;, H = H+wT and S = S{i}.
If S=& then stop with the sequence generated having H as its cost. Otherwise let
T=max{T, min;r;}} and go to step 2.

> wbdpE

In the algorithm SZSK 2, the jobs are assigned to pairs machine-interval and them executed
in each machine by the order of interval assignments. In the algorithm HEL, the assignment
step is performed as in the agorithm SZSK2, but the jobs assigned to a machine i are
scheduled using the algorithm of Hariri and Potts.

The algorithm HE2 is an extended heuristic of algorithm KK: every time a machine becomes
free, execute among the available jobs, the one with smallest ratio p;/w;. Notice that without
the presence of release dates, this algorithm is essentially algorithm KK.

Notice that we cannot guarantee approximation factors for these two heuristics. Since we changed
the way the schedules are generated, some properties of the schedule are lost. These properties are
essential in the analysis of their approximation factor. To prove that these heuristics have
approximation factorsis not atrivial step and an entire paper can be devoted to this subject.
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3. Study of Two Lower Bounds

In this section we present an experimental comparison of two formulations that provide
lower bounds for the implemented algorithms. The first formulation is the semidefinite
formulation QSP used in the algorithm SK, and the second is alinear formulation LPSS used
in the algorithm SZSK2. For problems that consider jobs with release dates we used the
lower bounds provided by the linear program LPSS. For problems without release dates we
performed a computational study to determine which formulation gives lower bounds with
better quality. We notice that Vredeveld & Hurkens [VHO02] proved that the formulation
LPSSwith unit time interval gives better lower bounds than the formulation QSP. But in this
case, the formulation LPSS has exponentia size and the time required to solve the instances
may be very high. We performed tests with LPSS, and formulation QSP for £€{0.3,0.1}. In
this case, where >0 in the formulation LPSS, it is not true that LPSS gives better bounds.
For the most generic problem R||2Zw;,C;, we consider three cases: R2||2w;C;, R5||2w;C; and
R7]|2w;,C;. We also tried to study the case R10||2WwC; but we could not solve integer
instances of this problem in a reasonable amount of time (two hours). We performed five
tests with 100 jobs for each case. The processing times of jobs were taken uniformly from
the interval [1,100] and w; was uniformly chosen from the interval [1,10]. We notice that the
quality of the lower bound increases using £=0.1 when compared with the solutions with
£=0.3, but QSP provides better lower bounds. We tried to solve the instances with the
formulation LPSS with smaller values of ¢, but when £—0, the number of time intervas
increases in such away that is better to consider unit time intervals. The use of the £>0 in the
formulation LPSS is justified since we are comparing lower bounds obtained in polynomial
time. We present the results obtained in at most two hours.

The lower bounds of these two formulations are compared with the value of an integer
solution, which we obtained from the integral solutions of program QSP. The results of these
testscan be seenin Table 1.

Table 1 — Comparison between formulations QSP and L PSS.

Problem |Integer Optimal QSP LPSSe=0.3 LPSSe=0.1

Value |[Ratio|| WValue |Ratio|| WValue [Ratio
163066 163052.92]0.999|[152588.46(0.935|(159313.82{0.976
RQ| E w_,,-(:'j 228766 228732.05|0.999(1214004.87]0.935]|223453.15|0.976
223714 223673,35(0,999(1209223.01(0,935|(218505.52(0.976
174802 174764.49(0.999([163503.50(0.935|(170744.85({0.976
180367 180337.23[0.999(]168738.85(0.935|(176189.91{0.976
Value [Ratio Value [Ratio Value [Ratio
36767 36090.74 |0.997| 34506.58 0.938| 35914.83 |0.978
RB5|| Y wyiCy 33675 33636.31 |0.998| 31603.44 |0.938|| 32925.71 |0.977
44130 44043.36 (0.998| 41379.21 (0.937|| 43097.67 |0.976
36168 36104.74 10.998|| 33948.00 |0.938|| 35340.76 |0.977
37343 37251.78 |0.997| 35028.43 |0.938(| 36457.91 |0.976
Value [Ratio|| WValue |Ratio|| WValue [Ratio
26542 26473.41 (0.997| 24920.74 (0.938| 25924.81 (0.976
R7|| Y w;Cy 22429 22361.25 |0.996| 21074.51 |0.939|| 21915.70 |0.977
26919 26857.20 (0,997 25279.07 (0.939( 26302.32 (0.977
29093 29017.66 0,997| 27314.76 [0.938|| 28415.94 |0.976
25543 25440.19 10.995]| 23967.79 |0.938|| 24928.01 |0.975
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We also performed computational tests to compare the lower bounds for the problem
Pl|2WC;. In this case, we could solve only instances up to 20 jobs with 2 machines, and 15
jobs with 5 machines. The next theorem, proved by Skutella [S98], helps us to understand
the hardness to obtain integer solutions for instances of this problem.

Theorem 3.1 For instances of Pm||2w;C;, an optimal vector solution a of the quadratic
program QSP is &;=1/m for all i,j. This optimum solution is unique if all ratios p;/w;, are
different and positive.

