
Heuristics for the Strip Packing Problem with Unloading Constraints ∗

Jefferson L. M. da Silveira
Institute of Computing
University of Campinas

jmoises@ic.unicamp.br

Eduardo C. Xavier
Institute of Computing
University of Campinas
ecx@ic.unicamp.br

Flávio K. Miyazawa
Institute of Computing
University of Campinas
fkm@ic.unicamp.br

March 9, 2012

Abstract

This article addresses the Strip Packing Problem with Unloading Constraints (SPU). In this problem,
we are given a strip of fixed width and unbounded height, and n items of C different classes. As in
the well-known two-dimensional Strip Packing problem, we have to pack all items minimizing the used
height, but now we have the additional constraint that items of higher classes cannot block the way out of
lower classes items. This problem appears as a sub-problem in the Two-Dimensional Loading Capacitated
Vehicle Routing Problem (2L-CVRP), where one has to optimize the delivery of goods, demanded by
a set of clients, that are transported by a fleet of vehicles of limited capacity based at a central depot.
We propose two approximation algorithms and a GRASP heuristic for the SPU problem and provide an
extensive computational experiment with these algorithms using well know instances for the 2L-CVRP
problem as well as new instances adapted from the Strip Packing problem.

Key Words: Strip Packing, GRASP, Approximation Algorithms, 2L-CVRP.

1 Introduction

In recent years some attention has been devoted to the combination of two problems: the two-dimensional
packing and the routing problem. The combination of these two problems models situations where one aims to
deliver goods, demanded by customers, that are transported by vehicles of limited capacity based at a central
depot. This problem is called Two-Dimensional Loading Capacitated Vehicle Routing Problem (2L-CVRP)
[25]. The objective is to generate a set of routes of minimum total cost that covers all clients, where each route
induces feasible packings, i.e, all items of one route must be packed in one vehicle satisfying the traditional
packing constraints and a new unloading constraint. The unloading constraint is the following: given a set of
items that are delivered along a route, while delivering items of one client, there must not exists items of other
clients ahead on the rout blocking the way out of the items of the current client.

One important task in algorithms for the 2L-CVRP problem (see [20] [18] [26] [15]) is to check if a giving
route induces a valid packing. One way of doing this, is solving a strip packing problem with the unloading
constraint and checking whether the generated packing height is smaller or larger than the maximum allowable
height. In this work we focused on this problem called here by Strip Packing with Unloading Constraints
(SPU).

We can define the SPU problem as follows: Given a strip S of fixed width and unbounded height, and a
list of items of C different classes, each item ai of height h(ai), width w(ai) and class c(ai), we must pack the

∗This research was supported by CNPQ and FAPESP.

1

1 INTRODUCTION 2

items into S minimizing the used height. Furthermore, if an item ai has class greater than aj , i.e c(ai) > c(aj),
then ai must not block the way out when removing item aj . We also consider the case in which 90◦ rotations
are allowed (SPUr). This problem is strongly NP-Hard since it is a generalization of the Two-dimensional
Strip Packing problem.

Papers which addresses the 2L-CVRP problem used some simple heuristics or exact algorithms to tackle
the packing problem, and do not provide information about the quality of the solutions (except [18] that
presented the average occupied area in the vehicles (bins) of the problem).

In [20] Iori et al. proposed an exact algorithm to the 2L-CVRP problem. Their packing algorithm is the
bottom-left heuristic and a branch-and-bound procedure to check the feasibility of the loadings. Their solution
can solve instances involving up to 25 clients and 91 items in one day of CPU time.

Gendreau et al. [18] proposed a tabu search algorithm to the 2L-CVRP problem. The packing problem is
solved using heuristics, local search and a truncated branch-and-bound. Their algorithm iteratively applies a
procedure based on the Touching Perimeter algorithm [27] for the two-dimensional bin packing problem (it is
worth noting that the Touching Perimeter heuristic is also used in the two-dimensional strip packing problem
[23]). At first, the items are sorted in reverse order of clients visit, and a packing is constructed. Subsequently
the algorithm tries to improve the packing perturbing the trivial order that items were packed.

In [26] Kiranoudis et al. proposed a guided tabu search heuristic to the 2L-CVRP. They used 5 different
heuristics (in order) to tackle the packing problem. The first and second heuristics are based on the bottom-left
heuristic. The third and fourth heuristics are similar to the one used by Gendreau et al. [18], based on the
Touching Perimeter.

The best result for the 2L-CVRP is due to Doerner et al. [15] and their Ant Colony Optimization heuris-
tic. The authors use Bin-packing lower bounds to prove unfeasibility of some routes, and then heuristics to
construct the packing solutions. Their heuristics are quite similar to the ones previously cited in [18] and [26]
(Bottom-left and Touching Perimeter) and also use a truncated branch-and-bound with a limited CPU time.

One of the best results for the Strip Packing problem without rotations were obtained by a Reactive GRASP
heuristic proposed by Alvarez et al. [1]. Some other papers also achieved similar results [5] [11] [8].

In [3], Azar and Epstein proposed an online 4-competitive algorithm to a version of the strip packing
problem, where while packing one item there must be a free way from the top of the bin until the position
where the item is packed. In this model, a rectangle arrives from the top of S, and it should be moved
continuously using only the free space until it reaches its place, as in the well known TETRIS game. Their
online algorithm can be easily modified to an offline algorithm to the relaxed version of the SPU problem
where the items can use vertical and horizontal movements to leave the bin.

Fekete et al. [16], proposed an online 2.6154-competitive algorithm to a version of the square strip packing
problem, similar to the one considered in [3]. In this algorithm, the items are packed from the top of S and
are moved only with vertical movements to reach its final position. In addition, an item is not allowed to move
upwards and has to be supported from below when reaching its final position. These conditions are called
gravity constraints. Their slot based algorithm can be easily used to the SPU problem, achieving an 2.6154-
approximation, in the special case where items are squares. We just need to sort the items in non-increasing
order of class values.

Finally, Augustine et al. [2] present approximation algorithms for a related problem. They consider the
strip packing problem with precedence constraints and/or with release dates. Their problem has applications
in scheduling problems for FPGA.

1.1 Our Results

For the SPUr problem, we propose a bin packing based heuristic and prove that this heuristic is a 6.75-
approximation algorithm. Besides that, we also propose an 1.75-approximation algorithm for a special case of

2 DEFINITIONS AND NOTATION 3

the SPU problem, where the number of classes (clients in a route) is bounded by a constant. This algorithm is
based on the well known First-Fit-Decreasing Height algorithm [14].

Finally, we propose a GRASP heuristic for the SPU problem that is based on the Reactive GRASP heuristic
presented in [1]. We adapt this heuristic to consider the unloading constraint and also for the SPUr problem.
We changed the focus of the algorithm to the items classes instead of their dimensions.

Besides the theoretical results presented for the approximation algorithms, their practical performance is
also checked. The effectiveness of the proposed heuristics is demonstrated through extensive computational
experiments on benchmark instances [30]. We also generated several new instances based on benchmark
instances for the strip packing problem [31] [4] [6] [9] [12] [21] [22] [7].

We show that our algorithms achieve a good occupation of the area of the strip in low CPU time.

1.2 Paper Organization

This paper is organized as follows: In Section 2 we introduce our definitions and formalize the description of
the SPU problem. The approximation algorithms are presented in Section 3. In Subsection 3.1 we present an
asymptotic 6.75-approximation algorithm for the SPUr problem and in Subsection 3.2 we present an asymp-
totic 1.75-approximation algorithm for the special case of the SPU problem, where the number of classes in
an instance is bounded by a constant. In Section 4 we present the constructive algorithm and the Local Search
strategy used in the GRASP based heuristics which are described in Section 5. In Section 6 we present the
instances used on the experiments. In Section 7 we summarize our computational experiments and results.
Moreover, we present lower bounds used in this work. Finally, in Section 8 we analyze the results and argue
about the effectiveness of the proposed heuristics and approximation algorithms.

