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Abstract

The Facility Location problem is a well know NP-Hard combina-
torial problem. It models a diverse set of situations where one aims
to provide a set of goods or services via a set of facilities F to a set
of clients C. There are opening costs to each facility in F and con-
nection costs for each pair of facility and client, if such facility attends
this client. A central authority wants to determine the solution with
minimum cost, considering both opening and connection costs, in such
a way that all clients are attended by one facility. In this paper we
are interested in the non-cooperative game version of this problem,
where instead of having a central authority, each client is a player and
decides where to connect himself. In doing so, he aims to minimize
his own costs, given by the connection costs and opening costs of the
facility, which may be shared among clients using the same facility.
This problem has several applications as well, specially in distributed
scenarios where a central authority is too expensive or even infeasible
to exist. In this paper we present a survey describing different variants
of this problem and reviewing several results about it. For some of the
variants, where results were not found in the literature, we show new
results concerning the existence of equilibria, PoS and PoA. We also
point out open problems that remain to be addressed.

1 Introduction

The facility location class of problems models a large number of important
decision problems that may occur in practice, ranging from traditional areas
such as economics and urban planning, to more recent ones such as com-
puter networking. This class of problems is concerned with the placement
of facilities that will supply some demand of products or services by clients

∗This work was partially financed by CNPq.
†xxx@students.ic.unicamp.br
‡eduardo@ic.unicamp.br

1



in order to minimize some function of cost. This function cost may be de-
fined in different ways, depending on each specific problem. Generally the
costs consider several factors such as competitors, distance from clients, and
others.

A common version of the facility location problem can be stated as the
problem of choosing from a set of facilities F , a subset of facilities to open
and to establish a connection with each client from a set of clients T , also
called terminals. The opening and connection costs must be minimized. A
formal definition is given bellow.

Definition 1 (Uncapacitated Facility Location Problem). Let F be a set of
facilities, T a set of terminals, cf opening costs for each facility f ∈ F and
dtf connection costs for connecting terminal t ∈ T to facility f ∈ F . The
problem is to find a subset of facilities to open and establish connections
from terminals to this subset such that the sum of all costs are minimized.

An integer program formulation for this problem is presented below:

minimize
∑
f∈F

cfyf +
∑
f∈F

∑
t∈T

dtfxtf

subject to
∑
f∈F

xtf = 1 , ∀t ∈ T

yf ≤ xtf , ∀f ∈ F,∀t ∈ T
yf , xtf ∈ {0, 1} , ∀f ∈ F,∀t ∈ T ,

where yf is a boolean variable that indicates if a facility f is opened, while
the variable xtf represents whether terminal t is connected to facility f or
not.

From this problem, several possible variants may arise. There might be
capacities associated with each facility, as well as quotas for each facility.
Furthermore, the opening costs of a facility f may not be constants, but a
function on the number of terminals connected to f . In another possible
variant the facilities can be any point in a metric space, i.e. F is infinite.
All these variants mentioned and the original problem are well studied, with
most of them being NP-Hard with known approximation algorithms [23, 17].

In all these problems, it is assumed that both terminals (clients) and
facilities are controlled by a single central entity seeking to minimize the
total cost of the system. However, in several applications the terminals or
the clients may behave differently, for example being controlled by different
agents. It is therefore important to analyse these problems from a game
theoretic perspective.

In game theory, a non–cooperative game is a scenario where players or
agents choose strategies independently trying to either minimize their costs
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or maximize their utility. For each player i there is a set Ai of actions that it
can choose to play. A pure strategy Si consists of one action from Ai, while a
mixed strategy corresponds to a probability distribution over Ai. In a pure
game each player choses one action to play, while in a mixed game each
player randomizes his action according to the probability distribution. In
this paper we assume pure strategies games unless mentioned otherwise. A
set of strategies S consisting of one strategy for each player, is denominated
a strategy profile. Let S = A1 × A2 × . . . × An be the set of all possible
strategy profiles and let c : S → Rn be a cost function that attributes
a cost ci(S) for each player i given a strategy profile S. Define S−i =
(S1, . . . , Si−1, Si+1, . . . , Sn) a strategy profile S without i’s strategy, so that
we can write S = (Si, S−i). If all players other than i decide to play S−i,
then player i is faced with the problem of determining a best response to
S−i. A strategy S∗i from a player i is a best response to S−i, if there is no
other strategy which could yield a better outcome for the player, i.e.

c(S∗i , S−i) ≤ c(Si, S−i)

for all Si ∈ Ai. A strategy profile is in a pure Nash equilibrium (PNE) if
no player can increase his utility or reduce his cost by choosing a different
strategy, i.e. every strategy in the strategy profile is a best response.

Game theory can be used to analyze many aspects of decision problems.
It may be used to help design games with desired properties, or be used to
measure the inefficiency arising from players selfish behaviour. The social
welfare or social cost is a function mapping a strategy profile to a real
number, indicating a measure of the total cost or payoff of a game. Two of
the most important concepts for efficiency analysis are the Price of Anarchy
(PoA) and the Price of Stability (PoS). The PoA is the ratio between a
Nash equilibrium with worst possible social cost and the strategy profile
with optimal social cost, while the PoS is the ratio between the best possible
Nash equilibrium to the social optimum.

One variation of a facility location game occurs when clients behave
selfishly connecting to facilities opened by a central authority. If the central
authority is aware of the exact location or connection costs of each client,
then the problem is equal to the one presented in Definition 1. However,
when clients may lie to the central authority about their location, there is
a need for such authority to design mechanisms encouraging clients to be
truthful. There have been several advancements in this area of mechanism
design, in particular on strategy-proof mechanisms for these games, with
seminal papers by Pal and Tardos [21], Devanur et al. [6, 7] and Leonardi
and Schäfer [15] as well as complementary works [24, 8, 27].

