
A One-Dimensional Bin Packing Problem

with Shelf Divisions ⋆

E. C. Xavier a,∗ F. K. Miyazawa a

aInstituto de Computação — Universidade Estadual de Campinas, Avenida Albert
Einstein, 1251, Caixa Postal 6176 — 13084–971 — Campinas–SP — Brazil, Fax:

(+55)(19)3521-5847

Abstract

Given bins of size B, non-negative values d and ∆, and a list L of items, each item
e ∈ L with size se and class ce, we define a shelf as a subset of items packed inside
a bin with total items size at most ∆ such that all items in this shelf have the same
class. Two subsequent shelves must be separated by a shelf division of size d. The
size of a shelf is the total size of its items plus the size of the shelf division. The
Class Constrained Shelf Bin Packing Problem (CCSBP) is to pack the items of L
into the minimum number of bins, such that the items are divided into shelves and
the total size of the shelves in a bin is at most B. We present hybrid algorithms
based on the First Fit (Decreasing) and Best Fit (Decreasing) algorithms, and an
APTAS for the problem CCSBP when the number of different classes is bounded
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1 Introduction

In this paper we present approximation algorithms for a class constrained
bin packing problem when the items must be separated by non-null shelf
divisions. We denote this problem by Class Constrained Shelf Bin Packing
Problem (CCSBP).

An instance for the CCSBP problem is a tuple I = (L, s, c, d, ∆, B), where L
is a list of items, s and c are size and class functions over L, d is the size of the
shelf division, ∆ is the maximum size of a shelf and B is the size of the bins.
Given a sublist of items L′ ⊆ L we denote by s(L′) the sum of the sizes of the
items in L′, i.e, s(L′) =

∑

e∈L′ se. A shelf packing P of an instance I for the
CCSBP problem is a set of bins P = {P1, . . . , Pk}, where the items packed
in a bin Pi ∈ P are partitioned into shelves {N i

1, . . . , N
i
qi
} such that for each

shelf N i
j we have that s(N i

j) ≤ ∆, all items in N i
j are of the same class and

∑qi
j=1(s(N

i
j)+ d) ≤ B. Without loss of generality we consider that 0 < se ≤ ∆

and ce ∈ Z+ for each e ∈ L.

The CCSBP problem is to find a shelf packing of the items of L into the
minimum number of bins. This problem is NP -hard since it is a generalization
of the bin packing problem: in this case consider that the instance has just
one class, ∆ = B and d = 0. We note that the term shelf is used under
another context in the literature for the 2-D strip packing problem. In this
case, packings are two staged packings divided into levels.

There are many practical applications for the CCSBP problem even when
there is only one class of items. For example, when the items to be packed
must be separated by non-null shelf divisions (inside a bin) and each shelf has
a limited capacity. In Figure 1 we can see an example of a shelf packing of
items into one bin, with B = 60, ∆ = 17, d = 3 and all items of the same class.
The CCSBP problem is also adequate when some items cannot be stored in
a same shelf (like foods and chemical products). In most of the cases, the sizes
of the shelf divisions have non-negligible width. Although these problems are
very common in practice, to our knowledge this is the first paper that presents
approximation results for them.

An interesting application for the CCSBP problem was introduced by Ferreira
et al. [4] in the iron and steel industry. In this problem, we have raw mate-
rial rolls that must be cut into final rolls grouped by certain properties after
two cutting phases. The rolls obtained after the first phase, called primary
rolls, are submitted to different processing operations (tensioning, tempering,
laminating, hardening etc.) before the second phase cut. Due to technological
limitations, primary rolls have a maximum allowable width and each cut has
a trimming process that generates a loss in the roll width. Each processing
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Fig. 1. Example of a shelf packing of items into one bin.

operation has a high cost which implies items to be grouped before doing it,
where each group corresponds to one shelf.

Given an algorithm A, and an instance I for the CCSBP problem, we denote
by A(I) the number of bins used by algorithm A to pack the instance I and
by OPT(I) the number of bins used in an optimal solution. The algorithm
A is an α-approximation, if A(I)/OPT(I) ≤ α, for any instance I. In this
case, we also say that A has an absolute performance bound α. In bin packing
problems, it is also usual to use the asymptotic worst case analysis. We say
that A has an asymptotic performance bound α if there is a constant β such
that A(I) ≤ αOPT(I) + β for any instance I.

Given an algorithm Aε, for some ε > 0, and an instance I for some problem P
we denote by Aε(I) the value of the solution returned by algorithm Aε when
executed on instance I. We say that Aε, for ε > 0, is an asymptotic polynomial
time approximation scheme (APTAS) for the problem CCSBP if there exist
constants t and K such that Aε(I) ≤ (1 + tε)OPT(I) + K for any instance I.

Results: In this paper we present hybrid algorithms for the CCSBP problem,
based on the First Fit (Decreasing) and Best Fit (Decreasing) algorithms for
the bin packing problem. When the number of different classes is bounded
by a constant, we show that the hybrid versions of the First Fit and Best
Fit algorithms have an asymptotic performance bound of 3.4 and the hybrid
versions of the First Fit Decreasing and Best Fit Decreasing algorithms have an
asymptotic performance bound less than 2.445. In the case where the number
of different classes is part of the input, we show that the hybrid versions of
the First Fit and Best Fit algorithms have an absolute performance bound of
4 and the hybrid version of the First Fit Decreasing algorithm has an absolute
performance bound of 3. At last, for the case when the number of classes is
bounded by a constant, we present an APTAS for the CCSBP problem.