In all instances, the solution of the quadratic program is exactly the one provided in the
theorem. Since the Xpress solver finds the optimal integer solution using a branch and bound
tree, the number of nodes is exponential. We could not solve these kind of problems even if
we use an upper bound provided by our approximation algorithms. We could solve only
instances with 20 jobs for the problem P2||2w;,C; and instances with 15 jobs for the problem
P5|[2w;C;. The results of our tests are presented in Table 2.

Table 2 — Comparison between formulations QSP and L PSS.

Problem |Integer Optimal QspP LPSS ¢ =0.3 || LPSS ¢ = 0.1
Value |Ratio|| Value |Ratio|| Value [Ratio
19615 19546.75(0.996)|18413.86|0.938|(19142.58|0.975
P2[| 3" w;Cy 19214 19164.00(0.997|[18082,13]|0.941| 18773.20(0.977

17199 17135.7510.996(|16158.010.939|(16785.03(0.975

16398 16322,50(0.995([15385.34|0.938| 15992.72(0.975

16415 16365.0010.996(]15451.82(0.941|(16033.15(0.976

Value |Ratio|| Value |Ratiof| Value [Ratio

5121 4913.60 [0.959(| 4712.12 [0.920( 4842.30 |0.945

P5|| Y w;C; 5467 5257.60 [0.961][ 5035.09 [0.920[] 5177.84 [0.947

6536 6312.40 |0.965|| 6039.39 [0.924 6215.11 |0.950
4875 4651.60 |0.954|| 4468.68 [0.916| 4590.74 {0.941
5105 4895.80 0.959|| 4694.55 (0.919| 4824.64 |0.945

In all generated tests, the lower bounds provided by the formulation QSP are better than the
lower bounds provided by the formulation LPSS. Also notice that when £=0.1, the difference
isnot so large. We do not use smaller values of & since the increase in the computational time
to solve such formulations is high (more than two hours of computational processing).

4. Practical Analysisof the Implemented Algorithms

In this section we present the results of our tests. Since some problems are particular cases of
others, we performed several different tests. Each subsection is reserved for one case. Before
presenting the computational results for each problem, we describe the procedure to generate
each test. For each test, we generate 100 jobs with processing times uniformly chosen from
the interval [1,100] and w; chosen from the interval [1,10]. When the problem require release
dates, the data is generated using the same approach used by Hariri & Potts [HP83]. The
release dates are uniformly chosen from the interval [0,E[p] ny]. This simulates the arrival of
n jobs from a stable queue according to a Poisson process with parameter y [HS01]. The time
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in al tables is given in seconds. The ratio in the table corresponds to V/LB, where V is the
value found by the algorithm and LB is a lower bound for the optimal solution. We
performed tests with 2, 5, 7 and 10 machines. As was done in [HS01], we generated five
different instances for each test problem, so the results in each line of the tables corresponds
to the mean of five tests. The algorithms were tested on an AMD Athlon 1.2GHz with 800
MB of RAM under Linux 2.4.2-2 kernel.

4.1 Testsfor the problem PJ|2w;,C

In this problem we used the algorithms KK, SZSK, SK-C, SZSK2 and HE1. We do not use
the algorithm HE2 here because without the presence of release dates this algorithm
generates the same solutions of the algorithm KK. The Table 3 presents the results of these
tests. The LB column corresponds to the optimal fractional solution of the quadratic
formulation QSP.

The algorithms obtained very good results for al tested instances. The algorithm KK is the
most simple and obtained the best results generating solutions with values less than 0.7% of
the lower bounds, besides the other algorithms use more advanced ideas. As we can see, the
ratio grows when we use more machines. For algorithm KK the increase is very small. For
the other ones the growth is more representative. We believe that with more jobs per
machine the ratios obtained tends to decrease. This can be seen in graphics 1, 2, 3 and 4. We
will describe more about this behavior in the next subsection.

Table 3 — Comparison for the problem P||IZw;C;.

|| Problem " LB |Algurilhm| Value |’1'imc| Ratio ||
KK 383017.6( 0.01 [1.0002
P2|| S w;Cy (38292395 SzSK  [383258.8] 0.11 [1.0008
SK-C  |383319.6]| 0.05 |1.0010
SZ5K2p,1 |383463.6| 6.15 [1.0010
HElp1 |383265.0( 6.18 |1.0008
KK 146088.2| 0.01 |1.0018
P5|| S w;C; || 145821.3 [ SzSK  [148134.2[ 0.17 |1.0158
SK-C  |147933.6| 0.07 |1.0144
SZSK2q 1 |147929.6]16.85(1.0144
HElo1 [147860.6]16.95|1.0139
KK [115431.0] 0.01 [1.0032
P7|| Y w;C; |[115054.88[ SzSK [117479.4 0.11 |1.0210
SK-C |117882.6| 0.07 |1.0245
SZSK201 |117906.6|28.45|1.0247
HEly, |118298.4(28.14(1.0281

KK [82516.2]0.01 [1.0063
P10|| Y w;C;|| 81997.11 | SZSK | 85775.2 | 0.11 |1.0460
SK-C | 85646.6 | 0.06 [1.0445
SZSK2p.1 | 86259.0 (43.45/1.0519
HELp; |86200.0 [43.57[1.0512
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4.2 Testsfor the problem PJr;|2C;

To solve this problem we used the algorithms PSW, SZSK, SZSK 2, HE1 and HE2. Although
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical
machines, we also included the algorithm SZSK 2 in the comparisons. The algorithms SZSK 2
and HE1 were executed with parameter £=0.3 and £=0.1. We perform different tests using
different values of y to generate the release dates. We used y=0.2, y=0.4 and y=0.6. The LB
column has the values of the optimal solutions of the linear program LPSS, with £=0.1. It is
interesting to notice that this lower bound may be far away from the optimum, since the
value of an optimal integer solution for the program LPSSis aready a lower bound for the
original problem P|r;|2C;. The Tables 4, 5 and 6 present the results obtained for these tests.