Another variant of a facility location game considers a cooperative game,
where a solution is going to be constructed attending all the clients that
represent players. The problem is how to split the solution cost among
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all clients in such a way that no coalition of players has incentive to leave
the grand coalition and form a new solution. This problem was studied by
Goemans and Skutella [9] and later in the book Algorithmic Game Theory
[20] (Chapter 15), with several related results presented.

These previous versions of facility location games are based on the fact
that a central authority is partially present in the problem. Nonetheless,
when no authority is dictating where each facility is located, several tradi-
tional games may be formed. One possibility is when facilities and clients are
controlled by players. The facility players set operating prices for clients,
which behave selfishly always choosing to connect to the cheapest option
available. Games with these premises have been studied by Vetta [25] as
valid utility games, with proof of the existence of pure Nash equilibria and
bounds on the price of anarchy. Later this subject was also covered in the
book Algorithmic Game Theory [20] (Chapter 19), with several results for
variants of these games also explored in other works [18, 26, 13].

Perhaps the most natural game that arises from facility location prob-
lems occurs when players control terminals with the need to connect to a
facility. In this case terminals connected to a facility share its opening cost.
How players share the costs may vary depending on the specific version of
the game being analyzed. When there is no rules on how to share opening
costs, some important results have been presented by [2]. However, few di-
rect results have been presented for other variants of this game, with most
results being adaptations from other problems such as the network design
problem [1]. Therefore, our focus in this work is to study Facility Location
games when terminals are controlled by players. We are interested in how
much this behaviour may hamper the system cost when compared to the
system optimum, both optimistically by considering the Price of Stability
of games and pessimistically, with the Price of Anarchy. Furthermore, we
adapt and present results from the literature for games where players are
not completely selfish in their behaviour.

This survey is organized as follows. In Section 2, we summarize results
for facility location games with no cost sharing rules, mainly from Cardinal
and Hoefer [2, 19]. In Section 3, results from network design [1] are adapted
to fair cost facility location games, and a short compilation of results for the
weighted version of the game is presented. In Section 4, capacity restrictions
are added for the previous analyzed games, pure Nash equilibria existence
and bounds for PoA and PoS are proven. Altruism in facility location games
is explored in Section 5, and final conclusions are given in Section 6.

2 Facility Location without Cost Sharing Rules

The facility location problem can model several practical scenarios. Imagine
a situation where some groups are interested in constructing public goods,
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such as libraries or museums. There is no defined rule on how these groups
share the construction costs, and opened facilities do not have ties to the
groups which helped build them, being available to anyone willing to use
them. These scenarios may be modelled using game theory: a game where
players controls terminals and need to connect to an opened facility.

Definition 2 (Facility Location Game without Cost Sharing Rules (FLG)).
Let (G = (T ∪F, T×F ), k, c, d) be an instance of FLG, where G is a bipartite
graph with vertex sets F of n facilities and T of m terminals, k is the number
of players and c and d are opening and connection costs, respectively. Each
facility f ∈ F has an opening cost cf , and connection costs dtf for each
terminal t ∈ T . Each player i ∈ [1, k] controls a subset of terminals Ti ⊆ T .
These subsets form a partition of T , i.e, each terminal from T is controlled by
some player and Ti∩Tj = ∅ for i, j ∈ [1, k] where i 6= j. Each terminal must
be connected to exactly one opened facility. Each player i has a strategy Si
composed of a payment function pci : F → R+

0 indicating how much he offers
for opening a facility, as well as a function pdi : T ×F → R+

0 which indicates

how much he pays for the connection costs. Let pc(f) =
∑k

i=1 p
c
i (f) be the

total paid by players for a facility f . If pc(f) is greater than or equal to
the cost cf , then the facility f is considered opened. Likewise, if the total
offered for connection cost of a terminal-facility pair t, f is greater than or
equal to dtf then the connection is bought. Each player tries to minimize
their payments while ensuring that the terminals they control are connected
to an opened facility.

Note that there is no rule on how players share the costs to open a facility.
Therefore, how players share these costs may depend on which player need
the facility the most and in how the equilibrium is reached. Consider the
game in Figure 1, with two players, each controlling one terminal. One
possible strategy is if t1 offers 1 to f1, while t2 offers 1 to f3. There is no
incentive to any player to change their payment scheme, and thus they are
in an equilibrium. Suppose now that t1 chooses instead, as his payment
function, to offer 0.75 to facility f2 and zero to the others, while t2 chooses
to only pay 1 to f3. The player controlling t2 then has an incentive to change
his strategy to pay 0.75 to open f2. This strategy profile is an equilibrium
in which both players share equally the opening costs of f2. However, if t1
had offered only 0.5 + ε to f2, t2 would still pay less by offering to pay the
remaining opening cost of f2. In fact, there is an infinite number of possible
equilibria in this example, since a player may offer to pay for the opening
costs of f2 any amount in the interval (0.5, 1.0] and the other player will, in
an equilibrium, complete the offer to open f2.