2 Definitions and Notation

We define the SPU problem as follows: An instance of the problem is composed by a strip S of fixed width
W and unbounded height, and a list L of n items, each item ai with height h(ai), width w(ai) and class c(ai).
The class values c(ai) are interpreted as an order of removal of the item from the strip. A packing is defined
by a function π : L → (x(ai), y(ai)), where x(ai) and y(ai) are the coordinates of the bottom-left corner of
the item ai on S. The bottom-left corner of the strip has coordinates (0, 0). The goal is to pack all items into
S minimizing maxi{y(ai) + h(ai)}, 1 6 i 6 n, subject to the constraints:

• All the items must be completely contained in S.

• Items can not overlap each other.

• All the items must satisfy the unloading constraint (See fig. 1), i.e, for any two items ai, aj ∈ L, where
c(ai) > c(aj), we must have x(ai)+w(ai) 6 x(aj) or x(aj)+w(aj) 6 x(ai) or y(ai)+h(ai) 6 y(aj).
This imposes that each item can be removed from the strip in increasing order of classes using only
vertical movements.

Let A be an algorithm for the SPU problem and let A(I) be the cost of the solution computed by A for
instance I . We say thatA is an α-approximation algorithm if it has polynomial time complexity, and for every
I it satisfies A(I) 6 αOPT(I), where OPT(I) is the cost of an optimum solution to instance I . As it is
common in packing problems, we consider in this work asymptotic approximation algorithms, where in this
case the algorithm must satisfy A(I) 6 αOPT(I) + β for some constant β.

3 APPROXIMATION ALGORITHMS 4

 (a)

5

 (b)

5

5

2

5

4

3

3
1

2

1

5 5 5

5

3

2

2

3

4

1
1

 (c)

k

R

Figure 1: For each item in the figure, the number on it corresponds to c(ai) (the order of removal). In part (a)
we can see an infeasible packing since an item of class 4 is blocking the way out of items of class 1, 2 and 3.
In part (b) we have a feasible packing. In part (c) we see a forbidden area R to items ai with c(ai) > k due to
the unloading constraint.

3 Approximation Algorithms

3.1 A 6.75-approximation algorithm for the SPUr problem

In this Section we present the Hybrid Bin Packing (HBP) algorithm to solve the SPUr problem. Without loss
of generality, we assume that the width of the strip is 1 and all items have width and height at most 1. The HPB
algorithm computes the solution in two stages. The algorithm uses in the first stage, a bin packing algorithm,
which we call Level Bin Packin (LBP). This bin packing algorithm packs the items into bins (rectangles) of
height 1 and width 1, using levels or, what we call, horizontal sub-strips (horizontal slices of a bin, see Fig.
2). Then the HBP algorithm, using the bins computed by the LBP algorithm, concatenates these bins in such
a way to obtain a feasible strip S. Due to the form that the algorithm HBP concatenates the bins, we can
resize their widths to values smaller than 1. We first present the LBP algorithm (see Algorithm 1), and then
we present the HBP algorithm (see Algorithm 2).

To describe the LBP algorithm we need some definitions. The items are divided in two categories: buffers
and non-buffers. Buffers are items where at least one dimension is larger than 1/3 and non-buffers the remain-
ing items.

The LBP algorithm creates several bins, and we denote by Bk the k-th bin used by LBP. The occupied
height of some bin Bk is denoted by h(Bk). Formally h(Bk) = maxi{h(ai) + y(ai)}, ai ∈ Bk, i.e, it is the
maximum height where there is some item ai packed. Similarly, we denote by w(Bk) the occupied width of
bin Bk. Formally w(Bk) = maxi{w(ai) + x(ai)}, ai ∈ Bk.

A buffer item is packed alone in a sub-strip with height equal to its height or in individual bins. A sub-strip
used to pack a buffer is considered full.

Non-buffer items are packed into sub-strips Fj of height h(Fj) =
1

3·2j , for j = 0, 1, A non-buffer item
ai is packed in a sub-strip Fj , such that 1/(3 · 2j+1) < h(ai) 6 1/(3 · 2j) = h(Fj). We say that ai has type
Fj (See Fig. 2). Notice that the type of some item ai is uniquely defined by its height h(ai).

The non-buffer items are packed into sub-strips from left to right side by side, justified at the bottom of the
sub-strip. We consider a sub-strip Fj full if its occupied width satisfies w(Fj) > 2

3 .
For each sub-strip Fj , we denote by TFj the tallest item packed in Fj . Sub-strips keep their original height

3 APPROXIMATION ALGORITHMS 5

until the time they are closed when we set h(Fj) = h(TFj). When a sub-strip is closed, no more items can be
packed on it. When a bin or a sub-strip is opened, items can be packed on them.

Finally we denote by S(Bk) the set of all sub-strips in bin Bk (See Fig. 2).

IFi

1
2i·3 h(Fi)

Figure 2: In this Figure we represent the definitions for the HBP algorithm. Non-buffer items are packed in
sub-strips Fi from left to right. IFi is the height of the tallest item in the sub-strip. In this example, S(Bk)
contains only one sub-strip.

The LBP algorithm (see Algorithm 1) always keep at most one open bin and at most one open sub-strip
of each height h(Fj) = 1

3·2j , for j = 0, 1, A sub-strip is closed when it becomes full or when the bin
containing it is closed.

The LBP algorithm packs items in non-increasing order of values c(ai) (line 5). For each class, it first
packs buffers b0, . . . , bx into the last used bin in separated sub-strips while they fit (line 6). Then it packs each
remaining buffer rotated, such that w(bi) 6 h(bi), alone in a bin of width w(bi) (the bin is closed after packing
the item (line 7)).

After packing buffers of one class, the algorithm packs the non-buffer items (line 8-11). For each non-
buffer item ai, the algorithm packs it into an open sub-strip Fj of height 1

3·2j such that 1
3·2j+1 < h(ai) 6 1

3·2j
(line 9). If the item cannot be packed in Fj , then this sub-strip must be full, and then it is closed; a new
sub-strip is created and ai is packed there. If after packing a non-buffer ai we have

∑
F∈S(Bk)

TF > 1 then
the algorithm removes ai, and packs it into a new sub-strip in a new bin and closes the last bin (line 11).

Algorithm 1 Level Bin Packing (LBP)
1: Input: List L of items partitioned into C different classes.
2: Begin
3: Sort L by non-increasing order of class.
4: Rotate all items a ∈ L, such that h(a) 6 w(a).
5: for (c = C down to 1) do
6: Pack the buffers of class c into the open Bin Bk while

∑
F∈S(Bk)

TF 6 1, each buffer in a new sub-strip.
7: Rotate each remaining buffer bi, such that w(bi) 6 h(bi), and pack each one in a new bin of width w(bi). Close each one of these new bins.
8: for (each non-buffer ai of class c) do
9: Pack ai in the open sub-strip Fj where 1/(3 · 2j+1) < h(ai) 6 1/(3 · 2j). If there is no such sub-strip, or ai does not fit in Fj , create a

new sub-strip and pack ai there. Close Fj if it exists and set h(Fj) = TFj
.

10: if (
∑

F∈S(Bk)
TF > 1) then

11: Remove item ai from the current bin Bk and pack it into a new sub-strip into a new bin Bk+1 at the bottom and close Bk .
12: end if
13: end for
14: end for
15: Return the created bins.
16: end.

3 APPROXIMATION ALGORITHMS 6

The algorithm HBP, that generates the final solution, is presented in Algorithm 2. It just calls the algorithm
LBP, concatenate all bins returned side by side forming a horizontal strip S of height 1 and width equal to the
sum of the bins widths (containing all the bins). Then S is rotated to provide a solution to the original problem.

Algorithm 2 Hybrid Bin Packing (HBP)
1: Input: L = {a1, a2, . . . ,an}
2: Begin
3: Let B1, B2, . . . , Bm be the bins computed by LBP in the order they were created.
4: Concatenate B1, B2, . . . , Bm forming one strip S of height 1 and width

∑m
k=1 w(Bk).

5: Return S rotated such that its width is 1 and its height is
∑m

k=1 w(Bk).
6: end.

Theorem 1 The packing produced by HBP satisfies the restrictions of the SPU problem.