Table 4 — Comparison for the problem PJr;|=C; with y =0.2.

Problem withy = 0.2]] LB [Algorithm| Value | Time [Ratiol|

PSW [109136.8] 0.01 |1.08
SzZSK [124153.6] 0.01 |1.23
SzSK2,2|113298.6] 5.08 |L.13
P2r;|32C;  [100161.56[SzSK2, ;| 108391.2] 78.45 | 1.08
HEly3 [105280.4] 5.79 |1.05
HElo, |105276.4] 79.72 | 1.05
HE2 (1049814 0.01 |1.04

PSW [60768.4] 0.01 [1.15
SzSK [75553.8| 025 [1.43
SzSK204| 63130.6 | 58.19 |1.20
P5|ri| 32 C; 52569.48 |SZSK20, | 62362.6 | 425.89 [ 1.18
HEIgs | 604186 | 52.95 |I.14
HEly, | 60651.0 |431.40 | 1.15
HE2 |57960.8 | 0.01 |1.10
PSW [57953.6] 0.01 [1.12
SzSK | 68479.4 | 0.01

1

1

1

1.12

1.33
SzS8K2p 3| 59530.8 | 90.13 | L.15

1

1

1

1

1

1

1

1

1

1

1

PTlr;| 32Cy 51345.58 [SZSK20, | 59246.2 | 807.20 | 1.15
HElos | 584862 | 90.17 | .13
HE Iy, | 58983.2 | 819.64 | 1.14
HE2 57204.4 |1 0.01 11

PSW [53526.4] 0.01
SZSK | 621202 0.24
S7S8K20.3 | 55645.2 | 171.29
P10|r;| 52 C; 47731.29 |SZSK20, | 54684.6 |1584.29
HEIgs | 548452 | 183.71
HEly, | 54618.4 [1611.62
HE2 | 53494.6 | 0.01

12

.30
.16
.14
.14

.14
12
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Table 5— Comparison for the problem P|r;|[ZC; with y = 0.4.

Problem with v = 0.4 LB Algorithm| Value | Time Ratioll
PSW 1126569.0{ 0.01 |L.11
SzSK [162040.8| 1.73 | 142

SzZSK2p2 (1338942 6.52 |1.17

P2lr;| 3> C; 113585.05|S7SK20 1 [126938.2| 86.24 | 1.11

HElgs (1216824 6.11 |1.07

HElg; |121691.0 95.55 | 1.07

HE2 121034.2] 0.01 1.06

PSW [104561.0] 0.01 [1.10
SzSK |124759.4] 026 |1.32
S78K20.3|107531.0] 62,90 | 1.13
P5|ri|31C; 94406.70 [SZSK2,, |104917.8] 495.95 | .11
HElgs |105297.2] 59.61 | 111
HEl; |104759.8] 503.41 | 1.10
HE2 [103638.0] 0.01 |1.09

PSW 1082524 0.01 109I

SZSK _|1196288] 2.15 |1.21
SzSK203|111726.6] 11295 | 1.13
P7lri| 3. C; 98514.48 [SzSK201 |109100.8 952.18 [ 1.10
HElgs |109449.6] 107.21 | 111
HELo, |108890.2| 967.13 | .10
HEZ |108235.0[ 0.01 |1.09
PSW [103936.8] 0.01 [1.10
SzSk |107757.0 0.17 |L.14
SZSK2y4|107522.0| 218.68 | 1.14
P10Jr;| 2 C; 94268.95 [SZSK2p , | 104450.2[1912.04| 1.10
HElg3 |105247.4] 22141 [ 1.11
HEIo, |104419.4[1917.11] I.10
HE2Z [103936.8] 0.01 |1.10
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Table 6 — Comparison for the problem P|r;|[ZC; with y = 0.6.