In [2], Cardinal and Hoefer analyzes a class of covering games which in-
cludes FLG and answer a few fundamental questions about it. They prove
that there may be instances of FLG with no pure Nash equilibrium, also
showing that it is NP-Complete to determine whether an instance of FLG

5



t1 t2

f1 f2 f3

cf1 = 1 cf2 = 1.5 cf3 = 1

Figure 1: A example of a Facility Location Game. Connection costs are
constant.

has an equilibrium or not. Furthermore, they provide bounds on the Price
of Anarchy and Stability for the FLG for the instances that admit equilib-
ria. They also presented approximation algorithms to find an approximated
equilibrium based on a well known primal-dual algorithm for the facility
location problem. We shortly summarize some of these results below.

Theorem 1 (Pure Nash Equilibrium existence for FLG [2]). There are
instances of FLG where there is no PNE.

Proof. Consider the instance of FLG showed in Figure 2. Player A controls
terminal t1, while player B controls terminals t2 and t3. For all edges shown,
the connection costs are constant, and infinite otherwise. Suppose facility
f1 is opened. Either A or B paid completely for it, or they shared the costs
in some manner. If B paid fully, player A do not need to pay anything to
fulfil his constraints, and B would need to pay for either f2 or f3 to attend
terminal t2. In this case B would pay less by not opening f1 and instead
only paying for f3 for a total payment of 1 + ε. However, player A would
then need to pay fully for f1 or f2, which would make B chooses to use both
f1 and f2, foregoing f3 since it would only need to open one facility with
total cost equal to 1. Player A would be free in this scenario to not pay for
any facility, choosing to connect to the one B opened, and completing a best
response cycle. The same occurs when they initially share the costs of f1,
since B would either choose to open fully f3 or f2, entering the same best
response cycle.

To determine whether the FLG game does have or not a PNE is NP-
Hard. As detailed in [2], the 3-SAT problem [12] can be reduced to this
problem. Given an instance to the 3-SAT it is constructed a game where an
equilibrium exists if and only if there is a solution to the 3-SAT instance.

When restricted to instances of the game that admits PNE, Cardinal
and Hoefer [2] show that the price of anarchy of FLG is k. The social cost
C(S) for a strategy profile S of an instance of FLG is defined as the sum of
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t1t3

t2

f1

cf1 = 1

cf2 = 1

f2

cf3 = 1 + ε

f3

B A

B

Figure 2: A game with no PNE, from [2]. Letters next to terminals indicate
which player controls the terminal.

all payments made by the k players, i.e.

C(S) =
k∑
i=1

∑
f∈F

pci (f) +
k∑
i=1

∑
(t,f)∈T×F

pdi (t, f)

Theorem 2 (Price of Anarchy of FLG [2]). The price of anarchy for any
FLG instance is at most k, and there exists a FLG instance with price of
anarchy at least k.

Proof. Suppose that there is an equilibrium S which is more than k times
the cost of a strategy profile S∗ with optimal social cost. Then, at least
one player in S is paying more than c(S∗) to cover his terminals. This
player could then simply offer the optimal solution S∗ as his own payment
scheme, and therefore reach a better solution, which means that S is not an
equilibrium. Thus, PoA ≤ k.

f1

cf1 = 1

f2

cf2 = k

b b bt1 t2 tk−1 tk

Figure 3: A game with PoA equal to k.

Now consider the game of Figure 3, with m = k terminals, each one
controlled by a different player, and two facilities, f1 with opening cost 1,
and f2 with opening cost k, with no connection costs. The optimal solution
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is clearly to connect each terminal to f1 with total cost 1. However, the
strategy profile where each player is connected to f2 paying 1 to open it, is
an equilibrium with total cost of k. Therefore, the Price of Anarchy of FLG
is k.

By exploiting the fact that there are instances with no equilibrium, Car-
dinal showed a game where the Price of Stability is close to the Price of
Anarchy.

Theorem 3 (Price of Stability of FLG [2]). There is an instance of the
FLG with price of stability of at least k − 2.

Proof. Consider the game in Figure 4, where player 1 controls terminal t1,
player 2 controls terminals t2 and t3, and player i ∈ [3, k] control terminal
ti+1. Each player i from 3 to k can connected to the center facility fk+1

with connection cost ε and opening cost 1, as well as their “leaf” facility fi
with connection cost 1 and opening cost ε. Note that the instance induced
by players 1 and 2 is very similar to the one in Figure 2, and also does not
have by itself an equilibrium. Clearly, the optimal solution is the one where
players 1 and 2 connect to f1 and f2, while the remaining players all connect
to fk+1, with total cost 1 + (k − 2)ε+ 5ε = 1 + (k + 3)ε.

2
12

f3

f1

t2

t3 t1

f2t4t5

t6

tk+1

3

4

5
fk+1

f4

f5

fk

t7

f6

b b b

cf3 = 1.5ε cf2 = ε

cf1 = ε

cfk+1
= 1

k

cf4 = ε

cf5 = ε

cfk = ε

6

cf6 = ε

Figure 4: A game with PoS of k− 2, from [2]. Dashed lines have connection
cost ε, while full lines have cost 1. Numbers next to terminals indicate which
player controls the terminal.

If any player chooses to open the center facility fk+1, all other players
will eventually connect to the center as well, with the exception of players 1
and 2 which would never reach an equilibrium (see Theorem 1). So in order
to exist an equilibrium, player 3 must connect to f3 paying some value in
[ε/2, ε] of the facility cost (say ε/2). Then player 2 pay the remaining cost,
say ε, connecting both of its terminals to f3. It is easy to check that this is
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a best equilibrium. Therefore each player i ∈ [4, k] fully pays for facilities
fi, each paying a connection cost of 1 and opening cost of ε. Player 3 pays a
connection cost of 1 to f3 and ε/2 of its opening cost. Finally, player 1 will
pay 2ε for opening and connecting its terminal to either f1 or f2, and player
2 will pay 3ε in connection costs to f3 and the remaining opening cost. The
total cost for this equilibrium is (k−3)(1+ε)+1+5.5ε = (k−2)(1+ε)+4.5ε.
Therefore, when ε tends to 0, the price of stability of this instance tends to
k − 2.