Proof. LetB1, . . . , Bm be the bins created by LBP in the order they were created. These bins are concatenated
in the order they were created, forming a strip S . For each successive pair of bins Bk and Bk+1, we guarantee
that all items in Bk+1 have class smaller than or equal to the items in Bk, since the algorithm packs items in
non-increasing order of classes. So items in one bin will not block items of previous bins. Inside each bin, the
feasibility of the solution is also guaranteed by the packing in non-increasing order of classes, since each item
is packed in a sub-strip in the leftmost position to the right of previous packed items. Also notice that different
sub-strips does not interfere with each other, since all items are packed completely inside a sub-strip. ut

3.1.1 HBP Analysis

In this Section we prove that the HBP is a 6.75-approximation algorithm. First we present some results that
guarantee a fraction of occupied area by items on each bin created by the algorithm.

Lemma 2 The sub-strips opened to pack buffers and the full sub-strips are at least 1
3 full.

Proof. In the first case, where a sub-strip contains a buffer bi, the height of the sub-strip is h(bi) and since
w(bi) > 1/3 we have an occupation of at least h(bi)·w(bi)

h(bi)
> 1

3 of the sub-strip surface.
In a full sub-strip Fj , used to pack non-buffers, each packed item has height at least 1/(3 · 2j+1). Since the

sub-strip is full, its occupied width is at least (1−1/3), then we can guarantee an occupation of (
1
2
·h(Fj))· 23
h(Fj)

> 1
3

of the sub-strip surface. ut

Lemma 3 A bin contains at most 2
3 of height used by non-full sub-strips.

Proof. There is at most one non-full sub-strip of each type Fj (with height 1
3·2j) in a bin. The total height of

non-full sub-strips is bounded by
∑∞

j=0
1

3·2j = 2
3 . ut

Lemma 4 (i) Suppose that a fraction of height 1/3 of a bin is used by full sub-strips and one non-full
sub-strip F0. The minimum area of packed items occurs when F0 contains one item ai with height 1/6.
The area of items in these sub-strips is at least 1/12.

(ii) Suppose that a fraction of height 1/3 of a bin is used by full and non-full sub-strips Fj with j > 1 . The
minimum area of packed items occurs when there is only non-full sub-strips Fj , for j > 1. The area of
the packed items is at least 1/27.

3 APPROXIMATION ALGORITHMS 7

Proof. First notice that by Lemma 2, a full sub-strip is at least 1/3 full. The total area of items considering
all these sub-strips is then at least 1/3 times the height used by these sub-strips. Also notice that for a non-full
sub-strip a worst case of occupation occurs when only one item is packed on it.

For (i), the minimum total area of items occurs when F0 has only one item ai. The area of the items in this
fraction of the bin is

h(ai)
2 + (1/3− h(ai)) · 1/3 (1)

since the area of ai is at least h(ai)2 because h(ai) 6 w(ai), and the remaining height (1/3−h(ai)) is at least
1/3 full. The minimum of the function occurs when h(ai) = 1/6. The minimum area of items is then at least
1/12.

For (ii) suppose a fraction of height 1
3·2j that can be occupied by a non-full sub-strip Fj for j > 1, with

one item ai, or with full sub-strips. The equation of the total area of items in this fraction of height is similar
to equation (1), except that the height 1/3 is replaced by 1/(3 · 2j). The function is decreasing for [0, 1/6].
In this case, where j > 1, the item ai has height at most 1/(3 · 2j) 6 1/6. In order to minimize the function
of total area of items, we have to set h(ai) = 1/(3 · 2j). So the minimum occupied area occurs when we
use only non-full sub-strips, each one with maximum height. The total area of items in this case is at least∑∞

j=1

(
1

3·2j
)2

= 1
27 . ut

Lemma 5 The bins created by the LBP algorithm are full by at least 4
27 on average, excluding perhaps the

last bin.

Proof. We will prove this Lemma by induction on the number of created bins, denoted by k.
When k = 1 we have only one bin and the proof is trivial. Now assume that except for the last bin (Bk−1),

the bins are at least 4
27 full. Now consider the way in which bin Bk was opened. We will divide this step in

two cases.
Case 1: Consider that Bk was opened by a non-buffer item ai because when packing it in Bk−1, we had∑

F∈S(Bk−1)
IF > 1. At least 1 − h(ai) of height is used by full (F) and non-full (NF) sub-strips in Bk−1.

Suppose ai has type Fj for some j. We can assume that this sub-strip Fj is not part of NF : when packing
ai in a non-full sub-strip Fj we must had

∑
Fl∈S(Bk−1)

IFl
> 1, so the height 1 − h(ai) already exclude the

height used by Fj . So in the height 1− h(ai) used to pack sub-strips, we can assume that Fj is not in NF .
Suppose ai has typeF0. In this case at least (1−2/3) of height is used by full sub-strips, since the maximum

height of ai is 1/3 and the maximum height of sub-strips in NF is also 1/3. According to lemma 4 the area of
items in NF is at least 1/27. So the total area of items in bin Bk−1 is at least (1− 2/3) · 1/3 + 1/27 = 4/27.

Suppose ai has type Fj , for j > 1. In this case at least (1 − 1/6 − 2/3) of height is used exclusively by
full sub-strips, since the maximum height of ai is 1/6 and the maximum height in NF is 2/3. In these last
2/3 of height, by Lemma 4 a minimum area of packed items occurs when in a fraction of 1/3 of height is
packed a sub-strip F0 and full sub-strips (with total items area at least 1/12), while in the other fraction of 1/3
of height is packed only non-full sub-strips (with total items area 1/27). The total area in bin Bk−1 is at least
(1− 1/6− 2/3) · 1/3 + 1/12 + 1/27 > 4/27.
Case 2: Consider that Bk was opened by a buffer b such that w(Bk) = w(b) 6 h(b). First consider that
w(b) > 2/3. In this case these bins Bk−1 and Bk, are full by at least

h(b) · w(b)
1 + w(b)

>
w(b)2

1 + w(b)
>

4

27

since w(b) > 2/3.
Consider now that 2/3 > w(b) > 0. In this case there is at least 1/3 of height in Bk−1 used by full and

non-full sub-strips. By lemma 4 a worst case occurs when 1/3 of the available height is occupied only by non

3 APPROXIMATION ALGORITHMS 8

full sub-strips Fj for j > 1 with total items area 1/27. The possible remaining height (1− 1/3− w(b)) must
be used by full sub-strips of height h′ and a non-full sub-strip F0 with only one item a. The bins are full by at
least

w(b)2 + 1/27 + h(a)2 + 1
3h
′

1 + w(b)

where 1/6 < h(a) 6 1/3, h(a) + h′ = 1− w(b)− 1/3 and 2/3 > w(b) > 0. The minimum of this function
is 0.168517 > 4

27 . ut

Theorem 6 Let L be a list of rectangles, then HBP(L) 6 6.75OPT(L) + 1.

Proof. According to Lemma 5, the average occupied area in S is at least 4
27 , except for the last bin created.

So (HBP(L)− 1) 4
27 6

∑
ai∈Lw(ai) · b(ai) and then

HBP(L) 6 6.75
∑
ai∈L

w(ai) · b(ai) + 1 6 6.75OPT(L) + 1.

ut

3.2 An 1.75-approximation for the for SPU and SPU r problems with a bounded number of
classes

In this section we describe an 1.75-approximation algorithm called First-Fit Decreasing Height by Class
(FFDHC), which uses the well-known First-Fit Decreasing Height (FFDH) algorithm [14] for the Strip Pack-
ing Problem. The FFDH is a level based algorithm that works as follows: First it sorts the items by non-
increasing order of height and then, for each item a in this order, it packs a in the lowest sub-strip where it
can be packed. If there is no such sub-strip, a new sub-strip is created with height h(a), above all previous
sub-strips, and a is packed on it.

The algorithm FFDHC (See Alg. 3) works as follows: First the input list L is partitioned by class values
into C different subsets . Then for each class c ∈ C, it packs items of this class using the FFDH algorithm
but in a slightly different way: it packs first the items ai with w(ai) > 1/2 and then the remaining items of
class c. After that, it closes all sub-strips such that the following classes are packed in new sub-strips above
the created ones.

Denote by FFDH(L) the packing generated by the algorithm FFDH over the list L.
The algorithm FFDHC clearly satisfies the unloading constraint: Items of each class are packed separated

above previously packed classes, and classes are considered in non-increasing order.

3.2.1 FFDHC analysis

First we present a result about the FFDH algorithm (see [14]). Let Area(L) =
∑

ai∈Lw(ai) · h(ai).

