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Abstract

We study capacitated facility location games, where players control terminals and need to connect each one to a
facility from a set of possible locations. There are opening costs and capacity restrictions for each facility. Also, there
are connection costs for each pair of facility and terminal if such facility attends this terminal. This problem has several
applications, especially in distributed scenarios where a central authority is too expensive or even infeasible to exist.
In this paper, we analyze and present new results concerning the existence of equilibria, Price of Anarchy (PoA), and
Stability (PoS) for metric and non-metric versions of this game. We prove unbounded PoA and PoS for some versions
of the game, even when sequential games are allowed. For metric variants, we prove that sequentiality leads to bounded
PoA and PoS.
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1. Introduction and Notation

In game theory, a non–cooperative game is a scenario
where players or agents choose strategies independently
and try to either minimize their costs or maximize their
utility. For each player i there is a set Ai of actions that
it can choose to play. A pure strategy Si consists of one
action from Ai, while a mixed strategy corresponds to a
probability distribution over Ai. In this paper we assume
players pick pure strategies unless mentioned otherwise. A
strategy profile, denoted by S = (S1, . . . , Sk), corresponds
to a solution of the game where each player i = 1, . . . , k
chooses a strategy Si.

We consider capacitated facility location games with
and without a cost sharing scheme, which means that the
cost to open a facility can be divided equally among all
terminals connected to it (fair cost sharing) or it can be
divided without any rules (no cost sharing rules).

Now we give formal definitions of the games considered
in this paper. Let G = (T ∪F, T ×F ) be a bipartite graph,
with vertex sets F of n facilities and T of m terminals.
Each facility f ∈ F has an opening cost cf and a capac-
ity uf indicating how many terminals can be connected
to f at any given time. Furthermore, there are connec-
tion costs dtf for each pair terminal t ∈ T and facility
f ∈ F . In games with general distance costs, some con-
nections (t, f) should be avoided in any solution, because
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they don’t exist for example. In this case we assume they
have a prohibitively large constant cost Ud. When a con-
nection is not shown, it is assumed that it has a cost equal
to Ud, unless mentioned otherwise. Let K = [1, . . . , k] be
the set of players. Each player i controls a subset of ter-
minals Ti ⊆ T forming a partition of T , and each terminal
must be connected to exactly one opened facility. When a
player controls only a single terminal he is denominated a
singleton player.

In the Capacitated Facility Location Game with no cost
sharing rules (CFLG), the set of actions Ai of player i is
composed by tuples (Fi, p

c
i ) where Fi : Ti → F maps each

terminal i controls to a facility, and pci : F → R+
0 maps the

amount i pays to open facility f if some of its terminals is
connected to it. Given some strategy Si chosen by i, we
simplify the notation by writing (t, f) ∈ Si to represent
each connection i choose to its terminals. Likewise we
write f ∈ Si to represent each facility where some terminal
of i is connected to. The total amount paid by player i in
strategy profile S is

pi(S) =
∑
f∈Si

pci (f) +
∑

(t,f)∈Si

dtf .

Let pc(f) =
∑k

i=1 p
c
i (f) be the total paid by players for

a facility f . If pc(f) is greater than or equal to the cost
cf , then the facility f is considered opened. Each player
tries to minimize his payment. We denote the number of
players connected to a facility f in a solution S by xf (S) =
|{1 ≤ i ≤ k : f ∈ Si}|.

Solutions where there are more terminals connected to
some facility f than its capacity uf should be avoided.
Should also be avoided solutions where terminals do not
pay enough to open the facility they are connected to. To
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avoid such solutions we add a prohibitively large constant
cost Uc to the payment of terminals in such situations.
For a player i, if there is a connection (t, f) ∈ Si where
pc(f) < cf or the number of players connected to f is
greater than its capacity (xf (S) > uf ), a prohibitively
large constant cost Uc > Ud is added to the total amount
paid by i, i.e, he pays pi(S) + Uc.