Problem with v = 0.6 LB Algorithm| Value | Time Ralioll

PSW [168188.8] 0.01 [L1.11
SzSK_[2164230[ 1.55 [1.43
S7SK203|175249.6] 7.24 | 1.15
P2lr|52C;  [1151285.05[SZSK2,, 1683416 100.95 | 111
HElo3 [165981.0] 6.60 |1.09
HEIo; |165819.6] 86.39 |1.09
HE2 [164796.0] 0.0l |L.08

PSW [155055.8] 0.01 [1.09
SzSK |176075.4] 0.10 | 1.24
S7ZSK202|162046.8] 62.90 | 1.14
P5[r,| 32 C;y 141989.53 [ SZSK 2y ; |156466.4|497.253| 1.10
HElos |156834.4] 67.48 | 1.10
HElo, |155801.2[490.57 | 1.09
HE2  |154996.4 0.00 |1.09
PSW [157384.2] 0.01 [1.09
SzSK |1653772| 221 |L14
SZSK2.3|162347.6] 120,04 | 1.12
P7lr| 3°C; 144311.06[ SzSK20.1 |158264.0[1023.78] 1.09
HElos |158676.2[ 11625 | 1.09
HElo, |157997.0[1177.65] 1.09
HE2 |157384.2[ 0.01 |1.09
PSW [152096.4] 0.01 [1.09
SzSK |153544.8] 0.07 |L.10
SZSK22|158748.8] 24622 | 1.13
P10lr;|32C;  [139258.28/SZSK20,1 | 152670.2]2051.54] 1.09
HElps |153621.8]243.68 | 1.10
HEl,, |152384.2[1955.04] 1.09
HE2 [152096.4| 0.01 |1.09

The algorithm HE2 generates the best schedules in all tests. Notice that the algorithm HE1
obtain better results when we have few machines and small values of y. The algorithms PSW
and HE1 are the second best in all cases. For all tests, the algorithm PSW generates solutions
that are at most 12% of the lower bound athough its approximation factor is 6. The
algorithm SZSK?2 abtained better results than the algorithm SZSK for all cases, except when
we have big values of y and more machines, as we can see in Table 6. Analyzing the
fractional solution of the linear program used by the algorithm SZSK2, we observed that the
solver obtained solutions where almost all variables for some machines have null values.
Consequently, the generated schedule have some machines that are amost unused. The
algorithm SZSK is the combinatoria version of SZSK2, but the jobs are attributed to al
machines uniformly. This also explains why the algorithm HE1 when compared to the
algorithm PSW, get better results using two machines than 7 and 10 machines. Based on this
observation we try to solve the linear program LPSS under the algorithm HEL with an
increase in the number of jobs per machine. Notice that the algorithm HEL is based on the
algorithm SZSK2 and we can expect the same behavior in both algorithms. We performed
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severa tests that can be seen in Tables 7, 8, 9 and 10. The interesting point to note is that
when we get a ratio of approximately 60 jobs per machine, the algorithm HEL produces
better schedules. The solution of the linear program has a better attribution when this
happens. We also present some graphics (Figures 1, 2, 3 and 4) that summarize these results.
As we mentioned in the previous subsection, the algorithms get better results when we use
more jobs per machine. This can be easily verified in these graphics. But it is important to
note that when we compare the execution time, the algorithm PSW have a much better
performance since it is a combinatorial algorithm, and the algorithm HE1 have to solve large
linear programs. Notice that we could not solve al instances of the problem with a given
&=0.3 in agorithm HEL. For example, in the tests with ten machines we used £=0.8 and the
time to solve the corresponding linear program LPSS is very high. With such values, the
lower bound provided by the linear program becomes worse and the ratios obtained for these
tests are worse than the ones for the previous tests. We believe that the solutions obtained are
closer to the optimum and better ratios could be obtained with better lower bounds.

Table 7 — Comparison between PSW and HE1 with 2 machines.

P2|r;| 3> C; withy = 0.6 LB Algorithm| Value |Time |Ratio
PSW | 28791.2 [ 0.01 | 1.24

|J]| =20 23153.11 | HElps | 28870.0 |0.310| 1.24
PSW |64322.2 | 0.01 | 1.25

|J| = 40 51281.51 | HEly3 | 646470 [ 1.11 | 1.26
PSW |96616.0 | 0.01 | 1.25

|J| = 60 76944.32 [ HElgs | 97042.4 [2.35[1.26
PSW [122591.8( 0.01 | 1.24

|J| = 80 98227.78 | HElpa |122696.8( 3.30 | 1.24
PSW [165469.8]| 0.01 | 1,23

[J| =100 133911.11| HElpa |164117.6| 4.20 | 1.22
PSW 1204703.2] 0.01 | 1.21

[J| =120 167971.42| HElpa [200258.0{10.26 1.19
PSW [443288.6| 0.01 | 1.16

[J| = 200 381645.09| HElp3z [429205.6]|45.11| 1.12
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Table 8 — Comparison between PSW and HE1 with 5 machines.

