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Informatique Théorique et Applications

A NOTE ON A TWO DIMENSIONAL KNAPSACK

PROBLEM WITH UNLOADING CONSTRAINTS ∗

Jefferson Luiz Moisés da Silveira1, Eduardo Candido
Xavier1 and Flávio Keidi Miyazawa1

Abstract. In this paper we address the two-dimensional knapsack
problem with unloading constraints: we have a bin B, and a list L of
n rectangular items, each item with a class value in {1, . . . , C}. The
problem is to pack a subset of L into B, maximizing the total profit of
packed items, where the packing must satisfy the unloading constraint:
while removing one item a, items with higher class values can not
block a. We present a (4 + ε)-approximation algorithm when the bin
is a square. We also present (3 + ε)-approximation algorithms for two
special cases of this problem.
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1. Introduction

In this paper we study the two-dimensional knapsack problem with unload-
ing constraints (KU), that is a generalization of the well known NP-Hard two-
dimensional knapsack problem [1, 13]. This problem arises in operations research
transportation problems, like the 2L-CVRP (Capacitated Vehicle Routing Prob-
lem with Two Dimensional Loading Constraints Problem) [6,10]. In this problem
we are given k identical vehicles, with a weight capacity and a rectangular surface
that may be accessed only from one side. We are also given a graph that represents
the customers, the distance between them and the starting point of the vehicles
(a special vertex on the graph which represents the depot). Each customer has
a demand given by a set of rectangular items. The goal is to find k routes that
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visits all clients such that the total cost of the routes is minimized. For each route
it must be obtained a feasible packing of the items of the clients in the route: the
unloading of items of a client must not be blocked by items of customers to be
visited later along the route (unloading constraint).

The KU problem can be formally defined as follows: We are given a bin B of
width and height 1, and n items of C different classes, each item ai with height
h(ai), width w(ai), profit p(ai) and class c(ai). A packing is feasible if items do
not overlap, all of them are packed inside bin B, and there is an order to unload
the items, such that no item of a given class blocks the way out of other items of
smaller classes. We consider that while removing one item of B only horizontal
movements are allowed. The class values c represents the order in which items
must be removed. While removing one item, only this item can be moved and
only in the available free space of the bin. In this case, if an item ai is packed
in (xi, yi) (i.e. its bottom left corner is placed at this position) and aj is packed
in (xj , yj) and c(aj) > c(ai) then either yj + h(aj) ≤ yi or yi + h(ai) ≤ yj or
xj + w(aj) ≤ xi. These constraints guarantee that item aj is not blocking ai
during its removal while using only horizontal movements (see Fig. 1).
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Figure 1. Suppose we have a squared bin B and four items
ai, i = 1, 2, 3, 4 with c(a2) = c(a3) = 1 and c(a1) = c(a4) = 2.
Any 2-staged feasible solution for this problem uses at most 3
items, while the pattern above uses all 4 items and is feasible for
the KU problem. If we had c(a2) > c(a1) then this packing would
be infeasible since a2 would be blocking a1.

Since items are removed in non-decreasing order of values c, we can assume
that, in a feasible packing, when removing item ai, only items aj with class c(aj) ≥
c(ai) are still packed. The other items ak with c(ak) < c(ai) should be removed
previously. The value of a feasible solution is the sum of the profits of items packed
in B.

The KU problem is a generalization of the classical two dimensional Knapsack
Problem: a special case in which all items have the same class value c.
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Denote by OPT (I) the cost of an optimal packing for the instance I and A(I)
the cost of the solution computed by algorithm A. The proposed algorithms have

polynomial-time complexity and satisfy supI
A(I)