Note that both the Price of Anarchy and the Price of Stability have sim-
ilar values for this class of games, indicating a large gap between equilibria
and social optima. However, in all theorems seen so far, the fact that players
do not have a clear way to share facility opening costs plays a major role in
making such big differences between the optimal welfare and pure equilibria.
If global sharing rules for costs are considered, this gap, and the undesirable
fact of the nonexistence of pure equilibria in some games may change.

3 Facility Location with Fair Cost Allocation

In this section, we consider facility location games where, instead of players
freely coordinating on how to share facilities’ opening costs, they are forced
to equally share the costs for each facility they want to open. The game is
defined in a similar way as in Section 2, since the only change is in how the
players share the facilities opening costs.

Definition 3 (Facility Location Game with Fair Cost Allocation (FLG-FC)).
Let G = (T ∪F, T ×F ), with vertex sets F of n facilities and T of m termi-
nals. Each facility f ∈ F has an opening cost cf , and connection costs dtf
for each terminal t ∈ T . Let K = [k] be the set of players. Each player i
controls a subset of terminals Ti ⊆ T , and each terminal must be connected
to exactly one opened facility. A player i chooses a strategy Si ⊂ Ti × F .
Let S = (S1, ..., Sk) be a strategy profile and U(S) =

⋃
i∈K Si be the set of

all strategies chosen by players in S. Each player tries to minimize his own
payment

pi(S) =
∑
f∈Si

cf
xf (S)

+
∑

(t,f)∈Si

dtf ,

where xf (S) = |{1 ≤ i ≤ k : f ∈ U(S)}| is the number of players using
facility f in strategy profile S.

The social welfare cost for a strategy S is defined as the sum of all player
payments, i.e.

C(S) =
∑
i∈K

pi(S) =
∑

f∈U(S)

cf +
∑

(t,f)∈U(S)

dtf .
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We use the expression f ∈ U(S) to represent all facilities connected to a
terminal in a strategy profile S, while f ∈ Si represents all facilities player
i uses to connect its terminals in strategy Si.

This game can be seen as a specialization of Network Design, first defined
and explored in [1]. In the Network Design Game, it is given a graph G =
(V,E), where each player i has a set of terminal nodes Ti which he needs to
connect, and his strategy is a set of edges Si ⊂ E which must form a tree
connecting all nodes in Ti. Each edge e has an opening cost ce associated
with it, and players who use this edge share its cost equally.

For the network design game, it was proved in [1] that the game always
have a pure NE, since it is a potential game with potential function

Φ(S) =
∑
e∈E

xe(S)∑
x=1

ce
x

(1)

where xe is the number of players which have the edge e in the strategy
profile S.

A similar proof of the existence of PNE is possible for the Facility Lo-
cation with Fair Cost Allocation. In this case we use a modified potential
function

Φ(S) =
∑
f∈F

xf (S)∑
x=1

cf
x

+
∑

(t,f)∈U(S)

dtf (2)

where (t, f) ∈ U(S) is a pair terminal–facility used in the strategy profile S,
and xf (S) is the number of players sharing facility f in S.

Theorem 4. Every instance of the FLG-FC game admits a pure Nash equi-
librium.

We can use the same arguments and example used in Theorem 2 to
show that the Price of Anarchy of the FLG-FC is equal to k, the number of
players.

Theorem 5. The price of anarchy for any FLG-FC instance is at most k,
and there exists a FLG instance with price of anarchy at least k.

As for the Price of Stability, Anshelevich et. al [1] proved that for the
network design game there is an upper bound of H(k). We can do a similar
proof for the Facility Location game obtaining the same bound and we can
also show that this bound is tight.

Theorem 6 (DRAFT Price of Stability for FLG-FC). Consider a facility
location game with fair cost allocation (FLG-FC) with nondecreasing concave
opening cost cf for each facility f and connection costs dtf for pairs of
terminal-facility (t, f). Then the Price of Stability is H(k), where k is the
number of players of the game .
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Proof. Let Φ(S) be the potential function defined in Equation 2. Let S∗ be
a strategy with optimal social cost

C(S∗) =
∑

f∈U(S∗)

cf +
∑

(t,f)∈U(S∗)

dtf .

Then, Φ(S∗) ≤ H(k)C(S∗), since

Φ(S∗) =
∑
f∈F

x∗f (S)∑
x=1

cf
x

+
∑

(t,f)∈U(S∗)

dtf

≤
∑
f∈F

cfH(k) +
∑

(t,f)∈U(S∗)

dtf

≤ H(k)

∑
f∈F

cf +
∑

(t,f)∈U(S∗)

dtf


≤ H(k)C(S∗).

Since FLG-FC is a potential game, we can start the game using the
strategy profile S∗ and let each player chooses a best response strategy in
a series of rounds. After a finite number of rounds the game will reach a
pure Nash equilibrium S with Φ(S) ≤ Φ(S∗). For any strategy profile S′,
Φ(S′) ≥ C(S′) and therefore

C(S) ≤ Φ(S) ≤ Φ(S∗) ≤ H(k)C(S∗) .

Reordering the inequality, we obtain that

PoS ≤ C(S)

C(S∗)
≤ H(k) .