Lemma 7 ([14]) Let L be a list of rectangular items with area Area(L), where each item has width of at most
1
m , for any integer m > 2, then

FFDH(L) 6
m+ 1

m
Area(L) + 1.

Denote by h(P ′i) (resp. h(P ′′i)) the sum of the height of the sub-strips packed in P ′i (resp. P ′′i). Let L′

be the list with items with width larger than 1/2, i.e, L′ =
⋃C

i=1 L
′
i, and let L′′ be the remaining items, i.e,

L′′ =
⋃C

i=1 L
′′
i .

3 APPROXIMATION ALGORITHMS 9

Algorithm 3 First-Fit Decreasing Height by Class (FFDHC)
1: Input: A list L of items of C classes.
2: Begin
3: Let Li be the list of items of class i = 1, . . . , C.
4: L′i = {a : w(a) > 1/2 and ai ∈ Li}
5: L′′i = {a : w(a) 6 1/2 and ai ∈ Li}
6: Let P = ∅ be the final packing.
7: for i = C down to 1 do
8: P ′i = FFDH(L′i)
9: P ′′i = FFDH(L′′i)

10: Pack P ′i above all the previous sub-strips in P .
11: Pack P ′′i above all the previous sub-strips in P .
12: end for
13: End

Theorem 8 Let L be a list o rectangles of C different classes, then FFDHC is an 1.75 asymptotic approxima-
tion algorithm for the SPU problem when C is bounded by a constant.

Proof. Let h′ =
∑C

i=1 h(P
′
i) and h′′ =

∑C
i=1(h(P

′′
i)− 1). We can conclude that FFDHC(L) 6 h′+h′′+C.

First notice that OPT(L) > h′, since all items a ∈ L′ have w(a) > 1/2 and then must be packed one
above the other. Also notice that if h′′ 6 0, then FFDHC(L) 6 h′ + h′′ + C 6 h′ + C 6 OPT(L) + C and
then the theorem is proved. So we assume that h′′ > 0.

Since all items a ∈ L′′i have w(a) 6 1/2, then by lemma 7, we have

Area(L′′i) >
2

3

(
FFDH(L′′i)− 1

)
Then

Area(L′′) =
C∑
i=1

(Area(L′′i))

>
C∑
i=1

2

3

(
FFDH(L′′i)− 1

)
=

2

3
h′′

We also have that OPT(L) > Area(L) and then

OPT(L) > Area(L)

= Area(L′) + Area(L′′)

>
1

2
h′ +

2

3
h′′

Then, we have

OPT(L) > max{h′, (1
2
h′ +

2

3
h′′)}

3 APPROXIMATION ALGORITHMS 10

So,

FFDHC(L) 6 h′ + h′′ + C

6 (h′ + h′′)
OPT(L)

max{h′, 12h′ +
2
3h
′′}

+ C

= αOPT(L) + C,

where α = h′+h′′

max{h′, 1
2
h′+ 2

3
h′′} . Finally we have that α 6 1.75 by Miyazawa and Wakabayashi [28]. ut

To consider the case in which rotations are allowed we only need to perform a new partition of L into L′

and L′′ such that: L′i = {a : w(a) > 1/2, h(a) > 1/2, ai ∈ Li} and L′′i = Li\L′i, where in L′′i all items have
width at most 1/2 (rotations are performed if necessary to satisfy this). Then we use the algorithm FFDHC
with these new list partitions. Denote this modified algorithm by FFDHCr.

Using this partition all the arguments used in the theorem 8 are valid and then the following result holds:

Theorem 9 Let L be a list o rectangles of C different classes, then FFDHCr is a 1.75 asymptotic approxima-
tion algorithm for the SPUr problem when C is bounded by a constant.

Proof. Similar to the proof of Theorem 8. ut

Now we improve the approximation ratio of the FFDHC algorithm considering that the items are squares.
We are going to use the following result also from [14].

Lemma 10 Let L be a list of square items of total area Area(L), then

FFDH(L) 6
3

2
Area(L) + 1.

We just need to do one simple modification on algorithm FFDHC: we set L′i = Li and L′′i = ∅ for
i = 1, . . . , C. Denote this algorithm by FFDHCs (squares). We have the following result.

Corollary 11 Let L be a list of squares of C different classes. Then FFDHCs(L) 6 3
2 OPT(L) + C.

Proof. This is a simple proof, based on Lemma 10.

FFDHCs(L) = FFDH(L′C) + · · ·+ FFDH(L′1)

6
C∑
i=1

(
3

2
Area(L′i) + 1)

=
3

2
Area(L) + C

6
3

2
OPT(L) + C

ut

3.3 Improving the FFDHC algorithm

In practical situations, the FFDHC algorithm can return poor solutions. For instance consider an example with
only one item per class. In this case the algorithm just creates a pile with all items left justified on the strip. So
we did two improvements on the FFDHC algorithm.

4 A GRASP BASED HEURISTIC 11

3

3

3 3
33

33

2
2

2 2 2

2
1

1 1 1 1

(a)

3

3

3 3
33

33 2

2

2 2 2

2 1

1 1 1 1

(b)

3

33

3
33

332
2 2

22

2 1
1111

(c)

Figure 3: In this Figure we represent the improvements applied on the FFDHC algorithm. In (a) we have the
solution computed by the FFDHC algorithm. In (b) we use the first improvement and in (c) the second.

Notice that when we pack the items of class c they do not use strips that were previously opened for other
classes, since this can brake the unloading constraints. So we close all opened sub-strips before packing the
items of class c (See Fig. 3 part a). But notice that we can keep the top sub-strip used for a previous class
opened, since items of the current class packed in this top sub-strip will not be blocked by items of previous
packed classes. The first improvement is then to keep opened this last sub-strip of the last class packed (See
Fig. 3 part b).

The second improvement deals with the empty space between items of subsequent sub-strips. Let Si,
i = 1, . . . , k be the sub-strips generated by the algorithm FFDHC for some list L of items. First we reverse
the order of items packed on the even sub-strips (Si where i ≡ 0(mod 2)) and push them to the right most
position. Then, for each sub-strip in order, we push each item of it to the lowest possible position until it
touches another item or the bottom of S. Notice that these movements do not affect the unloading constraints
(See Fig. 3 part c). These improvements also do not change the approximation ratio of the FFDHC algorithm.

4 A GRASP Based Heuristic

In this section we describe our GRASP based heuristic to the SPU problem. First we present a greedy-
randomized heuristic to construct initial solutions and then we present a local search procedure that improves
the quality of the initial solutions.

4.1 Constructive Greedy-Randomized Heuristic

Our constructive heuristic uses a strategy similar to the one used in [1], but we change the focus of the algorithm
to the classes of the items instead of its dimensions. We keep two lists: a list I of items that weren’t packed
yet and a list F of free spaces where items from I can be packed. A free space f ∈ F is represented by a

4 A GRASP BASED HEURISTIC 12

tuple (x(f), y(f), w(f), c(f)) where (x(f), y(f)) is left corner position where the free space starts, w(f) is
its width, and c(f) is the minimum class value of some item packed below this free space. The algorithm
builds a restricted candidate list (RCL) with items that can be packed in some of the free spaces satisfying the
unloading constraint. Then we randomly select one item from the RCL list and pack it at the lowest possible
position. This is done until all items are packed, i.e, I = ∅.

The algorithm works as follows:
STEP 1: Initialization

1.1 Set I = L and F = {(0, 0,W,∞)}.

STEP 2: Building the RCL and F ′

2.1 Let RCL∗ = {ai ∈ I|
∑

ak∈I|c(ak)>c(ai)
w(ak) 6 ρ}. This list contains only items that if packed below

higher classes items, in principle, they can be removed (they are not blocked by higher classes items).

2.2 Notice that each item ai ∈ RCL∗ can be packed in some sets of subsequent free spaces. We are interested
in the lowest sequence of free spaces where at least one item from RCL∗ can be packed. So let F ′ be
the set of subsequent free spaces that corresponds to the lowest position where some item from RCL∗

can be packed.