Related Work: A special case of the CCSBP problem is the Bin Packing
problem, which is one of the most studied problems in the literature. Some of
the most famous algorithms for the bin packing problem are the algorithms
FF, BF, FFD and BFD, with asymptotic performance bounds 17/10, 17/10,
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11/9 and 11/9, respectively. Fernandez de la Vega and Lueker [3] presented
an APTAS for the bin packing problem. Dawande et al. [2], presented approx-
imation schemes for a class constrained version of the bin packing (CCBP),
where bins can have different sizes and each bin is used to pack items of
at most k different classes, and the number of different classes in the input
instance is bounded by a constant. Shachnai and Tamir [7], presented a poly-
nomial time approximation scheme for a dual version of the problem CCBP

also for the case where the number of different classes in the input instance
is bounded by a constant. Shachnai and Tamir [8], considered a special case
of an online class constrained bin packing problem. In this case all items have
the same size and must be packed without knowledge of the next subsequent
items of the input. We refer the reader to Coffman et al. [1] for a survey on
approximation algorithms for bin packing problems. In [11], we consider the
knapsack version of the CCSBP problem, where each item e has also a value
ve. The objective is to find a shelf packing of a subset S of the items in just
one knapsack (bin) of size K, such that the total value of the items in S is
maximum. We also give a PTAS for this problem. We remark that, despite
of the similarity of the problems, the techniques and algorithms used in this
paper are not related to the ones used in the knapsack version of the problem.
Practical approaches for the CCSBP problem were considered by Ferreira et
al. [4], that introduced the problem in the iron and steel industry. Recently,
the problem was considered by Hoto et al. [5] and Marques and Arenales [6].
Hoto et al. [5], considered the cutting stock version of the problem where a
demand of items must be attended by the minimum number of bins. They
use a column generation strategy. In [6] exact and heuristic algorithms are
presented for a knapsack version of the problem.

1.1 Notation

On the forthcoming sections we use the following notation: Given an instance
I = (L, s, c, d, ∆, B) for the CCSBP problem, we denote by n = |L| the
number of items in this instance. For any integer t, we denote by [t] the set
{1, . . . , t}. We assume that each class belongs to the set [C]. We assume that
C is bounded by a constant, unless otherwise stated. We denote by OPTs(I)
the minimum number of non-null shelves in an optimal packing of I, and
by OPT(I) the number of bins in this optimal solution. Given a packing
P = {P1, . . . , Pk}, we denote by |P| = k the number of bins used in this
packing, and by Ns(P) the number of shelves used in all bins of P. Given an
algorithm A we denote by A(I) the number of bins used by the algorithm A
to pack the instance I.
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1.2 Simple Lower Bounds

The following facts present lower bounds for the number of bins used in any
optimum solution for the CCSBP problem.

Fact 1 For any instance I = (L, s, c, d, ∆, B), we have

OPT(I) ≥
s(L)

⌈B/(d + ∆)⌉∆
.

PROOF. Since ⌈B/(d+∆)⌉ is an upper bound for the number of totally filled
shelves in a bin, the total items size in a bin is at most ⌈B/(d + ∆)⌉∆. 2

Fact 2 For any instance I = (L, s, c, d, ∆, B), we have

OPT(I) ≥
s(L) + OPTs(I)d

B
≥

s(L) + ⌈s(L)/∆⌉d

B
.

PROOF. The statement holds since ⌈s(L)/∆⌉ is a lower bound for the num-
ber of shelves used in any packing. 2

2 Hybrid versions of the First Fit and Best Fit Algorithms

In this section we present hybrid versions of the First Fit (Decreasing) and
Best Fit (Decreasing) algorithms, for the classic bin packing problem, to the
CCSBP problem. Without loss of generality, we assume that all bins have
capacity 1.

We briefly describe how these algorithms work for the classic bin packing
problem. The First Fit (FF) and the Best Fit (BF) algorithms pack the items
of a given list L = (e1, . . . , em) in the order given by L. Assume that the items
e1, . . . , ei−1 have been packed into bins B1, B2, . . . , Bk, each bin with capacity
1. To pack the next item ei, the algorithm FF (resp. BF) finds the smallest
index j, 1 ≤ j ≤ k, such that s(Bj)+s(ei) ≤ 1 (resp. s(Bj) is maximum given
that s(Bj) + s(ei) ≤ 1). If the algorithm FF (resp. BF) finds such a bin, the
item ei is packed into the bin Bj . Otherwise, the item ei is packed into a new
bin Bk+1. This process is repeated until all the items of L have been packed.

The First Fit Decreasing (FFD) (resp. Best Fit Decreasing (BFD)) algorithm
first sorts the items of L in non-increasing order of size and then apply the
algorithm FF (resp. BF). The following result holds (see [1,9]).
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Theorem 3 For any instance I for the bin packing problem, we have

FF(I) ≤
17

10
OPT(I) + 1, BF(I) ≤

17

10
OPT(I) + 1,

FFD(I) ≤
11

9
OPT(I) + 3, BFD(I) ≤

11

9
OPT(I) + 3

and FFD(I) ≤
3

2
OPT(I).

Now we can present the hybrid algorithms for the problem CCSBP.

Algorithms SFF, SBF, SFFD and SBFD: Given an instance I = (L, s, c, d,
∆, B), the algorithm SFF (resp. SBF, SFFD and SBFD) uses the algorithm
FF (resp. BF, FFD and BFD) to pack all items of a same class into shelves of
size ∆. The algorithm considers the size of each generated shelf as the total
items size in the shelf plus the size of the shelf division d. The set of generated
shelves are then packed into bins of size B using the algorithm FF (resp. BF,
FFD and BFD).