For Capacitated Facility Location Games with Fair-Cost
sharing (CFLG-FC), a player i chooses a strategy Si ⊂
Ti × F such that in Si each terminal controlled by i is
connected to exactly one facility. Let S = (S1, ..., Sk) be
a strategy profile. Each player tries to minimize his own
payment

pi(S) =
∑
f∈Si

cf
xf (S)

+
∑

(t,f)∈Si

dtf ,

where xf (S) = |{1 ≤ i ≤ k : f ∈ Si}| is the number of
players using facility f in strategy profile S. Again, to
ensure that capacity restrictions are respected, if a player
i in the solution S has one of his terminals connected to
f where xf (S) > uf , then a prohibitively large constant
cost Uc is added to the payment of player i, i.e, he pays
pi(S) + Uc .

Let S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) be a strategy
profile S without i’s strategy, so that we can write S =
(Si, S−i). Pure Nash Equilibria (PNE) are strategy pro-
files where no player can decrease his own costs by uni-
laterally changing his strategy, i.e., S is a PNE if for each
player i, pi(Si, S−i) ≤ pi(S

′
i, S−i) for all S′i ∈ Ai.

The social cost is a function mapping a strategy profile
to a real number, indicating a measure of the total cost of
a game. We use the expression f ∈ S to represent all
facilities connected to a terminal in a strategy profile S,
and (t, f) ∈ S to represent all connections established in
S. The social cost of a strategy profile S is defined for this
game as the sum of all player payments, i.e.

C(S) =
∑
i∈K

pi(S) =
∑
f∈S

cf +
∑

(t,f)∈S
dtf . (1)

Two of the most important concepts for efficiency analysis
are the Price of Anarchy (PoA) and the Price of Stability
(PoS). The PoA is the ratio between a Nash equilibrium
with worst possible social cost and the strategy profile with
optimal social cost, while the PoS is the ratio between the
best possible Nash equilibrium and the social optimum.
In the facility location games analyzed in this paper, the
optimal social cost is the cost of an optimum solution for
the corresponding optimization version of the problem.

Solution concepts such as pure Nash equilibria usually
assume that players choose strategies simultaneously. This
requirement can lead to unintuitive equilibria for facility
location games where players choose to open expensive
facilities when cheaper ones are also available. A possi-
bility to take sequential movements in consideration is to
analyze these games as sequential games [1, 2]. In these

games, players choose their strategies in a predefined ar-
bitrary order. In the sequential facility location games
considered in this paper, we assume each player i ∈ [1, k]
chooses a strategy only once given all strategies chosen by
players before, so player 1 chooses first then player 2, and
so on until player k.

An alternative solution concept that aims to better
represent such scenarios is Subgame Perfect Equilibrium
(SPE). Sequential games are usually represented as exten-
sive form games, in the form of a game tree where each
node represents a player and edges represent possible ac-
tions from the player on that node. SPE is defined as a
strategy profile which is a PNE in every subgame of this
game tree, so a SPE is also a PNE for the entire game. The
Sequential Price of Anarchy (SPoA) is defined as the ratio
between the cost of the worst subgame perfect equilibrium
and the optimal social cost, while the Sequential Price of
Stability (SPoS) is the ratio between the best SPE and the
optimal social cost. One important aspect of such games
is that they always posses a SPE which can be computed
using a method called backward induction. For further
details on SPE and extensive form games see Chapter 4 of
[2].

2. Related Work and Contributions

Facility location has been analyzed in a game-theoretic
perspective from several directions. From mechanism de-
sign and strategy-proof mechanisms [3, 4, 5], to coopera-
tive facility location [6] and valid utility games [7]. When
there is competition between facilities to dominate mar-
kets, facilities may be modeled as players in a game-theoretic
setting. These facility location problems are described as
competitive location [8], with several relevant results in
the literature [9, 10, 11].

In this paper we consider only the case where players
control terminals, where each one requires a connection
to an open facility. These facility location games can be
viewed as connection games where every player starts from
a single source vertex on a two-layered directed graph, and
therefore multiple results for the uncapacitated versions
of facility location games can be adapted from connection
and network creation games.