P5|r;|>”C; withy = 0.6 LB  |Algorithm| Value | Time [Ratio
PSW 75690.0 0.01 1.24
|J| = 50 60878.68 | HElpz | 75998.6 | 9.920 | 1.24
PSW | 156073.2| 0.01 |1.24
|/| = 100 125460.43| HElgp3 | 157288.4 | 62.87 [1.25
PSW |248198.8| 0.0l |1.25
|J| = 150 198061.29 HElgs | 250604.0 | 138.54 | 1.26
PSW [3197174 | 0.01 |1.24
|J| = 200 256076.57| HEly3 | 322656.8 | 246,97 | 1.26
PSW [507942.0 | 0.01 |1.23
|7| = 300 411426.11| HElg 3 | 498390.2 | 579.96 | 1.21
PSW 763550.2 | 0.01 1.20
|J| = 400 635731.46| HElg3 | 735126.4 |1066.96| 1.15
PSW |1100436.4| 0.01 |L.17
|J| = 500 936920.79| HElg s |1064286.6(1648.83| 1.13
Table 9 — Comparison between PSW and HE1 with 7 machines.
P7lr;| 5> C; withy = 0.6 LB Algorithm| Value Time [Ratio
PSW 1688226 | 0.01 | 1.47
|J| = 100 114575.89 | HElgg | 170932.8 | 31.11 | 1.49
PSW 317334.2 | 0.01 1.48
|J| = 200 21317161 | HElgg |321711.4 |137.540| 1.50
PSW |458481.0| 0.01 |148
|J| = 300 308844.77 | HElgg |465342.2 | 308.92 | 1.50
PSW 643419.0 | 0.01 1.37
|J| = 400 468532.64 | HElpg | 644531.8 | 559.20 | 1.37
PSW | 904658.2 | 0.01 |1.34
|J| = 500 671739.66 | HElpg | 877560.8 | 912,38 | 1.30
PSW |1201110.0{ 0.01 | 130
|J| = 600 921405.31 | HElpg [1168692.4{1306.86| 1.26
PSW 197329221 0.01 |1.25
|J| = 800 1575752.90| HElps [1913924,2]2357.64| 1.21
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Table 10 — Comparison between PSW and HE1 with 10 machines.

P10|r;| 3 C; with y = 0.6 LB |Algorithm| Value Time |Ratiol|
PSW | 160832.6 | 0.0l | L.65
[J| = 100 96960.46 | HElpg | 162182.8 | 38.420 | 1.67
PSW 312235.6 | 0.01 1.66
[J| = 200 187381.96] HElpg |315302.8 | 174.60 | 1.68
| PSW [635543.6| 0.01 |L.65
|J| = 400 384035.05| HElpg |644026.2 | 720.43 | 1.67
PSW [995554.0 | 0.01 |1.46
[J| = 600 677843.38| HElgs |996502.2 [1614.99] 1.47
PSW [1535404.0) 0.01 |1.37
|J| =800 II]37532[ HElgg |[1494949.8(2901.76( 1.34
| PSW [2214162.8| 0.01 1.32
|J| = 1000 1666006.6| HElps [2168788.2]4648.66[ 1.30
PSW [2994767.4| 0.01 | 1.31
|J| = 1200 2269898.8| HElos [2920309.86843.41] 1.28
1.28
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Figure 1 — Solution quality of the algorithms PSW and HE1 for 2 machines.
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Figure 2 — Solution quality of the algorithms PSW and HEL for 5 machines.
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Figure 3 — Solution quality of the algorithms PSW and HEL for 7 machines.
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Figure 4 — Solution quality of the algorithms PSW and HE1 for 10 machines.

4.3 Testsfor the problem P|rj|2wC;

For the problem PJr;|2w,C we used the algorithms SZSK, SZSK2 and HE1. Remember that
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical
machines. The algorithms SZSK2 and HE1 were executed with parameter £<{0.1, 0.3} and
the tests were produced with release dates generated with parameter y<{0.2, 0.4, 0.6}. The
Tables 11, 12 and 13 present the results obtained for these tests. The lower bounds (LB) were
obtained from the optimal fractional solutions of the linear program of the algorithm SZSK2
with £=0.1. Remember that this lower bound may be far away from the optimum, since the
value of an optimal integer solution for the program LPSS is aready a lower bound for the
original problem P|r;| Zw;C.

The behavior of the algorithms is essentially the same in all tests, except that algorithm
SZSK has a bad quality performance in the tests with two and five machines. Algorithm
SZSK have aworse quality performance than algorithm SZSK 2, but it is much faster than it.
The agorithm HEL is the one that produces the best schedules.
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Table 11 — Comparison for the problem P|r;|[Zw;C; withy =0.2.

[Pmblem with v = 0.2 LB Algorithm| Value | Time |Ratio
SzSKk |489182.6] 24 | 1.2l

SZS5K2 3 [458123.0 6.5 |1.14

P2|rj| Y w;C;  [|401484.96(SzSK20 [446167.3] 73.2 | 1.11
HElpa |428054.3| 6.0 |1.06

HElg, |427810.6| 71.9 | 1.06

SzSK  |362339.0) 2.2 |13l

S75K203|327884.3| 54.8 | 1.19

P5|rj| Y w;C;  |[274727.29[82SK2¢ 1 [328976.6] 408.5 | 1.19
HElpz [318633.0 52.8 | 1.15

HElp1 [321541.3|401.9 | 1.17

SzSK  |303367.6] 2.2 |1.23

S75K20.3|286762.3] 94.5 | 1.17

P7|r;| 5> w,;C; 244972.5 | SZSK2¢  [285346.0 761.6 | 1.16
HElpz |281960.6| 92.5 | 1.15

HElp1 |282133.3| 751.5 | 1.15

SzSK  |291006.3] 1.9 | L.17

S75K20,2(285885.3]| 190.3 | 1.15

P10|r;| > w;C; ||247130.08(SzSK2¢ 1 [284247.6[1599.5] 1.15
HElpz |281372.0| 188.0 | 1.13

HEly, |283477.3|15134] 1.14

Table 12 — Comparison for the problem P|r;|[Zw;C; withy = 0.4.