OPT (I) ≤ α, where α is the approxi-

mation ratio.
Related Work. An extended abstract of this work appeared in [3] and to our
knowledge, there are no approximation algorithms for the KU problem. There are
a few heuristics focused on the 2L-CVPR Problem [5,6,10,16], and some heuristics
for the strip packing version of the problem [4]. There is also an exact algorithm
for the three dimensional version of the KU problem, based on an ILP formulation
which take into account other practical constraints within the unloading constraint
[14, 15]. Furthermore, the recent advances in the two dimensional knapsack does
not directly apply to the KU problem. In 2006, Harren [7] proposed a (5/4 +
ε)-approximation algorithm for the knapsack problem where the items are squares
and have arbitrary profits and the bin is also a square. Jansen and Solis-Oba,
proposed a PTAS for packing squares with independent profits into a rectangle [12].
There is a (2 + ε)-approximation algorithm for packing rectangles with arbitrary
profits [13]. In [11], Jansen and Prädel proposed a PTAS for the case in which
the profits are proportional to the items surface. These results cannot be directly
used in the KU problem because of the unloading constraints. It is worth noting
that 2-staged knapsack solutions clearly satisfies the unloading constraints, but
approximation algorithms for such problems do not lead directly to approximation
algorithms for the KU problem. In [11], for instance, it is presented a PTAS for
the geometrical 2-staged knapsack problem. But their result does not imply a
PTAS to our problem, since optimal solutions for the KU problem may not satisfy
the cutting pattern required in the 2-staged knapsack problem (See Fig. 1). Thus
the approximation results for 2-staged problems can not be directly used.
Main Results. In this paper we present the first approximation algorithms for
the KU problem. Our algorithm combines algorithms for two-dimensional knap-
sack problems and level based algorithms for the bin packing problem. We de-
sign approximation algorithms for 3 variations of the KU problem: a (3 + ε)-
approximation algorithm for the case where the goal is to maximize the profit of
squares packed into a square; a (4 + ε)-approximation algorithm for the general
case where the goal is to maximize the profit of rectangles packed into a square;
and a (3 + ε)-approximation algorithm for the geometrical case where the profits
corresponds to the area of the rectangles. We also show some results for the case
in which orthogonal rotations are allowed.

The paper is organized as follows. In Section 2 we present a general result
that leads to three approximation algorithms. In Section 3 we present an (4 + ε)-
approximation algorithm for the general case. Finally, in Section 4 we draw some
conclusions.
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2. A Hybrid Algorithm for the KU problem

In this Section we present a general method to generate approximation algo-
rithms for several versions of the KU problem. Using it we present approximation
algorithms for three variations of the problem.

We define a regular two-dimensional knapsack problem, as a two-dimensional
Knapsack problem in which:

• The items can not overlap.
• The items and the bin have rectangular form;
• Any level based packing is a valid (not necessarily optimal) solution to the

problem;

For instance the classical Geometrical and Guillotined cases of the two-dimensional
Knapsack problem are regular.

First we will prove a general result: given an algorithm for a regular two-
dimensional knapsack problem and another level based algorithm for the two-
dimensional bin packing problem, we can construct another algorithm for the
same knapsack problem with the unload constraint.

By level based algorithm we mean an algorithm that packs items into levels
(shelves), where items in some level are “separated” from items in other levels: all
items in a level l0 = 0 are packed with their bottom at the bottom of the bin B, and
the items of a subsequent level li+1 are packed with their bottom in a line above all
the items at level li such that li+1 = li+maxak∈li(h(ak)). Notice that items in the
same level can be arranged horizontally in an arbitrary manner without breaking
the levels structure. The algorithms First-Fit Decreasing Height (FFDH) and
Next-Fit Decreasing Height (NFDH) are examples of level based algorithms for
the Strip packing problem [2] and the algorithm Hybrid First-Fit (HFF) is a level
based algorithm for the two-dimensional bin packing problem [8].

Denote by p(Bi) the sum of the profits of items packed into the bin Bi, and
denote by p(L) the sum of the profits of items in the list L.

Theorem 2.1. Let AK be an α-approximation algorithm for a regular 2D knap-
sack problem. Let ABP be an absolute β-approximation level based algorithm for
the 2D bin packing problem. Then there is an (αβ)-approximation algorithm, de-
noted by AKU for the same version of the knapsack problem and that respects the
unloading constraints.