For uncapacitated facility location games with fair cost
sharing rules, most results can be adapted from cost shar-
ing games and network design [12]. The PoA and PoS can
be proven to be k and Hk = Θ(log k), respectively, the
same bounds obtained for network design [12].

For the metric version of this game Hansen and Telelis
[13, 14] proved constant bounds both for the PoS and the
strong PoA. For the non-metric case they proved a bound
of Θ(log k) for both the PoS and strong PoA. When players
have no rules on how to share opening costs, the PoA and
PoS have been proven to be Θ(k) [15] for uncapacitated fa-
cility location. If players are allowed to control more than
a single terminal, there are games with no PNE and it is
NP-hard to know if an instance has a PNE [15, 16]. When
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all players are singletons, a PNE with optimal social cost is
guaranteed to exist for network design [17], which implies
that the same is true for uncapacitated facility location
games with no cost sharing rules.

On the other hand, few results are known for capac-
itated facility location games. One of the few results for
this case is the one of Feldman and Ron [18] who proved
that the PoA is unbounded for capacitated network de-
sign games unless the network topology is series-parallel.
Another work is the one of Erlebach and Radoja [19] for
the capacitated network design game. They prove an up-
per bound of O(n) for the PoS assuming symmetric games,
and a lower bound of Ω(n log n) for the asymmetric version
of the game.

The Sequential Price of Anarchy was used by Paes
Leme et al. [1] to analyze machine cost sharing games,
a game similar to facility location games. They argue
that some equilibria found on these games, facility loca-
tion games included, require some “unnatural” coordina-
tion from players, such as choosing a machine with high
cost when there are much cheaper machines available. In
the machine game, each job must choose one machine r
to be scheduled, and jobs in the same machine share its
cost. So if x jobs are scheduled on machine r, each one
pays cr/x, where cr is a fixed cost of r. For this machine
cost sharing game, in a special case of generic costs, a
bound of Θ(log k) is given for the SPoA. For general costs,
Bilò et al. [20] prove that the SPoA is at least (k + 1)/2.
The same reasoning used by Leme et al. can be used for
the capacitated facility location games, leading to question
whether the SPoA can be better than the PoA for CFLG
and CFLG-FC.

In this paper, for the CFLG (no cost sharing rules) we
present original examples proving unbounded PoA, PoS
and instances with no PNE even when players control only
a single terminal. We prove that it is NP-hard to deter-
mine if an instance of CFLG has a PNE, even when all
players are singletons. In addition, we prove that even
when sequentiality is considered, the SPoA and SPoS are
still unbounded for the general game. In the case of CFLG-
FC (fair cost sharing), while the PoS is bounded by Hk,
we show instances of games where the PoA, the SPoA and
even the SPoS are unbounded.

We also consider the metric versions of the CFLG and
CFLG-FC games. While for the Metric CFLG there are
instances with no PNE, for the Metric CFLG-FC pure
Nash equilibrium always exist. For both versions, with
and without cost sharing rules, we show that there are
scenarios where an equilibrium with unbounded cost ex-
ists, making the PoA also unbounded. For the PoS, SPoA
and SPoS we prove upper and lower bounds showing that
all of them are Θ(2k).

A summary of the proved bounds is presented in Ta-
ble 1. We note that the Hk bound for the PoS in the
Metric CFLG-FC is not proven tight, while the others are.

Table 1: Results for Capacitated Facility Location Games. Un-
bounded results are represented by U .

Game PNE PoA SPoA PoS SPoS
Metric CFLG × U Θ(2k) Ω(2k) Θ(2k)
CFLG × U U U U
Metric CFLG-FC X U Θ(2k) Hk Θ(2k)
CFLG-FC X U U Hk U

3. Metric Version of Capacitated Facility Location
Games

A common restriction for location games is to require
all connections to obey the triangle inequality. In this sec-
tion we present results regarding this version of the game.

3.1. Existence of PNE

First of all we consider the existence of PNE for games
with no cost sharing rules.