| Problem with v = 0.4 LB Algorithm| Value | Time [Ratio
SzSKk  |730586.3| 22 |1.29

SZSK2(3(658244.6| 7.0 |1.17

P2|r;| 3> wCy 562054.4 [SZSK2(1 |628967.0| 75.0 | 1.11
HElys |613529.0) 6.6 | 1.09

HElp; [613979.6| 82.0 | 1.0Y

Sz8k  |572827.6| 2.0 |1.20

SZSK2p 3 |544158.6| 58.1 |1.14

P5|r;| 3 wCy 476777.12| S2SK20,1 |529113.0] 48.5 | 1.10
HElg3 |530403.0 61.6 | .11

HElp1 [526752.3]| 468.1 | 1.10

SzSK [552136.0f 1.8 |1.16

SzSK20.3(539034.0| 113.3 | 1.13

P7|r;| Y w;C;  ||475822.01[SZSK2¢ ;1 |529724.3[ 9262 | 1.11
HElps [528659.0] 111.2 [ 1.11

HElp1 [528034.6| 898.9 | 1.10

SzZSK  [525903.01 1.8 |1.12

Sz8K203(527858.3| 221.3 | 1.12

P10|r;| Y w;C;  ||467883.30[SZSK2,, [518648.0[1819.4] 1.10
HElps [519222.6 218.1 [ 1.10

HEly, [518332.6 176?‘1[ 1.10
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Table 13 — Comparison for the problem P|r;|[Zw;C; withy = 0.6.

Problem with v = 0.6 LB Algorithm| Value | Time [Ratio
SzSK  |973967.3| 2.1 |1.37

SZSK2(3|813596.6| 74 |1.15

P2|r| S wiC;  [706573.38|S2SK 20,1 [787153.3] 88.6 | L1
HElgys [778875.6 7.0 | 1.10

HElgy, [777878.6( 86.2 | 1.10

SzSK  |845729.3| 19 |1.14

S78K203(835492.6| 65.5 | 1.13

P5|r;| S wiC;  [738399.47[S28K 20,1 [813745.6] 521.4 | 1.10
HElgy s [812734.0( 66.6 | 1.10

HElg [809256.3(512.9 | 1.09

SzSK_|855123.6] 1.9 | L.12

S7zSK203 [856218.6] 121.8 | 1.12

P7r;| ST wiC;  [760000.39[S$2SK2, ; [836550.3[ 987.0 [ 1.10
HEI, 3 |834758.0] 120.4 | 1.09

HElg [833242.0(973.6 | 1.09

SzSK |807679.01 14 |1.09

Sz8K2( 3 (828656.0| 246.8 | 1.12

P10Jr;| S w;C;  ||736998.73[SZSK2, 1 [810024.0[1999.6] 1.09
HElp2 [809834.3| 751.5 | 1.09

HEly; [807307.3[1971.3[ 1.09

4.4 Testsfor the problem R||ZwC;

In this problem we use the algorithms SK, SZSK2 and HE1. For the tests in Table 14 we
chose p; uniformly from the interval [1,100]. In the tests presented in Table 15 the
processing times were chosen from different intervals to give the idea that we have machines
with different speeds. Using two machines the processing times were chosen from the
interval [1,50] for the first machine and from [50,100] for the second machine. Using five
machines the processing times were chosen from intervals, [1,20],[20,40],...,[80,100]. Using
seven machines the processing times were chosen from intervals, [1,15],[15,30],...,[90,100].
In the tests with ten machines, the processing times were chosen from intervals
[1,10],[10,20],...,[90,100]. We use £=0.1 and £=0.3 in the algorithms SZSK2 and HEL. The
LB column corresponds to the fractional solution found by the quadratic formulation QSP of

the algorithm SK.
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Table 14 — Comparison for problem R|[Zw;C;.

Problem LB Algorithm| Value | Time | Ratio I
SK 194216.4| 1.13 [1.0005
R2||2:1;chj 194112.01| SZSK2q.3 [194149.8| 1.40 |1.0001
SZSK20.1 |194156.4] 6.14 [1.0002
HElp 3z |194143.8] 1.21 (1.0001
HElg; (194143.8| 6.78 |1.0001

SK 37763.0 | 38.31 [1.0038
RSHX'UJ?-C}- 37616.6 [SZSK2q3| 376440 | 4.08 [1.0007
$Z8K2p,1 | 37635.8 | 21.31 [1.0005
HElg3 | 376274 | 3.81 |1.0002
HElo: | 376258 | 21.99 [1.0002

SK | 26305.0 | 89.36 [1.0097
R7|| S w;C; || 26049.94 [SZSK20.3 | 26154.2 | 5.15 [1.0040
SZSK2y, | 26149.8 | 25.43 [1.0038
MElys | 261402 | 5.06 |1.0034
HElo, | 261456 | 2621 |1.0036

SK | 11666.2 [200.79]1.0290
R10(| " w; 5| 11337.05 |SzSK203| 114746 | 8.15 [1.0121
SzSK2, | 11463.0 | 40.96 [1.0L11
HEIps | 11450.2 | 8.79 |1.0099
HELy, | 114652 | 39.56 [L.OL13

Table 15— Comparison for problem R|[Zw;C;.