Given an instance I = (L, s, c, d, ∆, B) for the CCSBP problem, we denote by
OPT∆(I) the minimum number of shelves of size ∆ needed to pack L, where all
items in a shelf have the same class. Clearly OPT∆(I) is a lower bound for the
number of shelves used in any optimal solution. That is, OPT∆(I) ≤ OPTs(I).

Theorem 4 Let I be an instance for the CCSBP problem. If the number of
classes in I is bounded by C then

SFF(I) ≤ (3 +
2

5
) OPT(I) + 2C, SBF(I) ≤ (3 +

2

5
) OPT(I) + 2C,

SFFD(I) ≤ (2 +
4

9
) OPT(I) + 6C and SBFD(I) ≤ (2 +

4

9
) OPT(I) + 6C.

PROOF. Let A′ be an algorithm in {FF, BF, FFD, BFD} such that

A′(I ′) ≤ αOPT(I ′) + β

for any instance I ′ of the classic bin packing problem and let A be the cor-
responding algorithm in {SFF, SBF, SFFD, SBFD}. Let I = (L, s, c, d, ∆, B)
be an instance for the CCSBP problem. Consider the packing P produced by
the algorithm A for the instance I. We consider that |P| > 1, otherwise P is
optimum. On average, all bins in P are filled by at least 1/2 (including shelf
divisions), since the algorithms pack the shelves in such a way that any pair
of bins have total contents size greater than 1. We can conclude the following:
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A(I)(1/2)≤ s(L) + Ns(P)d

≤ s(L) + (αOPT∆(I) + Cβ)d (1)

≤ s(L) + (αOPTs(I) + Cβ)d (2)

≤α(s(L) + dOPTs(I)) + Cβd

≤αOPT(I) + Cβ, (3)

where (1) holds from Theorem 3, and (3) follows from Fact 2 and the fact that
d ≤ 1. 2

Notice that any algorithm for the classic bin packing problem can be easily
extended to an algorithm with the same asymptotic performance bound and
that produces bins that on average are filled by at least half of its capacities.
Therefore, the following result can be easily derived as a generalization of the
previous theorem.

Corollary 5 Given an algorithm A′ for the bin packing problem, such that
A′(L) ≤ αOPT(L) + β for any instance L, then there exists an algorithm A
for the CCSBP such that A(I) ≤ 2αOPT(I) + 2βC, for any instance I of
the CCSBP problem.

This result shows that when the number of classes is bounded by a constant
we can obtain, using an APTAS for the bin packing problem, algorithms for
the CCSBP problem with asymptotic performance bound as close to 2 as
desired (although with high time complexity and with high value of β).

Now we consider that the number of different classes is not bounded by a
constant. Notice that if a given algorithm A′ for the bin packing problem has
absolute performance bound α, then we can derive an algorithm A for the
CCSBP problem with absolute performance bound 2α, even if the number
of different classes of items is given as part of the input. Using the fact that
algorithms FF, BF and FFD have absolute performance bound 2, 2 and 3/2
respectively, we can obtain the following result.

Corollary 6 Let I be an instance for the CCSBP problem, then

SFF(I) ≤ 4OPT(I), SBF(I) ≤ 4OPT(I) and SFFD(I) ≤ 3OPT(I),

even if the number of different classes is not bounded by a constant.

From the practical point of view, the size of the shelf division d is not so
large compared with ∆. The next theorem shows that if d is a small fraction
of ∆, we can obtain a better performance bound for the Best and First Fit
strategies.

Theorem 7 Let I = (L, s, c, d, ∆, B) be an instance for the CCSBP problem.

7



If the number of classes in I is bounded by C and d = ∆
r
, r ≥ 1, we have

SFF(I) ≤ (2 +
14

5r
) OPT(I) + 2C, SBF(I) ≤ (2 +

14

5r
) OPT(I) + 2C,

SFFD(I) ≤ (2 +
8

9r
) OPT(I) + 6C, SBFD(I) ≤ (2 +

8

9r
) OPT(I) + 6C,

and SFFD(I) ≤ (2 +
2

r
)OPT(I).

PROOF. Let A′ be an algorithm in {FF, BF, FFD, BFD} such that

A′(I ′) ≤ αOPT(I ′) + β

for any instance I ′ of the classic bin packing problem and let A the corre-
sponding algorithm in {SFF, SBF, SFFD, SBFD}. Let I = (L, s, c, d, ∆, B)
be an instance for the CCSBP problem and P the packing produced by the
algorithm A for the instance I.

We divide the proof in two cases, according to the values of Ns(P) and
OPTs(I).

Case 1: Ns(P) < OPTs(I). In this case, we have

A(I)(1/2)≤ s(L) + Ns(P)d

< s(L) + OPTs(I)d

≤OPT(I), (4)

where inequality (4) holds from Fact 2. That is,

A(I) ≤ 2OPT(I). (5)

Case 2: Ns(P) ≥ OPTs(I). In this case, we can follow the proof of Theorem
4 and obtain inequality (2). That is,

A(I)(1/2) ≤ s(L) + (αOPTs(I) + Cβ)d. (6)

Since on average each shelf generated by the algorithm A is filled by at least
∆/2 (not including the shelf division), we have

OPT(I)≥ s(L)

≥Ns(P)(∆/2)

≥OPTs(I)∆/2 = OPTs(I)dr/2.

That is, OPTs(I)d ≤ (2OPT(I))/r. Therefore, from inequality (6), we have
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A(I)(1/2)≤ s(L) + (αOPTs(I) + Cβ)d.