Proof. The Algorithm AKU is presented in Algorithm 1. It uses algorithm AK
(an α-approximation algorithm for a regular 2D knapsack problem) and algorithm
ABP (an absolute β-approximation algorithm for the 2D bin packing problem that
is based on levels).

In line 3 of Algorithm 1, algorithm AK selects a list of items L′ ⊆ L as a
solution for the knapsack problem. Then in line 4 of Algorithm 1, the level based
algorithm ABP generates the packing P of the items in L′ into bins. Finally, the
Algorithm AKU selects the bin with the largest total profit among the created
bins, sort each level in this bin by class and return it as a solution (lines 5-8 of
Algorithm 1).
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Algorithm 1 AKU algorithm

1: Input: Algorithms AK and ABP and a list L of items of C different classes.
2: Begin
3: L′ ← AK(L);
4: P ← ABP (L′);
5: Let B1, . . . , Bm be the bins in P .
6: Let B be the bin with largest total profit p(B) among the bins in P .
7: Sort items in each level of B by non-increasing order of class.
8: return B.
9: end

First notice that the items in B are partitioned into levels since it is generated
by a level based algorithm ABP . The items in each level of B are sorted by
non-increasing order of class. This guarantees that the final packing satisfies the
unloading constraint. Also, since the problem is regular then the items can be
packed in levels.

Now consider the total profit in bin B. Denote by OPTK the value of an
optimal packing for the regular 2D knapsack problem, and OPTKU the value
of an optimal packing for the regular 2D knapsack version of the problem with
unloading constraints. Given a list of items L, we have OPTK(L) ≥ OPTKU (L).

Assume thatABP (L′) returnedm bins. SinceABP is an absolute β-approximation
algorithm, we have m ≤ β. Let (B1, . . . , Bm) be the set of bins returned by the
algorithm ABP . We have

mp(B) ≥
m∑
j=1

p(Bj)

= p(L′)

≥ 1

α
OPTK(L)

≥ 1

α
OPTKU (L).

Therefore,

p(B) ≥ 1

mα
OPTKU (L) ≥ 1

αβ
OPTKU (L).

From the previous inequality, we conclude that AKU is an (αβ)-approximation
algorithm for the 2D knapsack problem with unloading constraints.

�

In [8], van Stee and Harren proved that the HFF algorithm, for the two-
dimensional bin packing problem, is an absolute 3-approximation when bins are
squares and items cannot be rotated, and is an absolute 2-approximation when 90
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degree rotations are allowed. So, using the HFF algorithm, which is a level based
algorithm, we can prove the following results applying Theorem 2.1:

• Let AK be the PTAS proposed in [12] for the 2D knapsack problem where
items are squares, with profits, and the bin is also a square. Then there
is a (3 + ε)-approximation algorithm for the same version of the problem
and that respects the unloading constraints. If rotations are allowed then
the algorithm is a (2 + ε)-approximation.

• Let AK be the (2 + ε)-approximation algorithm proposed in [13] for the
2D knapsack problem, where items are rectangles with profits, and the bin
is a square. Then there is a (6 + ε)-approximation algorithm for the same
2D knapsack problem with unloading constraints. If rotations are allowed
then the algorithm is a (4 + ε)-approximation.

• Let AK be the PTAS proposed in [11] for the 2D knapsack problem where
items are rectangles with profits that are proportional to their area (this
problem is known as Geometrical Knapsack), and the bin is a square.
Then there is a (3 + ε)-approximation algorithm for the 2D Geometrical
Knapsack problem with unloading constraints. If rotations are allowed
then the algorithm is a (2 + ε)-approximation.

Let n = |L| and TA(n) be the time complexity of algorithm A. It is important to
notice that the time complexity of the algorithm AKU is bounded by O(TAK (n) +
TABP (n) + O(n log n)), with TAK (n) from line 3 on Algorithm 1, TABP (n) from
line 4 on Algorithm 1 and O(n log n) from line 7 on Algorithm 1. Thus, assuming
AK and AKU being polynomial-time algorithms, then so is AKU .