To see that this bound is tight, consider the example in Figure 5. In
this game with n = k + 1 facilities and m = k terminals each player i ≤ k
controls terminal ti. Clearly the solution with optimal social welfare is the
one where all players open facility fk+1 with a total cost of 1 + ε. However,
this strategy profile is not an equilibrium, since player k would be able
to pay less by opening facility fk. This change in strategy from player k
thence would cause player k − 1 to also change his strategy to open facility
fk−1, which ultimately would cause all players to choose to not open fk+1,
resulting in a equilibrium of total cost 1 + 1

2 + ...+ 1
k = H(k). This strategy

profile is the only possible equilibrium, since every terminal must connect
to a facility and there are no equilibrium in which facility fk+1 is open.
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b b b

b b bf1 f2 fk−1 fk

t1 t2 tk−1 tk

fk+1

cf1 = 1 cf2 = 1
2

cfk−1
= 1

k−1 cfk = 1
k

cfk+1
= 1 + ε

Figure 5: Game with PoS of H(k). All edges have cost equal to zero.

3.1 Weighted Players

Suppose a Facility Location game where players have different demands.
Suppose player i demands wi units of some good while player j demands
wj . When sharing the cost of a common facility, this cost should be divided
considering these demands.

The facility location game with fair cost allocation can be extended for
cases where players may pay a larger or smaller fraction of opening costs for
facilities. This is accomplished by changing the cost calculation function by
adding weights for each player. Now each player i pays in a strategy profile
S,

pi(S) =
∑

(t,f)∈Si

dtf +
∑
f∈Si

wi
cf
Wf,S

,

where Wf,S is the sum of the weights of all players using f in the strategy
profile S.

This extension has been studied by Hansen and Telelis [10, 11]. They
prove that e-approximate equilibria exists, i.e. there is a strategy profile S
where each player cannot improve by more than a factor e from what he is
paying in S. Furthermore, a bound for both the PoA and PoS of Θ(logW ) is
shown, where W is the sum of all player weights. In the metric case constant
bounds were shown.

The Network Design Game with weights was also explored in the lit-
erature, particularly in [3]. In this paper, Chen and Roughgarden proved
that this variant do not always have a Pure Nash Equilibrium. However,
the example used in this proof do not translate directly to a Facility Lo-
cation game with weighted players. It is currently an open problem if this

12



extension always have a Pure Nash Equilibrium. The proof using potential
functions used in the last section do not apply to this variant, since it does
not possess a potential function.

4 Facility Location Games with Capacities

It is not always possible for a facility to provide goods for an unlimited
number of terminals. Therefore, extended versions of facility location games
where the facilities have limited capacities are also of interest. In the most
natural extension, every facility f has a capacity uf associated with it, which
indicates how many terminals can be connected to this facility.

All examples seen so far can be modified to this extension, by setting the
capacity of each facility equal to the number of terminals. Thus, the price
of anarchy is at least the number of players k for this new game. However,
with capacities restriction we can show that worse equilibria exists, even in
the case of fair cost allocation.

Theorem 7 (Price of Anarchy for Capacitated Facility Location). The Price
of Anarchy for the FLG and FLG-FC with capacities is unbounded.

Proof. Consider the game in Figure 6, where player 1 controls terminal t1
and player 2 controls terminal t2. One possible equilibrium is the state
where t1 chooses f2 and t2 consequently has to open f3, since all facilities
have unitary capacities. This equilibrium is also the social optimum solution.
Nonetheless, there is also another possible equilibrium for this game: when
t2 opens f2 and t1 is forced to open facility f1, with an infinity opening cost.
Therefore, the price of anarchy for facility location games with capacities is
unbounded. Note that this example works for both games FLG and FLG-FC
with capacities, since each facility can attend at most one terminal.

t1 t2

f1 f2 f3

cf1 = ∞
uf1 = 1

cf2 = 1
uf2 = 1

cf3 = 1
uf3 = 1

Figure 6: Game with unbounded Price of Anarchy.
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As for the price of stability, the way facility opening costs are divided
among players has a big influence on the PoS. For games with fair cost
allocation with capacities, we can show that it is still a potential game, and
Theorem 6 applies, giving it a H(k) bound for the PoS. For games with
no cost sharing rules, however, we can prove that there are games with
unbounded price of stability.

Theorem 8 (Existence and Price of Stability for Capacitated FLG). There
are instances of the capacitated facility location game without cost sharing
rules (Capacitated FLG) without Nash equilibrium. In the case where in-
stances admit a Nash equilibrium, the Price of Stability is unbounded.

Proof. First we prove that there are instances with no equilibria, even when
a player is only allowed to control a single terminal. Consider the game in
Figure 7 where one player controls terminal t1 and another one controls t2.
Suppose the player controlling terminal t2 opens f2. Then terminal t1 must
open f1 paying the full opening cost 2+ε. However, since now f1 is opened,
t2 can just connect to f1 without paying any opening costs, which causes
t1 to change its strategy by connecting to f2. The game proceeds in this
manner with t1 and t2 changing their connections between the facilities.

t1

f1

cf1 = 2 + ε
uf1 = 2

t2

f2

cf2 = 1
uf2 = 1

Figure 7: Game without a Nash equilibrium. Connection costs have a con-
stant value.