= s(L) + OPTs(I)d + (α− 1)OPTs(I)d + Cβd.

≤OPT(I) +
α− 1

r
(2OPT(I)) + Cβd.

≤ (1 +
2(α− 1)

r
)OPT(I) + Cβd.

That is,

A(I) ≤ (2 +
4(α− 1)

r
)OPT(I) + 2βC. (7)

The theorem follows from inequalities (5), (7) and theorem 3. 2

The following proposition shows that the previous theorem presents an asymp-
totic performance bound that is tight for the algorithms SFF and SBF, when
d is very small compared to ∆.

Proposition 8 The asymptotic performance bound of the algorithms SFF and
SBF is at least 2, even when there is only one class.

PROOF. Let In = (L, s, c, d, ∆, B) be an instance with L = (e1, . . . , e2n),
ε = 1/n, d = ε/2, B = 1, ∆ = 1/2 and s(ei) = 1/2 − ε when i is odd
and s(ei) = ε otherwise. Notice that d = ∆/n. Also assume that all items
have a same class. The SFF and SBF algorithms applied over this instance
generates n shelves, each one containing one item of size 1/2− ε and one item
of size ε. The final packing generated by these algorithms has n bins, each one
containing one shelf. An optimal packing with n/2 + 1 bins can be obtained
in such a way that n/2 bins have two shelves each, one shelf with an item of
size 1/2− ε, and the other shelf with two items, one item of size 1/2− ε and
another of size ε. The last bin contains the remaining items of size ε. 2

3 An Asymptotic Polynomial Time Approximation Scheme

In this section we present an APTAS for the CCSBP problem when the
number of different classes is bounded by a constant C.

The algorithm is presented in Figure 2 and is denoted by ASBPε. It considers
two cases: When ε ≥ d + ∆, it uses an algorithm denoted by ASBP′

ε and
in the other case, it uses an algorithm denoted by ASBP′′

ε . Notice that the
algorithm ASBP′′

ε receives as input a rescaled instance so that the maximum
shelf capacity is 1.
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Algorithm ASBPε(L, s, c, d,∆, B)
Input: List of items L, each item e ∈ L with size se and class ce, maximum

capacity of a shelf ∆, shelf divisions of size d, bins of capacity B = 1.

Output: Shelf packing P of L.
Subroutines: Algorithms ASBP′

ε and ASBP′′
ε .

1. If ε ≥ d + ∆ then

2. P ← ASBP′
ε(L, s, c, d,∆, B)

3. else

4. Scale the sizes d, ∆, B and se, for each e ∈ L, proportionally so that
∆ = 1.

5. // The condition to enter in this case is now equivalent to ε ≤ (d+∆)/B.

6. P ← ASBP′′
ε(L, s, c, d,∆, B).

7. Return P.

Fig. 2. Algorithm ASBPε.

The intuition to consider these two cases is that in the first case, we can pack
shelves almost optimally because the maximum size of a shelf is bounded by
ǫ, and then the bins can be filled by at least (1− ǫ). In the second case, since
ǫ < d + ∆, we can bound by a constant the number of shelves used in each
bin of an optimal solution. Then an enumeration step can be done to guess
the shelves that are used in an optimal solution and an almost optimal shelf
packing can be generated for large items. Small items are packed later using
a linear programming strategy. In the following two subsections we show that
algorithms ASBP′

ε and ASBP′′
ε are APTAS.

3.1 The algorithm ASBP′
ε

In this section we show that the algorithm ASBP′
ε is an APTAS for its corre-

sponding case. This algorithm uses two subroutines: One is the FF algorithm
and the other is an APTAS for the one dimensional bin packing problem pre-
sented by Fernandez de la Vega and Lueker [3]. We consider the version of
this APTAS presented by Vazirani [10], which we denote by FLε, for which
the following statement holds.

Theorem 9 For any ε > 0, there exists a polynomial time algorithm FLε to
pack a list of items L, each item e ∈ L with size se ∈ [0, ∆], into bins of
capacity ∆ such that FLε(L) ≤ (1 + ε) OPT∆(L) + 1, where OPT∆(L) is the
minimum number of bins of capacity ∆ to pack L.

The algorithm ASBP′
ε is presented in Figure 3. Given an instance I, the al-

gorithm ASBP′
ε first packs all items of the instance into bins of size ∆ using

the algorithm FLε. The algorithm ASBP′
ε considers each one of these bins of

size ∆ as a shelf, where the size of a shelf is its total items size plus the size d
of a shelf division. The algorithm ASBP′

ε packs these shelves into bins of size
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1 using the algorithm FF.

Algorithm ASBP′
ε(L, s, c,∆, d,B)

Input: List of items L, each item e ∈ L with size se and class ce, maximum
capacity of a shelf ∆, shelf divisions of size d, bins of capacity B = 1
and ε ≥ d + ∆.

Output: Shelf packing P of L.
Subroutines: Algorithms FLε and FF.

1. Let Lc be the set of items of class c in L.

2. For each class c ∈ [C] let Pc
∆ be the packing of Lc obtained by the algorithm

FLε using bins of capacity ∆.

3. Let P∆ be the union of the packings Pc
∆, for each c ∈ [C].

4. Consider each bin D ∈ P∆ as a shelf with size
∑

e∈D se + d.

5. Let S be the set of shelves obtained from P∆.

6. Let P be the packing obtained with the algorithm FF to pack the shelves of
S into unit bins.

7. Return P.

Fig. 3. Algorithm ASBP′
ε where ε ≥ d + ∆.