2.3 The final RCL contains the items that can be packed in F ′:

RCL = {ai ∈ RCL∗|ai can be packed in a set of subsequent free spaces of F ′}

STEP 3: Choosing and Packing an item

3.1 Select an item as from RCL with probability p = w(as)∑
ak∈RCL w(ak)

;

3.2 Let w(F ′) =
∑

f∈F ′ w(f), ymax = max{y(f)|f ∈ F ′}, and cmin = min{c(f)|f ∈ F ′};

3.3 Select the position {left, right} to pack the item as into F ′ at height ymax using the procedure showed
in [1]. This procedure chooses the x position that leaves as smooth as possible the packing produced, i.
e, closest to the sides of the strip S, or closest to the highest border. We need to check if c(as) 6 cmin.
If not, we goto step 3.1 and select another item, since as would block some item of lower class.

3.4 Pack as into the selected position;

STEP 4: Updating the lists

4.1 Update I = I − as and F . In F we only need to update the free spaces in F ′, by updating the minimum
items class values, and the dimensions of the free spaces as well.

We compared other choices of selecting an item in STEP 3. We tried for example to use a probability
distribution that considers the classes values combined with the width or height of items. For instance p =

c(ai)+kw(ai)∑
ak∈RCL c(ai)+kw(ai)

for some constant k. But the method presented in step 3 outperformed all other choices

tested.

4 A GRASP BASED HEURISTIC 13

4.2 Setting the ρ value

Several experiments were realized in order to discover the best value for ρ (STEP 1). We can see ρ as a factor
of aggressiveness of the algorithm, since it allows items of lower classes to be packed before higher classes
items. If we use ρ = ∞, all items will be in the RCL, while if we use ρ = 0, then at each iteration of the
algorithm, the items will be selected by decreasing order of class values. Note that the ρ value determines the
quality of the RCL list. When ρ is large, the packing of several items in the RCL may be infeasible, while if it
is too small we may miss some feasible packings of items in reversed order of class values.

We tried some alternatives to construct the RCL list, despite the one presented in STEP 1 (that uses the ρ
value). We performed some experiments to evaluate the following strategies to build the RCL list:

• RCL contains only items from the largest class available (a conservative strategy).

• RCL contains items from the two largest classes available.

• RCL contains items from the largest class available and with probability 50% all the items from the
second highest class.

The tests showed that the conservative strategy was the best one. Most of the solutions of the constructive
phase were infeasible when using the other two strategies. From that, we could see that items from lower
classes should by carefully chosen, since they can easily turn the packing infeasible.

Then we tried the strategy used in STEP 1, that is still aggressive, but avoid the generation of too many
infeasible solutions due to the packing of lower class items bellow higher classes items. The different values
of ρ used are:

• ρ =W − w(ai).

• ρ = W−w(ai)
2 .

• ρ = λ(W − w(ai)). Where lambda is a random value in [0.4, 0.6].

These strategies allow items of lower classes to be packed before higher classes items provided that they
will probably not generate infeasible solutions, i.e, there is still free space available to remove lower classes
items. For instance, when using ρ = W − w(ai), this imposes that an item is selected only if the sum of the
widths of items of higher classes, plus its width is smaller than the width of the strip. In our tests ρ = W−w(ai)

2
achieved better results consistently, and this is the value used in our algorithm.

4.3 Local Search

Given a current solution to the problem, our local search generates three neighbors and the best one is chosen
as the new current solution. The process is repeated until no better solution is found. The three neighbor
solutions are obtained as follows: given a current solution, remove the last k% items from the packing, where
k ∈ {10, 20, 30}. Then, for each one of these three solutions, generate a new one repacking the last k% items
using a determinist constructive algorithm. The deterministic constructive algorithm is an adaptation of the
constructive greedy-randomized heuristic, where in step 3 it is always chosen the item with the highest value
of p, i. e, the widest item. If a better solution is generated, then the best one replaces the current solution.

We tried to use some other different strategies in the local search. For instance, we tried to impose different
ordering of the items like the one in [26] and [18], before the local search starts. In this case we force the
sequence in which items are packed. But the chosen strategy outperforms this one.

5 GRASP HEURISTIC 14

5 GRASP Heuristic

In this Section we present the GRASP heuristic based on the algorithms from Sections 4.1 and 4.3. The
GRASP heuristic first finds an initial solution using the constructive algorithm. Then this first solution is
improved using the local search procedure. The GRASP heuristic repeats this process until a maximum time is
exceeded (60 seconds in our experiments), and the best solution overall is returned. We denote this algorithm
by G.

We implemented another variant of the GRASP heuristic for the case where 90 degree rotations of items
are allowed. In the constructive phase we rotate all items ai such that (h(ai) > w(ai)) and in the Local Search
we rotate the k% items that are removed and repacked, such that (h(ai) 6 w(ai)). This strategy is based in the
following idea: give more importance to the unloading constraint first and then, in the final part of the packing,
give more importance to the total height. At first it seems that we should choose, for each item, the orientation
that induces the lowest height. But this strategy produced bad results due to the unloading constraints. Rotating
an item to let its width wider, may block several items that could be packed below this item. But in the final
part of the packing, the unloading constraint is easier to be satisfied, and thats why we decided to give more
importance to the induced height. We note that this strategy achieved better results than some other strategies
like: for each solution generated by the constructive algorithm, choose randomly the orientation of the last k%
items and repack them, or use Reactive GRASP [29] to choose the orientation of the items. The algorithm for
the problem where rotations are allowed is denoted by Gr.

6 Benchmark Instances

The algorithms were tested using 8 sets of instances. The first set is a classical 2L-CVRP set from litera-
ture (These instances can be downloaded from http://www.or.deis.unibo.it/research.html)
without the routing information. The remaining 7 sets are instances for the classical Strip Packing Problem
that were adapted, by including classes values to items in order to obtain valid instances for the SPU problem.

The first set corresponds to 2L-CVRP instances that were used in [23] [19] [20] [18] [26] [15]. From these
instances we used only the packing data (dimensions of items and Strip) and costumers information (which
items belong to which client). The number of customers, items, and their dimensions were created according
to five types of instance c(i) (with 36 instances each). For further details about each type of instance c(i), we
refer the reader to [23]. This set contains a total of 36×5 instances, containing between 15 and 255 customers
and between 15 and 786 items, and we call it 2lcvrp.

We also selected 7 sets of instances for the classical 2D Strip Packing Problem. For each instance I with n
items, we generate 5 new instances in the following way: Let Ck = dkn10 e, for k = 2, 4, . . . , 10, be the number
of classes of each new instance. Then each item from I receives a class uniformly chosen in [1, Ck] (in each
respectively new instance). Furthermore, we impose that exists at least one item for each class c ∈ 1 . . . Ck.
The different number of classes Ck for a same instance helps us study the impact of the number of classes
on the size of the generated solution. Notice that the number of classes Ck will be a percentage of the total
number of items n, i.e, when k = 2 for example, Ck corresponds to 20% of n.

Briefly these 7 sets are described bellow:

• chr: A set of 3 instances used by Christofides and Whitlock [12].

• bke: A set of 12 instances generated by Burke et al.[9], with 10 to 500 items.

• ben: A set of 10 instances proposed by Bengtsson [7]. Each instance with 25 to 200 items.

• htu: A set of 21 instances proposed by Hopper and Turton [21]. Each instance with 16 to 197 items.

7 COMPUTATIONAL EXPERIMENTS 15

• wva: A set of 420 instances generated by Wang and Valenzuela [31]. This set is partitioned into two
subsets: nice (with similar shapes and sizes) and path (pathological variations on shapes and sizes), with
210 instances each subset, and each instance contains from 25 to 500 items.

• hop: A set of 70 instances proposed by Hopper [22]. This set is partitioned into two subsets: T (guillo-
tine) and N (non-guillotine), 35 instances each subset, and each instance with 17 to 199 items.

• bea: A set of 25 instances proposed by Beasley [4] [6]. This set is partitioned into two subsets: 13
instances (denoted gcut) and 12 instances (denoted ngcut) with 7 to 22 items.

Thus we generated 2985 instances to evaluate the GRASP heuristic and the other algorithms.

7 Computational experiments

The algorithms were coded in C and executed on an Intel Core 2 Duo 2.4 Ghz processor with 2 GB 667 MHz
DDR2 of main memory. The stopping criteria for the GRASP heuristics G and Gr was a time limit of 60 CPU
seconds or 1000 iterations (what happens first). We also performed tests with the GRASP heuristics where we
limited them to execute 5 iterations. This was used to evaluate the performance of the heuristics when they
need to be executed very fast (as subroutines for the 2L-CVRP problem for example) and to compare its results
with the results reported in [18].