3. A 4-approximation Algorithm for the KU Problem

In this section we present a (4 + ε)-approximation algorithm for the general 2D
KU problem, without rotations, where items have arbitrary profits and the bin is
a square. This result improves the (6+ε)-approximation algorithm of the previous
section.

Let Aε be the (1+ε)-approximation algorithm for the one-dimensional knapsack
problem with arbitrary profits [9], and consider the NFDH algorithm [2], which is
a level based algorithm for the strip packing problem. The NFDH starts by sorting
the items by non-increasing order of height. Then, starting from the bottom of
the strip as its first level, the algorithm packs items in order on the current level
(at the bottom of the level and left justified) as long as they fit; then the current
level is closed and the same procedure is applied to a new level above the current
level while there are items to be packed.

In Algorithm 2 we present our A′KU algorithm for the KU Problem. It starts
selecting a set L′ of items with the algorithm Aε where each 2D item ai of the
original instance is transformed into an item for the 1D knapsack problem: the
size of the item, s(ai), has value equal to the area of ai and the profit values are
the same (line 3-4 of Algorithm 2). Then it uses the NFDH algorithm to generate
a strip packing with the 2D items in L′ (lines 5 of Algorithm 2). Finally the
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algorithm packs the levels generated by NFDH into 4 bins, and selects the one
with the largest total profit as a final solution (lines 6-8 of Algorithm 2).

Algorithm 2 A′KU algorithm

1: Input: A list L of 2D items of C different classes.
2: Begin
3: Let Lu be the list L of items where each item now has size s(ai) = h(ai)·w(ai),

and profits values remain the same.
4: Let L′ be the original 2D items selected by algorithm Aε(Lu).
5: Generate the packing P with NFDH(L′).
6: Pack the levels of P into at most 4 bins.
7: Let B be the bin with largest total profit p(B) among the 4 created bins.
8: Sort each level in B by non-increasing order of class.
9: return B.

10: end

Theorem 3.1. The A′KU algorithm is a (4 + ε)-approximation algorithm for the
KU problem.

Proof. Denote by Area(L) the total area of items in a given list L. First, notice
that the algorithm Aε selects L′ such that Area(L′) ≤ 1 and p(L′) ≥ 1

1+εOPTK(L)

where OPTK(L) is the value of an optimal solution for the 2D knapsack problem.
Since NFDH(L′) ≤ 2Area(L′) + 1 (see [2]), we have that NFDH(L′) ≤ 3.
Let P be the strip packing solution computed by NFDH algorithm. We claim

that there are at most three levels with height larger than 1/2 in this packing (the
height of some level is the height of the highest item packed on it). The levels
are sorted by height in P . Suppose for the purpose of contradiction that the first
four levels have height > 1/2. Then all items packed in the first, second and third
levels have height > 1/2. The first item packed in the fourth level also has height
> 1/2. It is easy to see that the items of the first and second level have total area
> 1/2 and the items of the third level together with the first item of the fourth
level also have total area > 1/2. But this contradicts the fact that Area(L′) ≤ 1,
and so at most three levels have height larger than 1/2.

Now we show how to pack all levels of P into at most 4 bins. Pack each level
with height larger than 1/2 in three different bins B1, B2 and B3 (if there are
less than 3 levels with height > 1/2 consider the 3 largest levels). Now for the
remaining levels pack them in the first bin until for the first time the total height
is larger than 1, then proceed to the second bin, and finally to the third. Notice
that only the first and second bins may have total height larger than 1, since the
total height of all levels is at most 3. Pack the last packed levels of bin B1 and
B2 in another bin B4 (this can be done since each one of these levels have height
< 1/2).

Finally the algorithm selects the bin B with largest total profit among B1, B2,
B3 and B4. The items in the levels of this bin are sorted in non-increasing order of
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class values. This guarantees that we have a feasible packing for the KU problem.
Finally we have

4 · p(B) ≥
4∑
i=1

p(Bi)

= p(L′)

≥ 1

1 + ε
OPTK(L)

≥ 1

1 + ε
OPTKU (L).