The following statement holds for the algorithm ASBP′
ε.

Lemma 10 The algorithm ASBP′
ε, is an APTAS for the CCSBP problem

when the given instance I is such that B = 1 and ε ≥ d + ∆.

PROOF. In step 2, the algorithm obtains a packing Pc
∆ of items of class c in

L (items in Lc) into bins of capacity ∆ using the algorithm FLε. By Theorem
9, we have

|Pc
∆| ≤ (1 + ε)OPT∆(Lc) + 1. (8)

The algorithm then considers each bin in P∆ as a shelf and obtains a shelf
packing P using the algorithm FF to pack these shelves into unit bins. Since
ε ≥ d + ∆, all bins of P, except perhaps the last, must be filled by at least
1− ε. So,

(ASBP′
ε(L)− 1)(1− ε)≤ s(L) + d|P∆|

≤ s(L) + d
C

∑

c=1

((1 + ε)OPT∆(Lc) + 1)

≤ (1 + ε)(s(L) + d
C

∑

c=1

OPT∆(Lc)) + dC

≤ (1 + ε)(s(L) + dOPTs(I)) + dC (9)

≤ (1 + ε)OPT(I) + C

where inequality (9) is valid from Fact 2. Also notice that d < 1. Therefore,
for any 0 < ε < 1/3 we have
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ASBP′
ε(L)≤

1 + ε

1− ε
OPT(I) +

C

1− ε
+ 1

≤ (1 + 3ε)OPT(I) +
3C

2
+ 1.

Notice that the running time of the algorithm ASBP′
ε only depends on the

running times of algorithms FLε and FF, and the value of C. Let TFL(n, ǫ)
and TFF(n, ǫ) be the running times of algorithms FLε and FF respectively.
The running time of algorithm ASBP′

ε is O(C TFL(n, ǫ)+TFF(n, ǫ)). Since the
algorithms FLε and FF have polynomial time complexity in n for fixed ε, the
complexity time of algorithm ASBP′

ε is also polynomial in n for fixed ε. 2

3.2 The algorithm ASBP′′
ε

Now, assume that the algorithm ASBPε obtains a shelf packing with the al-
gorithm ASBP′′

ε . Throughout this section, we consider that se, d, ∆ and B is
the rescaled instance, such that ∆ = 1. Notice that, the equivalent condition
to enter in this case is

ε <
d + ∆

B
=

d + 1

B
. (10)

Notice that the maximum number of shelves completely filled packed in a bin
is at most

⌈

B
d+∆

⌉

which from (10) is at most 1
ε
+1. Observe that if there is any

bin with more than 2
ε

+ 2 shelves of a same class, it has at least two shelves
of this class with total size at most ∆. In this case, these two shelves can be
combined into only one shelf. Without loss of generality we consider that each
bin, in a solution for the CCSBP problem, contains at most 2

ε
+ 2 shelves of

a same class.

In Figure 4 we present the algorithm ASBP′′
ε . The algorithm first obtains a

pair (P1, P) where P1 ∪ P
′, for each P ′ ∈ P, is a packing of big items (items

with size at least ε2). This pair is obtained by the subroutine ALR. For each
packing P1 ∪ P

′, P ′ ∈ P, the algorithm ASBP′′
ε uses the subroutine SMALL

to pack the items with size less than ε2 into the packing P ′. At least one of
the generated packings uses at most (1 + O(ε))OPT(I) + O(1) bins as will be
shown latter. The algorithm returns the packing with the smallest number of
bins.

In the next subsections we present the subroutines used by the algorithm
ASBP′′

ε . The first subroutine called ALR is used to generate a set of packings
of big items. On the next subsection we present an algorithm called SMALL
used to pack small items (items with size smaller than ǫ2) in the packings
of the big items generated by the algorithm ALR. In the last subsection we

12



Algorithm ASBP′′
ε(L, s, c, d,∆, B)

Input: List of items L, each item e ∈ L with size se and class ce, maximum
capacity of a shelf ∆ = 1, shelf divisions of size d, bins of capacity B
and ε ≤ (d + ∆)/B.

Output: Shelf packing P of L.
Subroutines: Algorithms ALR and SMALL.

1. Let G be the set of items e ∈ L with size se ≥ ε2 and S the set L \G.

2. Let (P1, P) be a pair obtained from the algorithm ALR applied over
the list G.

3. For each Q ∈ P do

4. let Q̂ be the packing obtained using the algorithm SMALL to pack S
into Q.

5. Let P be a packing P1 ∪ Q̂ where Q ∈ P and |Q̂| is minimum.

6. Return P.

Fig. 4. Algorithm ASBP′′
ε .

present the analysis of the algorithm ASBP′′
ε .

3.2.1 Generating Packings for the Big Items

In this section, we present the algorithm ALR used to pack items with size at
least ǫ2 of a given input instance I. This algorithm generates a set of packings
such that at least one can be used to pack the small items, such that the
resulting packing has size at most (1 + O(ε))OPT(I) + O(1). This algorithm
uses the linear rounding technique, presented by Fernandez de la Vega and
Lueker [3], and considers only items with size at least ε2. The algorithm ALR

returns a pair (P1, P), where P1 is a packing for a list of very big items and P

is a set of packings for the remaining items.

We use the following notation in the description of the linear rounding tech-
nique: Given two lists of items X and Y , let X1, . . . , XC and Y1, . . . , YC be
the partition of X and Y respectively in classes, where Xc and Yc have only
items of class c for each c ∈ [C]. We write X � Y if there is an injection
fc : Xc → Yc for each c ∈ [C] such that s(e) ≤ s(f(e)) for all e ∈ Xc. Given
two lists L1 and L2 we denote by L1‖L2 the concatenation of these lists.