Problem * LB Algorithm| Value | Time | Ratio

Sk [246873.6] 0.97 [1.0005
R2|| 3> w;C; ||246745.49| SzSK2 3 [246811.2] 1,12 [1.0002
SZSK20, [246818.6] 6.24 [1.0002
HEIp s |246783.8] 1.13 |1.0001
HEly,; [246783.8] 6.78 [1.0001

SK | 73934.6 | 37.41 [1.0057
R5|| S>w;Cy || 73513.03 [SzSK24.5 | 73670.0 | 3.80 |1.0021
SzSK2p | 73673.0 | 16.78 [1.0022
HElp3 | 73659.6 | 3.71 [1.0019
HEly, |73667.6 | 17.21 [1.0021

SK  [52211.6 [98.06 [1.0129
R7||S>w;Cy || 51544.92 [SzSK203| 518284 | 5.90 [1.0054
SZSK2g, | 51808.0 | 26.31 [1.0051
HEIps | 518492 | 5.14 |1.0059
HElo; |51834.2 [26.71 [1.0056

SK ] 30516.2 [207.62[1.0724
R10|| 5" w;C; || 28453.73 [SzSK202 | 29472.2 | 8.07 [1.0357
SZSK2, | 294510 [ 40.95 [1.0350
HEly3 | 294158 | 8.16 [1.0338
HElo, |29449.4 | 41,08 [1.0349

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 247



Xavier & Miyazawa — Practical comparison of approximation algorithms for scheduling problems

We also present another set of tests based on the approach of Vredeveld & Hurkens [VHO02].
The instances of the test in Table 16 were generated to give a machine correlation different
from the approach described for the tests in Table 15. The instances were generated with
each processing time p; taken uniformly in [e;, ai+10] where ¢ is an integer from the
uniform distribution in [1,100]. This approach is called Machine Correlation. The instances
of the tests in Table 17 were made to give the idea that a job have two favorite machines to
execute. For each job j, two machinesij; and ij, were randomly chosen, where the processing
time of j in these two machinesis uniformly chosen in [5;, B;+4], where g, is an integer from
the uniform distribution in [15,25]. The processing times of j in the other machines were
drawn from the uniform distribution in [60,90]. This approach is called Favorite Machines.

Table 16 — Instance set Machine Correlation for the problem R|[Zw;C;.

Problem * LB Algorithm| Value | Time | Ratio
SK 615977.6| 0.98 | 1.0003
SZSK2p, |615840.0] 6.5 | 1.0001
HElga | 615827 | 1.5 | 1.0001
HElp; |615804.6] 6.0 [1.00008

SK 67195.0 | 34.10 | 1.0076
R5|| 5 w;Cy || 66684.42 [SZSK2¢3 | 66854.0 | 3.50 | 1.0025
S7SK2g4 | 667703 | 16.5 | 1.0012
HElga |66761.3 | 3.1 | 1.0011
HElgy | 66751 | 16.51 | 1.00O09

Sk 113206.3| 82.06 | 1.0118
R7|| 37 wyCy | 111880.72( SZSK2¢ 3 |112395.6] 6.30 | 1.0046
SzZSK2p, [112320.3] 27.1 | 1.0039
HElps | 112277 | 5.5 |1.0035
HElp; [112383.3]| 37.10 | 1.0044

SK 44027 [193.20| 1.0416
R10|| > w,;Cy|| 42265.1 |SZSK2( 3 |42887.6 | 8,07 | 1.0147
SZSK21 [42755.6 | 42.5 | 1.0116
HEly3 | 427246 | 9.6 |1.0108
HElp1 |42784.0 | 41.08 | 1.0122
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Table 17 — Instance set Favorite Machines for the problem R|[Zw;C;.

“ Problem || LB |Algurilhm[ Value |'l‘imc | Ratio ||
SK 88842.0 33.10 (1.0067
R5|| Y w;C; ||88249.35|S28K20 3 |88525.0] 3.4 |1.0031
SZSK2p 4 |88427.3] 17.9 |1.0020
HElp 3 |88443.3| 3.3 |1.0021
HElp.1 |88423.0| 17.8 [1.0019
SK 56647.0| 80.20 |1.0086
R7|| 3 w;C;y [56161.68] SZSK203|56368.6] 6.3 |1.0036
S78K2¢1 |56337.0| 24.5 |1.0031
HElgs [56316.6] 83 [1.0027
HElyq1 |56328.6| 24.8 [1.0029

SK  |46745.6[180.10[1.0147
R10|| 32 w;C; [ 46064.12[ SZSK2, 3 [46308.0[ 8.03 [1.0052
SZSK2y, | 46249 | 52.3 [1.0040
HElos |46241.3] 83 [1.0038
HEly, |46256.0] 52.8 |1.0041

Aswe can seg, al algorithms produces schedules very close to the optimal. For all tests, the
algorithms produced solutions with values that are at most 3% of the lower bound except for
the algorithm SK that generated a solution with value 7% of the lower bound. In general, the
algorithm HEL generates better schedules. Another point, is that although the semidefinite
program QSP generates fractional solutions that are closer to the optimal, the algorithm SK
generates the worst schedules even if compared with the algorithm SZSK 2, 3.