Now suppose we restrict ourselves to instances of this game where a
PNE exists. Based in the game of Figure 7, we can construct new instances
with unbounded Price of Stability. Consider the game instance in Figure 8,
where each player i ∈ [1, 5] controls the terminal ti. Note that the subgraph
induced by terminals t4, t5 is a game instance with no equilibrium, unless
some amount of the opening cost of f4 is paid by an external terminal. In
fact, in order for this instance to have an equilibrium, terminal t3 must
connect to f4, paying at most 1 of its opening cost. In an equilibrium, t2
must not connect to f3, since doing so t3 would also choose f3 and thus t4
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and t5 would not reach an equilibrium. Terminal t2 therefore must connect
to f2, and since this facility has unitary capacity, t1 must choose facility f1
with unbounded opening cost. This is the only possible equilibrium in this
instance, therefore the PoS is unbounded.

t1 t2

f1 f2 f3

t3 t4

f4

cf4 = 2 + ε
uf4 = 3

cf1 = ∞
uf1 = 1

cf2 = 1
uf2 = 1

cf3 = 1
uf3 = 2

t5

f5

cf5 = 1
uf5 = 1

Figure 8: Game with unbounded Price of Stability.

When dealing with capacities, there is also a possibility of a softer ap-
proach. For example we can consider a game where the player cost function
has and additional cost that increases with the number terminals using a
same facility. In this variant, the cost of a terminal t connecting to a facil-
ity f is defined as

cf
xf

+ g(xf ) + dtf , where xf is the number of terminals

connected to f .
If the added cost function g(x) is monotone increasing, and the opening

function cost cf (x) is monotone increasing and concave then Anshelevich
et. al [1] proved, for the network design game, that the Price of Stability
is bounded by A × H(k). The parameter A depends on the type of the
function g. For functions with polynomial degree at most l, this term is
equal to l + 1. This bound extends for the facility location game with fair
cost allocation and with the additional g(x) costs. This occurs because the
proof for such bound is based on the potential function of the network design
game, and the distance costs dtf that appear in the facility location game
do not interfere in the proof presented in [1].

5 Altruism in Facility Location Games

All analysis seen so far for facility location games assume that players are
completely selfish. However, this assumption does not always reflect what
happens in practice. Players behavior in practice may be at least partially
altruistic [14, 16], indicating a need to incorporate this alternate behavior
for games modeling real world scenarios. In light of this, in recent years

15



there has been increasing interest in the study of alternate models on how
players behave. A model for altruistic behavior is presented by Chen et
al. [5]. It changes how players perceive utility by adding a αi parameter for
each player i indicating how selfless a player behaves.

Definition 4 (Altruism). Let G = (K, (Si)i∈K , (pi)i∈K) be a cost minimiza-
tion game, where K = [k] is the set of k players, S = S1 × ... × Sk is the
set of all possible strategy profiles, where Si is the set of possible strategies
for player i. The payment function pi : S → R defines the cost of a strategy
profile for player i.

The α-altruistic extension of G, for α ∈ [0, 1]k, is defined as the strategic
game Gα = (K, (Si)i∈K , (p

α
i )i∈K), where for every player i and S ∈ S,

pαi (S) = (1− αi)pi(S) + αiC(S) , (3)

where C : S → R is a function mapping strategy profiles to a real number
that represents a social costs. This function must satisfy the property that
for any S ∈ S, C(S) ≤∑i∈K pi(S).

The function pαi (S) represents the perceived cost of a strategy profile S
for a player i, while C(S) determines the total social cost for the game G.
Note that using this model, when αi is zero, player i is completely selfish,
while a player i is completely altruistic when αi = 1. Therefore, if α = [0]k,
the α-altruistic extension Gα is equal to the original game G. We say that
a game Gα is uniformly α-altruistic when for any player i, αi = α.

Chen et al. in [4] analyze a few classes of games using this altruistic
model. Their analysis extends the definition of smooth games to incorporate
altruism. Before using their model, we present some important definitions
for smooth games [22].

5.1 Smooth Games and Altruism

The notion of smooth games, first defined by Roughgarden in [22], is an
important tool in the analysis of inefficiency in games. It provides bounds
not only for pure and mixed equilibria, but also for both correlated and
coarse correlated equilibria.

Definition 5 (Smooth Games).
A cost minimization game G = (K, (Si)i∈K , (pi)i∈K) is (λ, µ)–smooth if for
any strategy profiles S, S∗ ∈ S,∑

i∈K
pi(S

∗
i , S−i) ≤ λ · C(S∗) + µ · C(S). (4)

where C : S → R is again mapping strategy profiles to social costs such
that for any S ∈ S, C(S) ≤∑i∈K pi(S).
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If a minimization game is (λ, µ)–smooth then it is possible to assert
several facts about such game. Among them, a bound for the price of
anarchy. If a game is (λ, µ)–smooth, with (λ ≥ 0 and µ < 1), then every
equilibria S has cost at most λ

1−µ times that of an optimal solution S∗.
The robust price of anarchy is defined as the best upper bound that is

possible to prove using smoothness analysis.

Definition 6 (Robust Price of Anarchy). The robust price of anarchy of a
cost-minimization game is defined as

inf

{
λ

1− µ : (λ, µ) s.t. the game is (λ, µ)-smooth

}
, (5)

where λ ≥ 0 and µ < 1.

Note that Definition 5 can be relaxed by allowing the inequality to hold
only for an optimal solution S∗ and all other strategy profiles S, while still
retaining the properties based on the smoothness property [22].

In [5], the definition of smooth games is extended to incorporate altruism,
while maintaining most of the properties proved for the original concept.

Definition 7 ((λ, µ, α)-smoothness). Let Gα be a α-altruistic game with
social cost function C. Gα is (λ, µ, α)-smooth iff for any two strategy profiles
S, S∗ ∈ S, the following is satisfied:

∑
i∈K

[
pi(S

∗
i , S−i) + αi(C−i(S

∗
i , S−i)− C−i(S))

]
≤ λC(S∗) + µC(S) , (6)

where C−i(S) = C(S)− pi(S) and for any S, C(S) ≤∑i∈K pi(S).