The algorithm ALR uses three subroutines: AALL, SFF, and AR. The algorithm
SFF was presented in Section 2. In what follows we present the algorithms
AALL and AR.

Algorithm AALL: This is an algorithm used as subroutine to generate all
possible packings with at most 2

ε
+ 2 shelves of a same class, when the size

of each item is bounded from below by a constant and the number of distinct
sizes in each class is upper bounded by a constant t. The algorithm may
generate empty shelves (used latter to pack small items). The following lemma

13



guarantees the existence of such an algorithm.

Lemma 11 Given an instance I = (L, s, c, d, ∆, B), with ∆ = 1, where the
number of distinct items sizes in each class is at most a constant t, the number
of different classes is bounded by a constant C and each item e ∈ L has
size se ≥ ε2, then there exists a polynomial time algorithm that generates all
possible shelf packings of L with at most 2

ε
+ 2 shelves of a same class in each

bin.

PROOF. The number of items in a shelf is bounded by p = 1/ε2. Given a

class, the number of different shelves for it is bounded by r′ =
(

p+t+1
p

)

and so,

the number of different shelves is bounded by r = Cr′. Since the number of
shelves in a bin is bounded by q = C(2

ε
+ 2), the number of different bins is

bounded by u =
(

q+r
q

)

. Notice that u is a (large) constant since all the values
p, q, r and u depends only on ε, C and t which are constants.

Therefore, the number of all feasible packings is bounded by
(

n+u
n

)

, which is

bounded by (n + u)u, which in turn is polynomial in n. 2

Notice that the complexity time of the algorithm AALL is O(nO(2C/ε)O(1/ε2)t

).

Algorithm AR: Given two lists X and Y such that X � Y and a packing
PY of Y , there exists an algorithm, which we denoted by AR (Replace), with
input (PY , X), that obtains a packing PX for X such that |PX | = |PY | as the
next lemma guarantees.

Lemma 12 If X and Y are two lists with X � Y , then OPT(X) ≤ OPT(Y ).
Moreover, if PY is a shelf packing of Y then there exists a polynomial time
algorithm AR that given PY obtains a shelf packing PX of X such that |PX | =
|PY |.

PROOF. The algorithm AR sorts the lists Xc and Yc for each c ∈ [C] in
non-increasing order of items size and then replaces in this order, each item
of Yc in the packing PY by an item of Xc. The possible remaining items of Yc

are removed. 2

For any instance X, denote by X the instance with precisely |X| items with
size equal to the size of the smallest item in X. Clearly, X � X.

14



The algorithm ALR is presented in Figure 5. It consists in the following: Let
G1, . . . , GC be the partition of the input list G into classes 1, . . . , C and let
nc = |Gc| for each class c. The algorithm ALR partition each list Gc into groups
G1

c , G
2
c , . . . , G

kc
c . Let G1 = ∪C

c=1G
1
c . The algorithm generates a packing P1 of

G1 using O(ε)OPT(I)+1 bins and a set P with polynomial number of packings
for the items in G \ G1. The packing P1 is generated by the algorithm SFF
and the set of packings P is generated using the algorithms AALL and AR.

Algorithm ALR(G)
Input: List G with n items, each item e ∈ G with size se ≥ ε2; maximum

capacity of a shelf ∆ = 1; shelf divisions of size d and bins of capacity
B.

Output: A pair (P1, P), where P1 is a packing and P is a set of packings, where
P1 ∪ P

′ is a packing of G for each P ′ ∈ P.

Subroutines: Algorithms AALL, SFF and AR.

1. Partition G into lists Gc for each class c = 1, . . . , C and let nc = |Gc|.

2. Partition each list Gc into kc ≤ ⌈1/ε
3⌉ groups G1

c , G
2
c , . . . , G

kc
c , such that

G1
c � G2

c � · · · � Gkc
c ,

where |Gj
c| = qc = ⌊ncε

3⌋ for all j = 1, . . . , kc − 1,

and |Gkc
c | ≤ qc.

3. Let G1 = ∪C
c=1G

1
c .

4. Let P1 be a packing of G1 obtained by the algorithm SFF.

5. Let Q be the set of all possible packings obtained with the algorithm

AALL over the list (G1
1‖ . . . ‖G

k1−1
1 ‖ . . . ‖G1

C‖ . . . ‖G
kC−1
C ).

6. Let P be the set of packings obtained with the algorithm AR over each
pair (Q, G2

1‖ . . . ‖G
k1
1 ‖ . . . ‖G

2
C‖ . . . ‖G

kC
C ), where Q ∈ Q.

7. Return (P1, P).

Fig. 5. Algorithm to obtain packings for items with size at least ε2.

Denote by TALL, TR and TSFF the time complexity of algorithms AALL, AR,
and SFF respectively. The time complexity of steps 1–3 of algorithm ALR

is bounded by O(n log n). The overall time complexity of algorithm ALR is
O(n log n + TSFF + TALL + TALLTR). Since TALL, TR and TSFF have polynomial
time complexity in n for fixed ε, the time complexity of algorithm ALR is also
polynomial in n for fixed ε.

The following statement holds for the packing P1.

