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Abstract

Consider the following problem which we call Maximum k-Subset Intersection (MSI): Given a col-
lection C = {S1, . . . , Sm} of m subsets over a finite set of elements E = {e1, . . . , en}, and a positive
integer k, the objective is to select exactly k subsets Sj1 , . . . , Sjk whose intersection size |Sj1 ∩ . . . ∩ Sjk |
is maximum. In [2], Clifford and Popa studied a related problem and left as an open problem the status of
the MSI problem. In this paper we show that this problem is hard to approximate.
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1 Introduction

In this paper we study the following problem: Given a collection C = {S1, . . . , Sm} of m subsets over a
finite set of elements E = {e1, . . . , en}, and a positive integer k, the objective is to select exactly k subsets
Sj1 , . . . , Sjk from C whose intersection size |Sj1 ∩ . . . ∩ Sjk | is maximum. We call this problem Maximum
k-Subset Intersection (MSI), which was left as an open problem by Clifford and Popa [2].

In this paper we present an inapproximability result for the MSI problem presenting a reduction from the
Maximum Edge Biclique (MEB) problem. The MEB problem can be stated as follows: Given a bipartite graph
G = (V1, V2, E), the problem is to find a bicliqueKx,y subgraph ofGwhose number of edges xy is maximum.

The MEB problem was shown to be NP-hard by Peteers [5]. Later, Ambuhl et al in [1], proved that the
MEB problem does not admit a 1/N ε′ approximation, where ε′ is a constant and N is the number of vertices,
under the standard assumption that SAT has no probabilistic algorithm that runs in time 2n

ε
, where n is the

instance size and ε > 0 can be made arbitrarily close to 0. They showed the following result:

Theorem 1 ( Ambuhl et al [1]) Let ε > 0 be an arbitrarily small constant. Assume that SAT does not have a
probabilistic algorithm that decides whether a given instance of size n is satisfiable in time 2n

ε
. Then there is

no polynomial (possibly randomized) algorithm for Maximum Edge Biclique that achieves an approximation
ratio of 1/N ε′ on graphs of size N , where ε′ depends only on ε.

In this work we show an inapproximability result for the MSI problem using the inapproximability result
of Theorem 1.
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The MEB problem has applications in community detection [3] and in bioinformatics [4], among others.
The biclustering problems involved in such applications can also be tackled as a MSI problem. Generally, we
have in such applications a set of individuals/genes and associated interests/conditions. The main objective is
to find a set of individuals/genes with the largest number of interests/conditions in common.

In Section 2 we present a Turing reduction showing the hardness of the MSI problem, and in Section 3 we
prove the inapproximability of the MSI problem by showing that if there is an α-approximation algorithm for
the MSI problem, then there is also an α-approximation algorithm for the MEB problem.

2 Hardness Result

In this section we present a Turing reduction from the MEB problem to the MSI problem, by presenting a
polynomial time algorithm that can be used to solve the MEB problem if the MSI problem is solvable in
polynomial time.

Theorem 2 MSI is NP-hard.

Proof. Let G = (V1, V2, E) be an instance for the MEB problem, where V1 = {v1, . . . , vn1} and V2 =
{u1, . . . , un2}. Create an instance for the MSI problem as follows: let the set of elements be the set V2, i.e,
E = V2, and for each vertex vi ∈ V1 create a set vi = {uj ∈ V2 : (vi, uj) ∈ E}, i.e, this set contains all
vertices of V2 that are adjacent to vi. The collection of subsets is C = {v1, . . . , vn1}.

Considering the construction above, we claim that for any given biclique subgraph Kx,y of G, there are
x subsets in the corresponding instance of the MSI problem such that their intersection size is at least y. Let
V ′1 ⊆ V1 and V ′2 ⊆ V2 be the vertices of the biclique Kx,y. Since every vertex in V ′1 is adjacent to all vertices
in V ′2 , then all vertices of V ′2 will belong to each subset corresponding to each vertex of V ′1 . The intersection
of these subsets contains V ′2 .