If a game is (λ, µ, α)-smooth with µ < 1, then the price of anarchy of
the game is at most λ

1−µ , even for coarse correlated equilibria.
For facility location games, altruistic PoA and PoS bounds for valid

utility games [25] and for fair–cost allocation games have been shown in [5].

5.2 Fair Cost Allocation Games with Altruism

A similar game to the Facility Location Game with Fair Cost Allocation
(FLG-FC) seen in Section 3 has been considered in [5]. QUAL O NOME
DO JOGO ANALISADO LA??? In this game, there are no connection
costs between terminals and facilities. Furthermore, while in the FLG-FC
each terminal may choose any facility to open, in the game analyzed in [5]
each player has to connect his clients to some subset of facilities given as an
input to the game. Below we adapt the results in [5] to FLG-FC game.

Recall the FLG-FC specified in Definition 3. Here we use d(Si) =∑
(t,f)∈Si dtf as the sum of all connection costs for a player i in strategy

Si, and U(S) =
⋃
i∈K Si as the set with all strategies in the strategy profile

S.
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Theorem 9 (DRAFT Price of Anarchy for α–altruistic FLG-FC). For any
FLG-FC game G with k players, the α–altruistic extension Gα is (k, α̂, α)–
smooth, where α̂ = maxi∈K αi.

Proof. Let S and S∗ be two strategy profiles for G. Fix an arbitrary player
i ∈ K. Then,

C(S∗i , S−i)− C(S) =
∑

f∈U(S∗i ,S−i)

cf +
∑

j∈K:j 6=i
d(Sj) + d(S∗i )−

∑
f∈U(S)

cf −
∑
j∈K

d(Sj)

≤
∑

f∈S∗i \U(S)

cf +
∑

(t,f)∈S∗i \U(S)

dtf .

This inequality can be used to establish the following bound:

(1− αi)pi(S∗i , S−i) + αi(C(S∗i , S−i)− C(S))

≤

(1− αi)

∑
f∈S∗i

cf
xf (S∗i , S−i)

+ d(S∗i )

+ αi

 ∑
f∈S∗i \U(S)

cf
xf (S∗i , S−i)

+
∑

(t,f)∈S∗i \U(S)

dtf


≤∑

f∈S∗i

cf
xf (S∗i , S−i)

+ d(S∗i ) ≤ k

∑
f∈S∗i

cf
xf (S∗)

+ d(S∗i )

 .

Note that the first inequality follows from the fact that xf (S∗i , S−i) = 1
for every facility that is in strategy profile S∗ but not in strategy profile S.
The last inequality follows from xf (S∗i , S−i) ≥ xf (S∗)/k for every f ∈ S∗i .

From this, we can conclude that the game is (k, α̂, α)–smooth as defined
in Definition 7:

∑
i∈K

[
pi(S

∗
i , S−i) + αi(C−i(S

∗
i , S−i)− C−i(S))

]
=

∑
i∈K

[
pi(S

∗
i , S−i) + αi(C(S∗i , S−i)− pi(S∗i , S−i)− C(S) + pi(S))

]
=

∑
i∈K

[
((1− αi)pi(S∗i , S−i) + αi(C(S∗i , S−i)− C(S)) + αipi(S))

]
≤

k
∑
i∈K

∑
f∈S∗i

cf
xf (S∗)

+ d(S∗i )

+
∑
i∈K

αipi(S) ≤

kC(S∗) + α̂C(S) .
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UMA COISA QUE PERCEBI AGORA É QUE NA ULTIMA
DESIGUALDADE ACIMA VOCE USA O FATO DE QUE

∑
i∈K pi(S) ≤

C(S) MAS EM TODAS AS SUPOSICOES MOSTRADAS ANTES
ERA ASSUMIDO QUE C(S) ≤ ∑i∈K pi(S). CHECAR SE A SU-
POSICAO EH ESTA MESMO.

Corollary 10 (Robust Price of Anarchy for α-altruistic FLG-FC). The
robust price of anarchy (RPoA) of α-altruistic FLG-FC games is at most
k

1−α̂ , where α̂ = maxi∈P αi, and there is an α-altruistic instance of FLG-FC

with RPoA k
1−α̂ .

Proof. As seen in Theorem 9, for any instance G of the FLG-FC game, the
α-altruistic extension Gα is (k, α̂, α)-smooth and therefore has a robust price
of anarchy of k

1−α̂ .

f1

cf1 = 1

f2

cf2 = k
1−α

b b bt1 t2 tk−1 tk

Figure 9: Instance of FLG-FC with PoA equal to k
1−α where every player is

α-altruistic. Connections cost are equal to zero.

To show that this bound is tight, even for pure Nash equilibria, we
can slightly alter the example of Figure 3. Instead of a facility with cost
equal to the number of players, we now have a facility with cost k

1−α , with
every player being uniformly α-altruistic, as shown in Figure 9. In this
instance each player i ∈ [1, k] controls a terminal ti, and can choose be-
tween facilities f1 with cost 1 and f2 with cost k

1−α . Consider the strat-
egy profile S∗ = ((t1, f1), ..., (tk, f1)) where every player chooses f1 and
S = ((t1, f2), ..., (tk, f2)) where f2 is chosen by all players. Clearly S∗ is
the strategy profile with optimal social cost, with C(S∗) = 1, while S has
cost C(S) = k

1−α . The strategy profile S is a pure Nash equilibrium of the
uniformly α-altruistic extension Gα, since for any player i,

pαi (S) = (1− α)pi(S) + αC(S) = 1 + α
k

1− α = pαi ((ti, f1), S−i) .