Lemma 13 The packing P1 for the items in G1 is such that

|P1| ≤ 4ε OPT(I) + 1.
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PROOF. First, consider the total items size packed in a bin T of some shelf
packing. From Fact 1 any optimum solution must satisfy

OPT(I) ≥
s(L)

⌈B/(d + ∆)⌉∆
=

s(L)

⌈B/(d + 1)⌉
≥

1

2

s(L)

B/(d + 1)
. (11)

Notice that
∑C

c=1 nc = n. The algorithm SFF packs at least ⌊B/(d + ∆)⌋
shelves in each bin, each shelf with at least one item. This means that each
bin has at least ⌊B/(d + ∆)⌋ items, except perhaps the last, each item with
size at least ε2 and at most 1. Since the group G1 has at most nε3 items, the
number of bins in the shelf packing P1 can be bounded as follows.

|P1| ≤

⌈

nε3

⌊B/(d + ∆)⌋

⌉

=

⌈

nε3

⌊B/(d + 1)⌋

⌉

≤ 2
nε3

B/(d + 1)
+ 1 ≤ 2

ε s(L)

B/(d + 1)
+ 1

≤ 4ε OPT(I) + 1, (12)

where the inequality (12) is valid from (11). 2

3.2.2 Packing the Small Items

In this section we present an algorithm to pack the small items. If we only
consider the big items, at least one of the packings generated by the algorithm
ALR has basically the same configuration of an optimal packing. That is, one
of the generated packings has approximately the same number of bins and
approximately the same shelves (including empty shelves that are used only
for small items) of an optimal packing. Therefore the algorithm can guess
how the small items are packed into the shelves of this packing, leaving only a
small fraction of small items to be packed in new extra bins. Notice that a first
approach to deal with the CCSBP problem, would be to produce the packing
of the big items and then try to pack small items greedily. In the classic bin
packing problem this approach works, since after packing the small items in
the bins, each bin is filled by at least (1 − ǫ) of its capacity, except perhaps
the last bin. In the CCSBP problem this strategy may not work, since after
packing the small items, the packing could use more shelves. This way, each
bin would not be filled with items by at least (1− ǫ) of its capacity, since each
bin also contains shelf divisions. To pack small items in the shelves generated
by the algorithm ALR we use a linear programming strategy. This approach
has an easier and clearer analysis leading to the APTAS.
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The algorithm ASBP′′
ε uses a subroutine denoted by SMALL to pack small

items (size less than ε2) into a given packing of big items. Let P = {P1, . . . , Pk}
be a shelf packing of a list of items L and assume that we have to pack a set S
of small items, with size at most ε2, into P. The packing of the small items is
obtained from a solution of a linear program. Let N ic

1 , . . . , N ic
nic

be the shelves
of class c in the bin Pi of the packing P. For each shelf N ic

j , define a non-
negative variable xic

j . The variable xic
j indicates the total size of small items

of class c that is to be packed in the shelf N ic
j . Consider the following linear

program denoted by LPS:

max
k

∑

i=1

C
∑

c=1

nic
∑

j=1

xic
j

s(N ic
j ) + xic

j ≤ ∆ ∀ i ∈ [k], c ∈ [C], j ∈ [nic], (1)
C

∑

c=1

nic
∑

j=1

(s(N ic
j ) + xic

j + d) ≤ B ∀ i ∈ [k], (2)

t
∑

i=1

nic
∑

j=1

xic
j ≤ s(Sc) ∀ c ∈ [C], (3)

xic
j ≥ 0 ∀ i ∈ [k], c ∈ [C], j ∈ [nic] (4)

where Sc is the set of small items of class c in S.

Constraint (1) guarantees that the amount of space used in each shelf is at
most ∆ and constraint (2) guarantees that the amount of space used in each
bin is at most B. Constraint (3) guarantees that variables xic

j are not greater
than the total size of small items.

Given a packing P, and a set S of small items, the algorithm SMALL first
solves the linear program LPS, and then packs small items in the following
way: For each variable xic

j it packs, while possible, the small items of class c
into the shelf N ic

j , so that the total size of the packed small items is at most xic
j .

The possible remaining small items are grouped by classes and packed using
the algorithm SFF into new bins. The complexity time of algorithm SMALL
is polynomial in n, since the linear program LPS can be solved in polynomial
time and the algorithm SFF also has polynomial time.

The following lemma is valid for the algorithm SMALL.

Lemma 14 Let P be a shelf packing of a list of items L, where each bin of
P has at most 2

ε
+ 2 shelves of a same class, G be the set of items in L with

size at least ε2 and S be the set L \ G. Let G′ be a list of items with G′ � G
and P̂ be a packing of the items G′ ∪ S obtained from P as follows:

(1) Let P1 be the packing obtained from P removing the items of S.
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(2) Let P2 be the packing of G′ using the algorithm AR over the pair (P1, G
′).

(3) Let P̂ be the packing obtained applying the algorithm SMALL over the
pair (P2, S).

Then, we have |P̂| ≤ (1 + 8Cε)|P|+ C + 1.

PROOF. Notice that |P2| = |P| and for each shelf Nj in a bin of P, its

corresponding shelf N ′
j in P2 is such that s(N ′

j) ≤ s(Nj). If |P̂| = |P| then the
lemma follows. So assume that the algorithm SMALL uses additional bins to
pack the items of S.

Given a bin E, denote by ns(E) the number of shelves in E, nsc(E) the number
of shelves of class c in E, ss(E) the total size of small items in E and ssc(E)
the total size of small items of class c in E.