Since the GRASP heuristics are non-deterministic we ran it 20 times for each instance and take the average
value as its result.

7.1 Lower Bounds

To measure the quality of the computed solutions we used the maximum of two lower bounds. One lower
bound is based on the total area of items. The other lower bound is based in the unloading constraint. In this
case, we use the height of a packing of a subset of the items, that necessarily have to be packed one above the
other, due to the unloading constraint.

The second lower bound is computed as follows: we keep a list H , initially empty, of optimal packings of
a subset of items. For each item ai in non-increasing order of class, we do the following: for each packing P
in H we decide if the item ai must be packed above the last packed item in P or not. This decision is made by
checking if the width of the last packed item plus the width of the current item, is larger than the strip width.
Moreover the class of the last packed item must be larger than the class of the current item. If this is the case,
then the current item must be packed above the last packed item, even if there is space to pack the current item
bellow the last item. For each packing where ai must be packed above the last packed item, we actualize the
packing including ai. If we couldn’t find any packing where ai must have to be packed above the last packed
item, we create a new packing with item ai alone, and include this packing in H . Finally, after processing all
items, we select the highest packing in H as the lower bound.

For instance, consider the instance N1Burke which has a strip of width 40 and 10 items. One randomly
generated instance selecting classes values between [1, 10] is presented in Table 1. It is easy to see that the
area lower bound of this instance is 40 since

∑10
i=1 h(i)w(i)/40 = 40. However, if we use the second lower

bound, we will see that the items a1, a4, and a5 must be packed in order and one above the other due to their
widths and the unloading constraint. So we can bound the height by h(a1) + h(a4) + h(a5) = 46 > 40 (See
Fig. 4 part (a)).

Generally, the second lower bound achieved better lower bound values in instances with items tall and
narrow, and small and wide. In some path (sub-set of wva) instances for example, while the area lower bound
achieved a value of 200 the second lower bound achieved a value of 304.

7 COMPUTATIONAL EXPERIMENTS 16

item c(ai) h(ai) w(ai)
a1 1 6 7
a2 2 6 7
a3 3 4 4
a4 4 16 40
a5 5 24 24
a6 6 20 4
a7 7 20 5
a8 8 4 5
a9 9 8 7
a10 10 4 7

Table 1: Generated random instance from the N1Burke instance.

(a)

40

46

a5

a4

a1

(b)

a9 a10a8

a7 a6

a5

a4

a3a2 a1
50

(c)

a9

a10

a8
a7 a6

a5

a4

a3a2 a1

Figure 4: Generated Instance for N1Burke with 100% of classes. In (a) we have the lower bound. In (b) we
can see the solution found by the algorithm G(5) and in (c) an optimal solution.

7.2 Computational results

In the computational experiments we provide basically two quality measures. The first one is the occupation
ratio (Occupation column in the tables), which corresponds to the fraction of the used strip that is occupied by
items. The second quality measure is the solution ratio (Ratio column in the tables), which corresponds to the
ratio between the value of the solution found by an algorithm and the value of the best lower bound.

We performed two kinds of tests and measurements:

• Tests with 5 iterations to measure the occupation. These tests were used to compare our algorithm with
the one from [18] (Column Gen in Table 2).

• Tests with 1000 iterations and time limit of 60 CPU seconds, where we measured the solution ratio,
compared with the lower bounds discussed previously.

In the tables, we denote by G(5) (respectively G(1000)) the results for the G heuristic with 5 iterations
(respectively 1000 iterations). Similarly we have Gr(5) and Gr(1000), but for the case where items rotations
are allowed. The columns G(5), Gr(5), G(1000), Gr(1000), FFDHC and HBP present the results achieved

7 COMPUTATIONAL EXPERIMENTS 17

by each algorithm. For each instance, the grasp heuristics were executed 20 times. We present the minimum,
average and maximum values for the G heuristics for these 20 simulations.

In Table 2 we show the results for the set 2lcvrp. The type column indicates the instance subset. The result
for each subset is the average result of all its instances. The first sub-set (1) is a simple generalization of the
one dimensional CVRP and does not impose any difficult to the heuristics and they always found the optimal
solution. The huge value (25.9841) achieved by the algorithm HBP, occurred because the algorithm just piled
the items one above the other.

The G(5) heuristics showed to be a good alternative to be used as a routine within the 2L-CVRP. The
heuristics took less than 2 seconds to find the solutions to the largest 2lcvrp instances (786 items and 255 cus-
tomers). They took less then 1 second to solve 80% of the instances approximately. Although they took lower
CPU times, they achieved a good average occupation on these instances even in the case without rotations,
which achieve 82.03% of occupation on average. The results showed in [17] are presented in the column Gen
of Table 2. To the best of our knowledge there is no other practical results for the SPU problem. Although
the main objective in [17] is to minimize the total cost of generated routes, and so the packing problem is
biased to pack items in several bins, we think its interesting to compare their algorithm with ours. Nonethe-
less these comparisons must be taken carefully since our algorithms are specialized for the SPU problem, and
their algorithm is evaluated in the 2L-CVRP scenario. When comparing the average occupation ratio of these
algorithms, we can see that the G(5) heuristics achieved better results consistently.

The tests with the G(1000) heuristics were stopped by the time limit on 16% of the 2lcvrp instances
approximately. The G(1000) heuristics achieved good solution ratios, considering that we are using lower
bounds in these comparisons.

Among the approximation algorithms, the FFDHCr achieved the best results and all of them took less then
1 CPU second to be computed.

Occupation Ratio
Set Type G(5) Gr(5) Gen G(1000) Gr(1000) HBP FFDHCr

2lcvrp

1
min 77.45% 77.45%

−
1 1

25.9841 1ave 77.45% 77.45% 1 1
max 77.45% 77.45% 1 1

2
min 77.52% 84.01%

74.63%
1.1495 1.1012

2.3542 1.7590ave 80.62% 86.26% 1.1638 1.1185
max 82.33% 88.19% 1.1832 1.1308

3
min 80.25% 86.32%

76.26%
1.1390 1.0992

2.2143 1.7017ave 82.75% 86.70% 1.1467 1.1081
max 83.95% 87.55% 1.1588 1.1179

4
min 82.82% 86.29%

77.02%
1.1355 1.0975

2.0436 1.7022ave 83.55% 86.91% 1.1403 1.1076
max 84.24% 87.24% 1.1455 1.1129

5
min 85.70% 87.98%

74.00%
1.1265 1.0966

1.9437 1.5506ave 85.82% 88.13% 1.1273 1.0978
max 85.98% 88.33% 1.1299 1.0995

Average
min 80.74% 84.40%

75.48%
1.1100 1.0789

6.9079 1.5427ave 82.03% 85.09% 1.1152 1.0864
max 82.79% 85.75% 1.1235 1.0922

Table 2: Results for the 2lcvrp set.

Tables 3, 4 and 5 contains the results for the remaining instance sets. Remember that for each instance,
we created new instances including classes values as explained in Section 6. Since we have a large number

8 CONCLUSIONS 18

of instances, the results presented in these tables corresponds to the averages among all instances of each set,
considering a given value k used to derive the number of classes Ck. This way we could study the impact of
the number of classes (costumers) and the quality of solutions.

We can see that in most of the instance sets, the average occupation decreases and the ratio increase when
the number of classes increases. The largest impact occurs on the FFDHCr algorithm whose quality of the
solutions is proportional to the number of classes. In the htu set, while with k = 2 the FFDHCr achieved an
average ratio of 1.44, with k = 10 the average ratio achieved was 1.56. Its interesting to note that despite
achieving the worst results among all the algorithms, the HBP algorithm is not as heavily affected by the
increase in the number of classes, as are the other algorithms.

Among the GRASP heuristics, the worst results were obtained with the wva set of instances, while the best
ones were obtained with the ben instances. We believe that the bad results for the wva set occurred mainly
because of the weakness of our lower bounds that are used in the comparisons. The heuristic G got, for some
instances in the wva set, a ratio of 1.4512. In other instances, the heuristic G achieved a ratio of 1.0164,
although only 64.47% of occupied area.

In the Fig. 4 (b and c) we can see an example which shows that the optimal occupation would be 86.45%
and that the heuristic G founded a solution with 80.00% of occupation in 5 iterations.