That is,

p(B) ≥ 1

4 + ε′
OPTKU (L)

Therefore, the algorithm AKU is a (4 + ε)-approximation algorithm for the KU
problem.

�

Moreover, the analysis of Theorem 3.1 is tight. Consider the following instance
with |L| = 7 in the form (h(ai), w(ai), p(ai), c(ai)):

{(1, 2ε, α, 1), (
1

2
+ 2ε, 1− ε, β, 1), (

1

2
+ ε, 2ε, α, 1), (

1

4
+ ε, 1− ε, β, 1),

(
1

4
, 2ε, α, 1), (

1

8
+ ε, 1− ε, β, 1), (

1

8
, 2ε, α, 1)}.

We can choose ε small enough such that Area(L) < 1. We also choose a large
value for α and a small value for β. In line 4 of the algorithm A′KU , we will have
L′ = L. Furthermore, the NFDH algorithm just pile the items one above the other
since it sorts the items in non-increasing order of height and uses next fit to pack
items into levels.

Finally, the algorithm A′KU is going to use 4 bins to pack the list L′ (See Fig.
2).

After packing all the items into the bins, the A′KU algorithm chooses the 2nd

bin with profit α + 2β. An optimum solution packs all thin items (the ones with
width 2ε) into one bin, side by side with value 4α. Choosing α → ∞ and β → 0
we have

OPTKU (L)

A′KU (L)
= lim
α→∞,β→0

4α

α+ 2β
= 4.

Finally, let n = |L| and TAε(n) be the time complexity of algorithm Aε. The
time complexity of the algorithm A′KU is bounded by O(TAε(n)+O(n log n)), with
TAε(n) from line 4 on Algorithm 2 and O(n log n) from lines 5 and 8 on Algorithm
2. Thus, assuming Aε being a polynomial-time algorithm, so is A′KU .
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Figure 2. The algorithm uses the 4th bin since two items did
not fit into bins 1 and 2.

4. Concluding Remarks

In this paper we consider some variants of the 2D knapsack problem with un-
loading constraints. To our knowledge, this is the first paper to present approxi-
mation results to this problem. We presented a (6 + ε)-approximation algorithm
for the general case of the problem, and two (3+ε)-approximation algorithms, one
for the special case where the profits are proportional to the areas of the items
and another one for the version where items are squares. Finally, we improve our
first result for the general case and present a (4 + ε)-approximation algorithm and
proved that this result is tight.

References

[1] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations Research
Letters, 32:5 – 14, 2004.

[2] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds for

level-oriented two dimensional packing algorithms. SIAM Journal on Computing, 9(4):808–

826, 1980.
[3] J. L. S. da Silveira, E. C. Xavier, and F. K. Miyazawa. Two dimensional knapsack with

unloading constraints. In VI Latin American Algorithms, Graphs and Optimization Sym-
posium (LAGOS 2011), Electronic Notes in Discrete Mathematics, pages 1–4. 2011.

[4] Jefferson L. M. da Silveira, Flávio Keidi Miyazawa, and Eduardo C. Xavier. Heuristics for

the strip packing problem with unloading constraints. Computers & OR, 40(4):991–1003,
2013.

[5] B. L. P. de Azevedo, P. H. Hokama, F. K. Miyazawa, and E. C. Xavier. A branch-and-

cut approach for the vehicle routing problem with two-dimensional loading constraints. In
Simpósio Brasileiro de Pesquisa Operacional - SBPO, Porto Seguro, Brazil, 2009.

[6] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for the vehicle

routing problem with two-dimensional loading constraints. Networks, 51(1):4–18, October
2007.



10 TITLE WILL BE SET BY THE PUBLISHER

[7] R. Harren. Approximating the orthogonal knapsack problem for hypercubes. In ICALP (1),

volume 4051 of Lecture Notes in Computer Science, pages 238–249, 2006.
[8] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles into bins.

J. of Scheduling, 2010.

[9] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. J. ACM, 22:463–468, October 1975.
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