Proposition 1 (PNE existence for the Metric CFLG).
There are instances of the Metric CFLG that do not admit
a PNE, even when restricted to singleton players.

Proof. Consider the game in Figure 1 where one player
controls terminal t1 and another one controls t2. In a
situation where both players are connected to f1 at least
one of them is paying a value greater than 1, so this player
has an incentive to move to f2. So suppose one player is
connected to f2, and suppose it is t2. Then terminal t1
must open f1 paying the full opening cost 2 + ε. However,
in this situation t2 can just connect to f1 without paying
any opening costs. But in this case t1 has an incentive to
move to f2 since its opening cost is 1. So the game is in
a similar situation as in the beginning but with t1 and t2
connected to the opposite facilities. So it is easy to see
that this game does not admit a PNE.

t1

f1

cf1 = 2 + ε
uf1 = 2

t2

f2

cf2 = 1
uf2 = 1

Figure 1: Game instance of the Capacitated FLG without a PNE.
Connection costs have a constant value.

Note that this is not necessarily the case for the un-
capacitated version, where results from Hoefer [16] and
Anshelevich et. al [17] indicates that for singleton play-
ers a PNE with optimal social cost always exists. For the
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cfj
a
= 2.5

cfj
b
= 1

ufj
b
= 1

tja

tjb

f j
bf j

a

tjc1

tjc3

tjc2

f j
1

f j
2

f j
3

tje1

tje3

tje2

fx1

fx2

fx3

(b) Clause gadget for Cj = (x1 ∨ x2 ∨ x3)(a) Decision gadget for xi

gadget for x3

gadget for x2

gadget for x1

Decision

Decision

Decision

ti

fxi

cfxi
= 2 + εcfxi

= 3 + ε

fxi

Clause gadgets
containing xi

Clause gadgets
containing xi

Figure 2: Decision variable gadget (a) and clause gadget (b). In (a) we assumed that the literal xi occurred 3 times in the formula and the
literal xi occurred 2 times. All opening costs are equal to 1 unless otherwise mentioned. All connection costs for the drawn edges are equal
to 1, and any edge (t, f) not drawn has cost equal to the shortest path cost from t to f .

capacitated game we can use the construction of Figure 1
to show that is NP-complete to determine if an instance
of the Metric CFLG has a PNE or not when all players
are singletons, and NP-hard otherwise. The argument for
this proof derives from the hardness proof by Cardinal and
Hoefer for vertex cover games and uncapacitated facility
location games [15], where some players may control more
than a single terminal. However in our case the reduction
is done using exclusively singleton players.

Theorem 1. It is NP-hard to determine if an instance
of the Metric CFLG has a PNE or not, even when all
players are singletons. When restricted to instances with
only singleton players, it is NP-complete to determine if
an instance of the Metric CFLG has a PNE.

Proof. First notice that it is easy to verify if a given so-
lution S to an instance of the CFLG is a PNE or not
when all players are singletons, and so CFLG belongs to
NP when restricted to these instances. Now we present a
reduction from the 3-SAT problem to the problem of de-
termining if an instance of the Metric CFLG has a PNE or
not. We transform an instance from the 3-SAT as follows:
for each decision variable xi we introduce a terminal ti
and facilities fxi

and fxi
which ti can connect as shown in

Figure 2a. For each clause Cj we introduce a gadget with
several terminals and facilities as shown in Figure 2b. For
each literal of Cj there is an end terminal tjei connecting
to its respective facility fxi or fxi in the decision variable
gadgets. For each literal of Cj there is also a center facility

f j
i where tjei can connect to, and a center terminal tjci that

can connect to either the center facility f j
i or to facility

f j
a . Note that terminals tja and tjb and facilities f j

a and

f j
b correspond to the instance in Figure 1. Each terminal

is controlled by a single player. The cost of facility fxi

(respectively fxi
) is equal to the number of occurrences of

the literal xi (respectively xi) in all clauses plus a small
constant ε. Facilities f j

a have an opening cost of 2.5 while
all other facilities have unitary opening costs. All connec-
tions shown have cost equal to 1, while any edge (t, f) not
shown has cost equal to the shortest path cost from t to

f . For each clause Cj , facility f j
b has unitary capacity re-

striction, while all others are unrestricted. Note that the
facilities fxi and fxi are shared between all clauses that
have one of the two literals xi or xi, since the correspond-
ing end terminals are connected to one of them, and they
are also shared with the corresponding terminal ti of the
variable gadget.