For the HBP algorithm, the best results occurred with the bea set, and the worst results occurred with
the htu set. As for the 2lcvrp set, the FFDHCr algorithm achieved consistently the best results among the
approximation algorithms.

Table 6 shows the average time used by G and Gr heuristics until they found the best solution for each
group of instances of the wva set. The tables are organized as follows: The instances are divided by number
of classes and items. For each number Ck of classes the table shows the average time for instances with the
same number of items. Only the instances with 500 items where stopped by the time limit. Instances with 200
items took about 14s on average. It is possible to see that the time to find the best solution decreases with the
increase in the number of classes.

8 Conclusions

In this paper we proposed a new GRASP heuristic and two new approximation algorithms for the Strip Packing
Problem with Unloading Constraints (SPU). This problem was previously studied as part of the Two Dimen-
sional Capacitated Vehicle Routing Problem with unload constraints (2L-CVRP). To our knowledge this is the
first work to provide a practical study specifically for the SPU problem.

Our GRASP heuristic was based on a well know GRASP heuristic for the Strip Packing problem. We did
several adaptations on it to consider the specificities of the SPU problem. We proposed new methods to create
the restricted candidates list (RCL) considering the particularities of the SPU problem. We tested several
possibilities aiming to choose the best strategy to built the RCL. We also adapted the local search procedure to
consider the unloading constraints.

We proposed a new approximation algorithm for the problem that is based on a bin packing strategy.
Another approximation algorithm was proposed and it is based on the well know FFDH algorithm.

We performed several tests to assess the quality of the solutions computed by the proposed algorithms. A
set of tests were done to compare the GRASP heuristics with another algorithm of the literature. The GRASP
heuristics obtained better results and can be a good alternative to be used in the 2L-CVRP problem.

In other tests we compared the results of our algorithms with two lower bounds. From the results we could
see that the best approximation algorithm was the FFDHCr. But overall, the GRASP heuristics outperformed
all algorithms obtaining very good results.

8 CONCLUSIONS 19

Occupation Ratio
Set Ck G(5) Gr(5) G(1000) Gr(1000) HBP FFDHCr

bea

k = 2
min 74.99% 83.04% 1.22 1.11

1.60 1.41ave 75.73% 83.40% 1.23 1.13
max 76.02% 83.68% 1.25 1.14

k = 4
min 75.36% 81.92% 1.28 1.15

1.51 1.43ave 75.55% 82.71% 1.30 1.16
max 75.97% 83.80% 1.33 1.19

k = 6
min 74.26% 80.28% 1.25 1.15

1.51 1.46ave 74.63% 81.35% 1.26 1.17
max 74.96% 82.45% 1.28 1.18

k = 8
min 71.80% 82.20% 1.19 1.15

1.46 1.51ave 72.08% 82.59% 1.20 1.17
max 73.28% 82.87% 1.24 1.20

k = 10
min 71.92% 81.25% 1.17 1.16

1.47 1.51ave 73.00% 82.00% 1.18 1.18
max 73.78% 83.80% 1.20 1.22

Average
min 73.66% 81.74% 1.22 1.15

1.51 1.46ave 74.20% 82.41% 1.23 1.16
max 74.80% 83.32% 1.26 1.19

ben

k = 2
min 81.98% 84.52% 1.06 1.06

1.74 1.37ave 86.66% 88.41% 1.09 1.08
max 88.12% 90.03% 1.17 1.12

k = 4
min 82.15% 84.46% 1.07 1.06

1.74 1.42ave 86.95% 88.54% 1.10 1.07
max 88.31% 90.50% 1.15 1.11

k = 6
min 82.44% 84.02% 1.08 1.07

1.70 1.44ave 86.93% 88.38% 1.10 1.09
max 88.75% 89.92% 1.16 1.14

k = 8
min 83.95% 84.92% 1.08 1.07

1.63 1.51ave 87.11% 87.99% 1.10 1.08
max 89.21% 89.95% 1.15 1.14

k = 10
min 83.44% 84.54% 1.09 1.07

1.67 1.52ave 86.29% 88.14% 1.10 1.09
max 88.94% 89.09% 1.17 1.16

Average
min 82.79% 84.49% 1.08 1.07

1.69 1.45ave 86.79% 88.29% 1.10 1.08
max 88.67% 89.90% 1.16 1.13

bke

k = 2
min 69.43% 79.40% 1.23 1.12

2.06 1.40ave 72.87% 81.33% 1.26 1.14
max 74.22% 83.43% 1.30 1.16

k = 4
min 73.40% 81.04% 1.22 1.13

2.01 1.40ave 75.54% 82.28% 1.23 1.14
max 76.82% 83.88% 1.26 1.16

k = 6
min 69.02% 80.02% 1.22 1.12

1.99 1.43ave 71.86% 82.92% 1.24 1.13
max 73.10% 83.15% 1.27 1.15

k = 8
min 74.70% 78.00% 1.21 1.17

2.03 1.43ave 76.77% 80.48% 1.23 1.18
max 77.98% 82.37% 1.26 1.20

k = 10
min 71.50% 79.08% 1.22 1.15

2.03 1.44ave 74.02% 81.75% 1.24 1.16
max 77.91% 83.33% 1.27 1.17

Average
min 71.61% 79.51% 1.22 1.14

2.03 1.42ave 74.21% 81.75% 1.24 1.15
max 76.01% 83.23% 1.27 1.17

Table 3: Results for the bea, ben and bke sets.

8 CONCLUSIONS 20

Occupation Ratio
Set Ck G(5) Gr(5) G(1000) Gr(1000) HBP FFDHCr

chr

k = 2
min 81.12% 83.02% 1.13 1.08

2.01 1.29ave 81.24% 83.30% 1.13 1.08
max 81.34% 83.48% 1.13 1.08

k = 4
min 83.80% 83.88% 1.13 1.10

1.96 1.34ave 83.92% 83.98% 1.13 1.10
max 84.08% 84.10% 1.13 1.10

k = 6
min 82.55% 84.49% 1.14 1.12

1.86 1.39ave 82.74% 84.78% 1.14 1.12
max 82.90% 84.98% 1.14 1.12

k = 8
min 81.90% 82.00% 1.14 1.11

1.58 1.36ave 82.06% 82.18% 1.14 1.11
max 82.22% 82.29% 1.14 1.11

k = 10
min 78.88% 82.80% 1.14 1.15

1.63 1.36ave 79.17% 83.01% 1.14 1.15
max 79.38% 83.15% 1.15 1.16

Average
min 81.65% 83.24% 1.14 1.11

1.81 1.35ave 81.82% 83.42% 1.14 1.11
max 81.98% 83.54% 1.14 1.11

hop

k = 2
min 75.03% 80.29% 1.18 1.13

2.04 1.41ave 77.15% 82.42% 1.19 1.14
max 78.99% 83.88% 1.22 1.16

k = 4
min 74.88% 80.96% 1.20 1.14

2.06 1.45ave 76.03% 82.14% 1.21 1.15
max 77.80% 83.12% 1.24 1.16

k = 6
min 73.22% 80.73% 1.21 1.14

2.03 1.49ave 75.50% 82.27% 1.23 1.15
max 77.07% 84.00% 1.26 1.17

k = 8
min 73.33% 79.94% 1.21 1.13

2.00 1.51ave 75.23% 81.86% 1.23 1.15
max 77.61% 83.07% 1.26 1.19

k = 10
min 71.80% 80.13% 1.22 1.13

2.03 1.52ave 74.20% 82.30% 1.25 1.16
max 75.88% 83.99% 1.27 1.20

Average
min 73.98% 80.71% 1.21 1.14

2.03 1.48ave 75.62% 82.20% 1.22 1.15
max 76.16% 83.38% 1.24 1.17

htu

k = 2
min 73.99% 82.06% 1.16 1.09

2.13 1.44ave 76.75% 84.09% 1.18 1.10
max 77.81% 85.37% 1.23 1.14

k = 4
min 72.88% 81.04% 1.19 1.11

2.17 1.47ave 75.37% 83.58% 1.21 1.12
max 76.76% 84.44% 1.24 1.14

k = 6
min 73.15% 82.00% 1.18 1.10

2.13 1.48ave 75.78% 83.87% 1.20 1.11
max 77.20% 85.12% 1.24 1.14

k = 8
min 73.06% 81.97% 1.20 1.10

2.24 1.53ave 75.56% 83.96% 1.22 1.11
max 76.99% 85.24% 1.27 1.13

k = 10
min 74.00% 81.88% 1.20 1.12

2.16 1.56ave 75.89% 83.23% 1.22 1.13
max 76.92% 84.53% 1.25 1.14

Average
min 73.82% 82.11% 1.19 1.11

2.16 1.50ave 75.87% 83.75% 1.21 1.11
max 76.92% 84.74% 1.24 1.13

Table 4: Results for the chr, hop and htu sets.