On the other hand, we claim that if we find k subsets V ′1 = {v′1, . . . , v′k} of maximum intersection v′1 ∩
. . . ∩ v′k = V ′2 ⊆ V2, then there is a biclique subgraph in G with k|V ′2 | edges. From the construction of
the MSI instance, every vertex v′i is adjacent to all vertices in V ′2 . Then the induced subgraph given by the
corresponding vertices in V ′1 and V ′2 form a biclique of size k|V ′2 |.

Suppose there is a polynomial time algorithm A(C, k, E) that solves the MSI problem, and returns (C′, I),
where C′ ⊂ C contains k subsets, and I contains the elements of the intersection of these subsets. Then
Algorithm 1 solves the MEB problem.

Algorithm 1 Alg(G = (V1, V2, E))

1: Given G, create the collection C, and elements E for the MSI problem.
2: Let Kx,y be an empty biclique.
3: for k = 1, . . . , n1 do
4: Let (V ′

1 , V
′
2)← A(C, k, E).

5: Let K ′
x′,y′ be the biclique subgraph of G with the corresponding vertices from (V ′

1 , V
′
2).

6: if xy < x′y′ then
7: Kx,y ←K ′

x′,y′ .
8: end if
9: end for

10: Return Kx,y .

Let K∗x∗,y∗ be an optimal solution for the MEB problem. We know that when we run A(C, x∗, E), the
algorithm will return a solution corresponding to vertices that form a biclique subgraph ofG with at least x∗y∗

edges. Since the algorithm tries all values of k = 1, . . . , n1, and returns the biclique with maximum number
of edges, it will return an optimal solution.
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3 Inapproximability Result

In this section we show that if there is an α-approximation algorithm A(C, k, E) for the MSI problem then we
can construct another algorithm A′ which is an α-approximation algorithm for the MEB problem.

Lemma 3 Let A be an α-approximation algorithm for the MSI problem. Then there is an α-approximation
algorithm A′ for the MEB problem.

Proof. Let G = (V1, V2, E) be an instance of the MEB problem, where n1 = |V1| and n2 = |V2|. We
construct an instance for the MSI problem as was done in Theorem 2.

Suppose that Kx,y is a maximum edge biclique of G. If we construct an instance for the MSI problem as
stated above, and run A(C, x, E) we know that the algorithm is going to find x subsets vi1 , . . . , vix , whose in-
tersection size is at least αy. Notice that the vertices vi1 , . . . , vix from V1 and the vertices in the corresponding
intersection of their subsets, form a biclique with at least αxy edges.

Suppose we run A(C, k, E), for k = 1, . . . , n1. We can then find the solution v′i1 , . . . , v
′
ik′

that maximizes
the value k′T where T = |v′i1 ∩ . . . ∩ v

′
i′k
|, among all these executions of the algorithm. Notice that the

corresponding vertices v′i1 , . . . , v
′
ik′

from V1 and vertices in v′i1 ∩ . . . ∩ v
′
ik′

from V2, form a biclique of size
k′T > αxy. Then we have an α-approximation solution for the given instance G of the MEB problem.

ut

Using Theorem 1 and Lemma 3 we have the following result.

Theorem 4 Let ε > 0 be an arbitrarily small constant. Assume that SAT does not have a probabilistic
algorithm that decides whether a given instance of size n is satisfiable in time 2n

ε
. Then there is no polynomial

time algorithm for the Maximum k-Subset Intersection problem that achieves an approximation ratio of 1/N ε′

where N is the size of the instance, and ε′ depends only on ε.
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[2] Raphaël Clifford and Alexandru Popa. Maximum subset intersection. Inf. Process. Lett., 111(7):323–325,
2011.

[3] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

[4] Sushmita Mitra and Haider Banka. Multi-objective evolutionary biclustering of gene expression data.
Pattern Recognition, 39(12):2464–2477, 2006.
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