Therefore, the price of anarchy of Gα is at least k
1−α , and the bound for the

robust price of anarchy for the α-altruistic extension of FLG-FC is tight.
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The Pure Price of Stability for uniformly α-altruistic games can be
determined in a similar way as was done in Theorem 6, for a bound of
(1− α)Hk + α.

Theorem 11 (Pure Price of Stability for α-altruistic FLG-FC). The Pure
Price of Stability for uniformly α-altruistic fair cost facility location games
is at most (1− α)Hk + α.

Proof. Let Gα be an uniformly α-altruistic facility location game. Then it
is a potential game with potential function

Φα(S) = (1− α)Φ(S) + αC(S) ,

where

Φ(S) =
∑
f∈F

xf (S)∑
x=1

cf
x

+
∑

(t,f)∈S

dtf .

We have that

Φα(S) = (1− α)

∑
f∈F

xf (S)∑
x=1

cf
x

+
∑

(t,f)∈S

dtf

+ αC(S) ≤

((1− α)Hk + α)

∑
f∈S

cf +
∑

(t,f)∈S

dtf

 = ((1− α)Hk + α)C(S) .

Let S∗ be the social optimum strategy profile. From this strategy, we
can derive an equilibrium S by best response dynamics such that Φα(S∗) ≥
Φα(S). Since C(S) ≤ Φα(S), we have

C(S) ≤ Φα(S) ≤ Φα(S∗) ≤ ((1− α)Hk + α)C(S∗) ,

which means that the price of stability is at most ((1− α)Hk + α).

NA FUNCAO POTENCIAL ACIMA VOCE FAZ O SOMA-
TORIO SOBRE f ∈ F . DEVERIA SER SOBRE f ∈ U(S)????

We note that in this section a tight bound of a linear function ok k
was given for the robust price of anarchy, while for the price of stability
a considerably more restricted bound was proven (considering only games
with uniform altruism). It may be the case that this bound can indeed be
much closer to the optimal social welfare if completely altruistic players are
mixed with selfish players. For example, in the instance in Figure 5, used
to prove the tightness of the bound H(k) for the PoS of FLG-FC, if the
player controlling terminal tk is completely altruistic, the best pure Nash
equilibrium is the optimal solution.
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We analysed in this section altruistic versions of the FLG-FC game. It
remains an open problem to explore altruism for the facility location game
without cost sharing rules. An interesting question for these games, where
there are instances with no pure Nash equilibria, is whether a certain amount
of altruism in the game can guarantee the existence of such equilibrium. And
if altruism can guarantee the existence of equilibrium, how this altruistic
behaviour must be distributed between the players. It may be the case that
a certain amount of completely altruistic players are needed to guarantee
PNE existence, or that every player must be at least a α amount altruistic.

6 Conclusions

In this survey, we combined results from several works relating to facility
location games. We focused on proving existence for pure Nash equilibria
and bounds for the price of anarchy and stability.

For facility location games without cost sharing rules, we presented re-
sults from Cardinal and Hoefer [2] for the uncapacitated version, and pro-
vided examples for the capacitated game proving unbounded PoA, PoS and
instances with no PNE even when players control only a single terminal. For
fair cost sharing facility location games, we adapted well known results from
Anshelevich et al. [1, 3] for the network design game. In these new proofs
we need to take in consideration the additional connection costs and show
that they do not interfere in the bounds for equilibria. For the capacitated
version, we prove that the PoA can be unbounded, while the PoS has the
same bound as the uncapacitated version. Furthermore, we analyze facility
location using an altruistic model for player behavior [5], and adapted recent
results for the fair cost sharing game to facility location games. A summary
of the known bounds are presented in Table 1.

Table 1: Known results for Facility Location Games
Game PNE PoA PoS First seen

FLG (Facility Location Game) × k k − 2 [2]
Capacitated FLG × ∞ ∞ –
FLG-FC (Fair Cost Allocation) X k H(k) [1]
FLG-FC with Weights ? Θ(logW ) Θ(logW ) [10, 11]
Capacitated FLG-FC X ∞ H(k) –
Altruistic FLG-FC X k

1−α̂ ((1− α)H(k) + α) [5]

While several bounds for these games can be adapted directly from net-
work design and fair cost games, some questions remain undiscovered. One
example is the question of the existence of PNE for weighted FLG-FC. The
examples of instances with no equilibria for network design do not translate
to instances of FLC-FG. and there is still no proof for exact equilibria. NAO
ENTENDI O QUE VC QUIS DIZER POR EXACT EQUILIBRIA
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Since the addition of hard capacities to facility location games can lead
to unbounded PoA and PoS, other models that impose capacities in facility
location games may be of interest. Nonetheless, few have been explored in
the context of facility location.

Another interesting question is to consider altruism for facility location
games outside of the fair cost sharing model, for example with no cost sharing
rules. Several questions can be explored with altruism, specially in games
with no guaranteed equilibria.

Finally, while there are some research in altruism in the context of lo-
cation games, no results are known when spiteful behaviour from players
are considered. We note however, that there are still no completely ac-
cepted model for spiteful player behaviour. If we model players as com-
pletely spiteful, selfish or altruistic, perhaps some results can be extended
from distributed networks, as disrupting agents may be considered com-
pletely spiteful players. If someone models spite in a similar manner to
altruism, then solution feasibility is another possible concern.
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