Suppose there is a truth assignment for a given instance
of the 3-SAT. Then we can construct a PNE to the cor-
responding CFLG instance as follows: if xi = 1 connect
terminal ti to facility fxi

paying ε to open it, otherwise
connect ti to fxi

also paying ε to open it. For each clause
Cj where literal xi appears, connect its end terminal tjei to

fxi
if xi = 1, and connect tjei to the center facility f j

i oth-
erwise. In both cases the end terminal pays 1 to open the
facility it is connected to. Do the same thing for clauses
with the literal xi. Finally each center terminal tjci is con-
nect to f j

a if its respective literal is true, and pays 0.5 of
its opening cost. If its corresponding literal is false then
tjci is connected to the center facility f j

i paying nothing,
since the end terminal tjei payed to open it. Since the as-
signment is truth, then for each clause there is at least one
center terminal connected to f j

a paying 0.5 of its opening
cost, and therefore the clause gadget can be stabilized with
terminals tja and tjb connecting to f j

a as well.
Now suppose there is a PNE in the constructed in-

stance. The gadget of a clause Cj is in a PNE only if some
center terminal tjci is connected to facility f j

a paying at
least 0.5 of its opening cost. In this case terminals tja and
tjb can also be connected to f j

a remaining in equilibrium.
Since terminal tjci is connected to f j

a , this means that its

corresponding center facility f j
i is closed. Then we must

have the end terminal tjei connected to its decision variable
facility paying at most 1 of its opening cost. Since we have
a PNE, then at least one center terminal tjei of each clause
is connected to its decision variable.

The truth assignments to the 3-SAT variables are done
as follows: if the end terminal tjei is connected to its cor-
responding decision variable then its corresponding literal
is set to true, otherwise it is set to false. Notice that the
PNE implies that at least one literal of each clause is set
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to true.
Now we have to prove that this assignment is consis-

tent, i.e, there is no variable xi with xi = 1 and xi = 1, or
xi = 0 and xi = 0. Consider the decision variable gadget
corresponding to xi. In order for a facility fxi

or fxi
to be

opened, terminal ti must pay at least ε of its opening cost,
since otherwise its always better for an end terminal tjei
to connect to its center facility f j

i paying 1 of its opening
cost. Then exactly one of the two facilities is opened in
an equilibrium, and therefore it cannot be the case that
xi = 1 and xi = 1 at the same time. Now consider xi = 0
and xi = 0 and the instance of the game is in equilibrium.
Then this variable is irrelevant to obtain a truth assign-
ment of the 3-SAT formula, and we can set either xi or xi

to 1.

Now consider the game with fair cost sharing. Note
that Rosenthal’s potential function [21] can be adapted to
model facility location games, and therefore it is not hard
to see that CFLG-FC always admit a PNE, since it is a
potential game.

Corollary 1 (PNE for the CFLG-FC). All instances of
the CFLG-FC admit a PNE.

3.2. Bounds for the PoA and SPoA

The known PoA lower bounds for uncapacitated fa-
cility location games [15] and network design [12] triv-
ially carry over for the capacitated variants, by setting
the capacity of each facility equal to the number of termi-
nals. However, with capacity restrictions we can show that
worse equilibria exist, even in the case of fair cost sharing.

Theorem 2 (PoA for Metric CFLG and Metric CFLG-FC).
The PoA for the Metric CFLG-FC is unbounded. For
the Metric CFLG, there are instances that admit PNE but
have unbounded PoA.

t1

f1

t2

f2

cf2 = 1
uf2 = 1

cf1 = 1
uf1 = 1

1 UdUd 1

Figure 3: Metric game with unbounded Price of Anarchy.