REFERENCES 21

Occupation Ratio
Set Ck G(5) Gr(5) G(1000) Gr(1000) HBP FFDHCr

wva

k = 2
min 68.99% 75.22% 1.24 1.17

2.06 1.52ave 73.13% 78.61% 1.27 1.19
max 75.29% 80.01% 1.33 1.23

k = 4
min 69.12% 75.88% 1.24 1.17

2.07 1.55ave 73.22% 78.71% 1.28 1.20
max 75.60% 75.23% 1.32 1.23

k = 6
min 68.55% 75.12% 1.24 1.19

2.06 1.55ave 72.92% 78.50% 1.28 1.21
max 74.98% 80.22% 1.34 1.24

k = 8
min 68.30% 75.03% 1.22 1.18

2.07 1.57ave 72.99% 78.51% 1.28 1.21
max 75.18% 80.81% 1.35 1.25

k = 10
min 68.22% 75.80% 1.26 1.19

2.06 1.57ave 72.45% 78.30% 1.30 1.21
max 74.49% 80.10% 1.34 1.24

Average
min 69.35% 75.93% 1.25 1.18

2.06 1.55ave 72.94% 78.53% 1.28 1.20
max 74.75% 79.15% 1.33 1.23

Table 5: Results for the wva set.

References

[1] Alvarez-Valdez, R., F. Pareño and J. M. Tamarit Reactive GRASP for the strip-packing problem, Com-
puters and Operations Research 35 (2008), 1065–1083.

[2] Augustine, J., Banerjee, S., and Irani, S. Strip packing with precedence constraints and strip packing
with release times, Theoretical Computer Science, 410, 38-40 (2009), 3792–3803.

[3] Azar, Y. and Epstein, L. On Two Dimensional Packing, Journal of Algorithms, 25 2 (1997), 290-310.

[4] Beasley, J. E. Algorithms for Unconstrained Two-Dimensional Guillotine Cutting, Journal of the Opera-
tional Research Society 36 (1985), 297–306.

[5] Belov, G., G. Scheithauer and E. A. Mukhacheva One-dimensional heuristics adapted for two-
dimensional rectangular strip packing, Journal of the Operational Research Society, 59 (2008), 823–832.

[6] Beasley, J. E. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure, Operations
Research 33 (1985), 49–64.

[7] Bengtsson, B. E. Packing rectangular pieces - a heuristic approach, The Computer Journal 25 (1982),
353–357.

[8] Bortfeldt, A. A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces,
European Journal of Operational Research, 172 (2006), 814–837.

[9] Burke, E. K., G. Kendall and G. Whitwell A New Placement Heuristic for the Orthogonal Stock-Cutting
Problem, Operations Research, 52 (2004), 655–671.

[10] Burke, E. K., G. Kendall and G. Whitwell A Simulated Annealing Enhancement of the Best-Fit Heuristic
for the Orthogonal Stock-Cutting Problem, Informs Journal on Computing, 21 (2009), 505–516.

REFERENCES 22

Time (s)
Ck Num. Items G(1000) Gr(1000)

k = 2

25 0 0
50 0 1

100 1 2
200 8 10
500 36 48

average 9 12.2

k = 4

25 0 0
50 0 1

100 1 2
200 7 10
500 35 45

average 8.6 11.6

k = 6

25 0 0
50 0 1

100 1 1
200 7 8
500 33 42

average 8.2 10.4

k = 8

25 0 0
50 0 1

100 1 1
200 5 6
500 29 39

average 7 9.4

k = 10

25 0 0
50 0 0

100 1 1
200 5 6
500 28 39

average 6.8 9.2

Table 6: Average time to find the best solution in the wva set.

REFERENCES 23

[11] Burke, E. K., M. Hyde and G. Kendall A Squeaky Wheel Optimisation Methodology for Two Dimensional
Strip Packing, Computers and Operations Research, 38 (2010), 1035-1044.

[12] Christofides N. and C. Whitlock An Algorithm for Two-Dimensional Cutting Problems, Operations Re-
search, 25 (1977), 31–44.

[13] Chung, F. R. K., Garey, M. R. and Johnson, D. S. On Packing Two-Dimensional Bins SIAM Journal on
Algebraic and Discrete Methods, 3 1 (1982), 66-76.

[14] Coffman, Jr., E. G. and Garey, M. R. and Johnson, D. S. and Tarjan, R. E. Performance Bounds for Level-
Oriented Two-Dimensional Packing Algorithms, SIAM Journal on Computing, 9 4 (1980), 808–826.

[15] Doerner, K. F., G. Fuellerer, R. F. Hartl, and M. Iori, Ant colony optimization for the two-dimensional
loading vehicle routing problem, Computers and Operations Research 36 (2009), 655–673.

[16] Fekete, S. P., Kamphans, T. and Schweer N. Online Square Packing, Algorithms and Data Structures
LNCS, 5664 (2009), 302-314.

[17] Frenk, J. B. G. and Galambos G. Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing
problem, Computing, 39 3 (1987), 201–217.

[18] Gendreau, M., M. Iori, G. Laporte and S. Martello A Tabu search heuristic for the vehicle routing problem
with two-dimensional loading constraints, Network 51 (2008), 4–18.

[19] Gonzalez, J. J. S., M. Iori, and D. Vigo “An exact approach for vehicle routing problems with two-
dimensional loading constraints,” Technical Report OR/03/04, DEIS, University of Bologna, 2003.

[20] Gonzalez, J. J. S., M. Iori, and D. Vigo An exact approach for the vehicle routing problem with two-
dimensional loading constraints, Transportation Science 41 (2007), 253–264.

[21] Hopper E. and B. C. H. Turton An Empirical Investigation of Meta-Heuristic and Heuristic Algorithms
for a 2D Packing Problem, Artificial Intelligence Review, 16 (2001), 257–300.

[22] Hopper E. and B. C. H. Turton Problem Generators for Rectangular Packing Problems, Studia Informat-
ica Universalis, 2 (2002), 123-136.

[23] Iori, M., S. Martello, and M. Monaci “Metaheuristic algorithms for the strip packing problem”, In Parda-
los P., and V. Korotkich, editors, Optimization and Industry: New Frontiers (2003), 159–179.

[24] Iori M. “Metaheuristic algorithms for combinatorial optimization problems,” Ph.D. thesis, DEIS, Uni-
versity of Bologna, Italy, 2004.

[25] Iori, M., and S. Martello Routing problems with loading constraints, TOP 18 (2010), 4–27.

[26] Kiranoudis, C. T., C. D. Tarantilis, and E. E. Zachariadis A Guided Tabu Search for the Vehicle Rout-
ing Problem with two-dimensional loading constraints, European Journal of Operational Research 195
(2009), 729–743.

[27] Lodi, A., S. Martello, and D. Vigo Heuristic and metaheuristic approaches for a class of two-dimensional
bin packing problems, INFORMS Journal on Computing 11 (1999), 345–357.

[28] Miyazawa, F. K., and Y. Wakabayashi Parametric on-line algorithms for packing rectangles and boxes,
European Journal of Operational Research 150 (2003), 281–292.

REFERENCES 24

[29] Prais, M., and C. C. Ribeiro Reactive GRASP: An application to a matrix decomposition problem in
TDMA traffic assignment INFORMS Journal on Computing, 12 (2000), 164-176

[30] Toth P., and D. Vigo “The Vehicle Routing Problem,” SIAM Monographs on Discrete Mathematics and
Applications, Philadelphia, 2002.

[31] Valenzuela, C. L. and, P.Y. Wang Data set generation for rectangular placement problems, European
Journal of Operational Research 134 (2001), 378-391.