4.5 Comparison for the problem R|r;| Zw;C;

For the problem R|r;|2WwC;, we used the algorithms SZSK2 and HEL. The results for these
tests are presented in Table 18. The processing times were uniformly chosen from the
interval [1,100] and the release dates were generated with y=0.2. The LB is the optimal
fractional solution of the linear program LPSS with £=0.1. We emphasize that this lower
bound may be far away from the optimal solution, since an optimal integer solution to LPSS
is aready arelaxation for the problem R|r;[2w;C;.

We also made another set of tests with instances of type Machine Correlation and instances
of type Favorite Machines. The tests can be seen in Tables 19 and 20. The agorithm HE1
obtained the best results in all tests. The hardest instances are for the set Machine
Correlation (Table 19), where the algorithm HEL obtained schedules that are at most 10% of
the lower bound and the algorithm SZSK 2 obtained schedules that are at most 15% from the
lower bound.
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Table 18 — Comparisons for the problem R|r;|[Zw;C;.

” Problem ” LB ]Algurilhm| Value |'Time |Rali0||
Sz8K233(352346.2] 5.9 |L.15
SZSK2p 1 |339533.6] 80.6 [1.11
R2[r;| S w;C; (306490.12 HElps |332137.8] 5.6 | 1.08

HElp; (331878.4| 74.4 | 1.08
Sz5K2p.3(|257145.8| 51.8 | 1.12
SZSK2p ;1 |252826.8| 420.8 | 1.10
R5[rs| S w;Cy (23027471 HELps |251919.2] 53.7 | 1.09

HEly, |251915.8(364.7 | 1.09
SzSK20.3|254033.2[109.32] 1.1
SZSK2p 1 |250782.6| 840.1 | 1.09
R7|r;| S>w;C; (229843.17| TIElys |250165.8] 94.7 | 1.09
| HElp; (250146.2| 777.6 | 1.09

SZSK20.3]256892.4] 186.3 [ 1.10
SZSK2p.1 |253754.4]1603.6 1.09
R10|r;| S~ w;C; (23351085 HEIy3 |253180.0] 185.5 | 1.08
[ HELo; [253132.8[1491.8] 1.08

Table 19 — Instance set Machine Correlation for the problem R|r;[Zw;C;.

| Problem LB Algorithm| Value | Time [Ratio
S7Z8K2 3 [554871.6] 6.7 |1.13
SZSK2p 1 [524985.3| 76.6 | 1.07
R2|rs| > w;C; ||489839.74| HElga |516004.0| 6.6 |1.05
HElp: [516267.0| 75.4 | 1.05
SZSK2(3|276216.3| 554 | 1.15
SzSK2y 1 [267180.6| 427.8 [ 1.11
ri| o wiCy [[239508.19] HElgz |265037.6| 55.5 | 1.10
HElp,; (264210.3]{419.7 [ 1.10

SZSK20 3 [266120.0] 97.2 [1.15
SZS8K2p.1 |253630.0] 790.1 | .10
RT7|r;| S w;Cy |[230443.03[ HEIps |250960.0] 99.6 | 1.08
HElo, |250750.0]793.6 | 1.08
S7SK2)3[310845.3] 2037 [ 1.15
SZSK2p 1 [300141.3[1617.4] L.11
R10}r,| 3> w,C;4|[270125.19| HElys [297938.6] 2014 [ 1,10
[ HElo1 |297670.0[1627.0] .10

Rb5
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Table 20 — Instance set Favorite Machines for the problem RJr;[Zw;C;.

| Problem LB Algorithm| Value | Time |Ratio

SZSKZu_’:, 270809.3| 55.3 | 1.12
SZ8K2p,1|269149.3] 420.8 | 1.12
R5|r;| S wiCy || 239705.1 [ TELs [267289.3| 53.2 | L11

HElp, [268175.0{ 414.5 | 1.11
SZ8K24,3(273059.3] 97.3 | 1.12
SZSK2y [267799.6| 778.6 | 1.10
R7r;| Y wiCy [|243361.23| HELys [267688.6] 95.2 | 1.09

HElg, |267545.6| 767.8 | 1.09
SZ8K20.3|280551.6] 198.2 | 1.10
Sz28K244 |277072.611610,7| 1.09
R1 ﬂ|}“j| Z UJjCj 253293.67| HElps |277365.6| 195.4 | 1.09
‘ HElg; |276944.0(1586.5] 1.09

5. Conclusion

We present computational results for some approximation algorithms for scheduling
problems on parallel machines. As expected, the practical solutions yield ratios that are much
better than the approximation factors of the presented algorithms. We aso notice that
algorithms with more refined techniques do not necessarily lead to better results. In fact, for
the problems P||2wC; and PJrj|2IC; algorithms PSW and KK obtained the best results even
when compared to algorithms with advanced ideas. We also notice that the solutions
provided by the algorithm SK is worse than the solutions provided by the algorithm SZSK2
despite the semidefinite program generates fractional solutions with better quality. Finaly,
we present two heuristics that get better results in almost all cases considered, although for
problem PJrj|2C; the processing time of algorithm HEL is much bigger than the processing
time of algorithm PSW.
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