Proof. Consider the instance depicted in Figure 3. Sup-
pose player 1 controls terminal t1, while player 2 controls
t2. The solution with optimal social cost is the one where
t1 connects to f1 and t2 to f2. However, suppose that
t1 connects to f2 and t2 to f1, each paying a connection
cost dt1f2 = dt2f1 = Ud. In this scenario, if a terminal
switches to the alternative facility, he would pay an extra

Uc > Ud due to the capacity restrictions, and therefore the
terminals are in equilibria.

While the unbounded state described in Theorem 2
exists, it never arises from players “natural” choice. If we
consider sequentiality for this game, there is no scenario
where an unbounded equilibrium is reached in the metric
variant.

Theorem 3 (SPoA for Metric CFLG and Metric FLG-FC).
Consider an instance of the Metric CFLG-FC (or CFLG)
game with k players where

• each player i controls one terminal ti,

• players play in order 1, . . . , k, where player i knows
every action taken by players 1, . . . , i− 1,

• S is the SPE reached and S∗ is a solution with opti-
mum social cost.

Then the SPoA ≤ 2k and this bound is tight.

Proof. In S there are players connected to the same fa-
cilities they are connected to in S∗, and there are players
connected to different facilities from the ones they are con-
nected to in S∗. Let A be the set of the latter players.

Among these players in A let a be the last player to
connect to some facility f in the solution S. We want
to bound the cost of a, given by pa(S) = cf/xf + daf
(in case of the CFLG game its some other fraction of the
facility cost plus the connection cost), by some value of the
optimum cost C(S∗). For that, consider facility f∗a which
is where a is connected to in the solution S∗.

Consider the moment a decided to connect to f in S
paying pa(S) and let pa(S∗a , S−a) be the amount a would
pay if he had connected to f∗a in strategy profile S. Since
a is connected to f in S, then one of the two options
must hold: (1) pa(S) ≤ pa(S∗a , S−a) ≤ cf∗

a
+ daf∗

a
or (2)

in the moment a chose to connect to f , f∗a was full and
he would be incurred with cost Uc to connect to f∗a . In
the first case pa(S) ≤ cf∗

a
+ daf∗

a
≤ C(S∗). In the second

case, there must exist another terminal (a − 1) which is
connected to f∗a , but that in the optimal solution S∗ is
connected to a different facility f∗(a−1). This must be true
since in S∗ there is room in f∗a for a. We use the notation
a → (a − 1) to indicate that a is not connected to its
optimal facility because terminal (a − 1) is connected to
that facility. Now the same two options (1) and (2) hold
for (a− 1). Since (a− 1) is connected to facility f∗a , either
p(a−1)(S) ≤ p(a−1)(S∗(a−1), S−(a−1)) or the facility f∗(a−1)
was full with some terminal (a−2) connected to it, but that
in S∗ is connected to f∗(a−2). Then we have a→ (a−1)→
(a− 2). We say that the relations (a→ (a− 1)→ (a− 2))
form a path in these terminals. This process eventually
ends in some terminal, and to simplify notation, assume
that it ends in terminal 1 (just rename terminals so that
this is true). See Figure 4 for an example.
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fa f∗
a

a a−1

f∗
2 f∗

1

12

b b b

Figure 4: Path (a→ (a− 1)→ · · · → 2→ 1), where the solid edges
represent players chosen connections in the SPE S and dashed edges
represent the connections chosen in the social optimum S∗.

We claim that dif∗
(i+1)

≤ pi(S) ≤ 2i−1C(S∗) for each

i = 1, . . . , (a − 1) in the path (a → (a − 1) → . . . → 1),
where pi(S) corresponds to the amount terminal i is paying
in S to connect to f∗i+1, and dif∗

(i+1)
is the cost of the edge

used in this connection.
We prove the claim by induction on the index i. For the

base case, since player 1 is the last of the path and is not
connected to f∗1 , we must have that p1(S) ≤ cf∗

1
+ d1f∗

1
≤

C(S∗). Now consider player i which is paying

pi(S) ≤ cf∗
i+1

+ dif∗
(i+1)

but could have connected to f∗1 with a cost of at most

cf∗
1

+

i∑
j=1

djf∗
j

+

i−1∑
j=1

djf∗
(j+1)

.