Consider the linear program LPS. An optimum solution for LPS leads to an
optimal fractional packing P∗ of the small items such that |P∗| = |P|. Consider
a bin P ∗

i of P∗ and P̂i the corresponding bin in P̂ . We first prove that the
following inequality is valid,

ss(P ∗
i )− ss(P̂i) ≤ 4Cε. (13)

To prove (13), notice that nsc(P
∗
i ) = nsc(P̂i) for each class c. Given a shelf

N ic
j and the corresponding variable xic

j , the algorithm SMALL packs a set of
items T ic

j in N ic
j such that xic

j −s(T ic
j ) ≤ ε2 since a small item has size at most

ε2. Since each bin in P∗ has at most 2
ε
+2 shelves of a same class, we have for

each class c ∈ [C]

ssc(P̂i)≥
nic
∑

j=1

(xic
j − ε2) = ssc(P

∗
i )− nsc(P

∗
i )ε2

≥ ssc(P
∗
i )− (

2

ε
+ 2)ε2 ≥ ssc(P

∗
i )− 4ε.

Since the above inequalities are valid for each class we can conclude the proof of
(13). From (13), we know that the total size of small items packed in additional
bins by SMALL with the algorithm SFF, is at most 4Cε|P∗| = 4Cε|P|. Denote
by Q̂ the set of additional bins. Each shelf generated by the algorithm SFF is
filled by at least ∆− ε2, except perhaps in C shelves. Therefore, the number
of shelves in Q̂ is at most

⌈

4Cε|P|
1−ε2

⌉

+C ≤ 8Cε|P|+C +1. Since each additional

bin has at least one shelf, the number of bins in Q̂ is at most 8Cε|P|+ C + 1.
Therefore, the number of bins in P̂ is at most (1 + 8Cε)|P|+ C + 1. 2
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3.2.3 Analysis of the Algorithm ASBP′′
ε

In this section we conclude the analysis of the algorithm ASBP′′
ε . First, let TLR

and TS be the time complexities of algorithms ALR and SMALL, respectively.
Notice that the time complexity of algorithm ASBP′′

ε is dominated by steps
2–4, that have time complexity O(TLR + TLRTS). Since the time complexity
of algorithms ALR and SMALL is polynomial for fixed ε, the time complexity
of algorithm ASBP′′

ε is also polynomial. The following lemma concludes the
analysis of the algorithm ASBP′′

ε .

Lemma 15 The algorithm ASBP′′
ε , is an APTAS for the CCSBP problem

when the given instance I is such that ∆ = 1, ε ≤ (d + ∆)/B and the number
of different classes is bounded by some constant C.

PROOF. Given an instance I = (L, s, c, d, ∆, B), with ∆ = 1, let G be the
set of items in L with size at least ε2 and S the set L \G.

The items in G are packed by the algorithm ALR. It first partitions G into
lists Gc for each class c and then it partitions each list Gc into groups G1

c �
G2

c � . . . � Gkc
c . From Lemma 13 the following inequality is valid for the list

G1 = ∪C
c=1G

1
c .

|P1| ≤ 4ε OPT(I) + 1. (14)

The packing of the items in G2
1‖ . . . ‖Gk1

1 ‖ . . . ‖G2
C‖ . . . ‖GkC

C is obtained from

the set of all possible packings of G1
1‖ . . . ‖Gk1−1

1 ‖ . . . ‖G1
C‖ . . . ‖GkC−1

C . Notice
that

G1
1‖ . . .‖Gk1−1

1 ‖ . . .‖G1
C‖ . . . ‖GkC−1

C � G2
1‖ . . . ‖Gk1

1 ‖ . . . ‖G2
C‖ . . . ‖GkC

C .

Let O be an optimum shelf packing of I, O1 the packing obtained from O
without the items of S but with the possible empty shelves and O2 the packing
of O1 rounding down each item size to the corresponding item in

G1
1‖ . . .‖Gk1−1

1 ‖, . . . , ‖G1
C‖ . . . ‖GkC−1

C .

Clearly, O2 ∈ P, where P is the set of packings generated by the algorithm
AALL. Let Ô be a packing obtained from the algorithm AR over the pair

(O2, G
2
1‖ . . . ‖Gk1

1 ‖, . . . , ‖G
2
C‖ . . . ‖GkC

C ).

IfQ is a packing obtained applying the algorithm SMALL over the pair (Ô, S),
we have from Lemma 14 the following result.

Q ≤ (1 + 8Cε)|O|+ C + 1 = (1 + 8Cε)OPT(I) + C + 1 (15)
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Since the algorithm ASBP′′
ε obtains a packing P that uses at most the number

of bins in P1 ∪ Q, the theorem follows from inequalities (14) and (15). 2

From lemmas 10 and 15, the following statement holds.

Theorem 16 The algorithm ASBPε is an APTAS for the CCSBP problem.

4 Concluding Remarks

In this paper we consider the CCSBP problem, a class constrained bin pack-
ing problem with non-null shelf divisions. Although this problem has many
practical applications, to our knowledge, this is the first paper to present ap-
proximation results for it. We first presented hybrid versions of the First Fit
(Decreasing) and Best Fit (Decreasing) algorithms for the bin packing prob-
lem to the CCSBP problem. When the number of different classes of items
is bounded by a constant C, we prove that the versions of the First Fit and
Best Fit have asymptotic performance bound 3.4 and the versions of the First
Fit Decreasing and Best Fit Decreasing have asymptotic performance bound
2.445. We also presented an APTAS for this same case whose running time is

O(nO(2/ε)O(1/ε2)C/ε3

).

This algorithm is more of theoretical (rather than practical) interest since
it has a high running time (yet polynomial). When the number of classes is
not bounded by a constant we show that the algorithm SFFD has absolute
performance bound 3.
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