Note that

cf∗
1

+

i∑
j=1

djf∗
j
≤ C(S∗)

since the summation only considers edges of the optimal
solution. Now, by hypotheses djf∗

(j+1)
≤ 2j−1C(S∗). So

we must have

dif∗
(i+1)

≤ pi(S) ≤ cf∗
1

+

i∑
j=1

djf∗
j

+
i−1∑
j=1

djf∗
(j+1)

≤ C(S∗) +

i−1∑
j=1

2j−1C(S∗)

= 2i−1C(S∗)

Notice that we can bound the cost of the last edge
of the path, edge dafa , in the same manner, obtaining
dafa ≤ pa(S) ≤ 2a−1C(S∗). So for each terminal i in the
path P = (a → (a − 1) → . . . → 1) we have the bound
pi(S) ≤ 2i−1C(S∗), with a bound for the entire path of
C(P ) ≤∑a

i=1 2i−1C(S∗) ≤ 2aC(S∗).
We can now discard these players from the set A and

construct paths with remaining players in the set. Note
that these paths are vertex-disjoint, since for each player
a that could not connect to an optimal facility f∗a , there
must exist exactly one player in A that is connected to f∗a
but that in the optimal solution is not.

For each terminal i that does not belong to the set A,
its clear that pi(S) ≤ C(S∗) since it is connected in S to

the same facility it is connected to in S∗. Consider these
terminals as singleton paths.

So let P1, P2, . . . Pl be the paths formed for all termi-
nals. These paths are vertex-disjoint and they satisfy

C(Pj) ≤ 2v(Pj)C(S∗)

where v(Pi) is the number of vertices in the path Pi. Since

C(S) =
∑k

i=1 pi(S), we have C(S) ≤ ∑l
j=1 C(Pj) and

then

C(S) ≤
l∑

j=1

C(Pj)

≤
l∑

j=1

2v(Pj)C(S∗)

≤ 2(v(P1)+v(P2)+...v(Pl))C(S∗)

≤ 2kC(S∗)

where the last inequality holds since the paths are vertex-
disjoint.

Therefore, we can conclude that the SPoA for these
games is at most 2k, where k is the number of players in
the game.

To demonstrate that this bound is tight, consider the
instance in Figure 5. In this instance, let each player i
control terminal ti. Connections not shown have cost equal
to the shortest path, and each facility has unitary capacity.
Only f1 has an opening cost, and it is equal to 1. In S∗

each terminal ti connects to facility fi, with a total cost of
1. However, backwards induction may produce the SPE
where each terminal ti connects to facility fi+1. To see
this, when analyzing the options of player t1 there are two
minimum choices, connecting to f1 or f2, and so t1 may
connect to f2. Now for each ti, i = 2, . . . k, its minimum
choice is either connect to f1 or fi+1 and so the solution
where each ti connects to fi+1 is a SPE. The cost of this
strategy profile S is 20 + 21 + . . . + 2k−1 = 2k, and thus
SPoA = C(S)/C(S∗) = 2k.

3.3. Bounds for the PoS and SPoS

In the case of the Metric CFLG-FC, the standard po-
tential function method [22], first used by Anshelevich et
al. [12] for network design, can be used to show an upper
bound of Hk for the PoS.

Corollary 2 (Upper bound for PoS in Metric CFLG-FC).
For the Metric CFLG-FC the PoS is at most Hk, where k
is the number of players of the game.

This bound is not tight when considering the uncapac-
itated case, as shown by Hansen and Telelis [13], but is
tight in the case of CFLG-FC, as shown below.
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b b b b b
bc bc bc0 0 0 0
1 2 22 2k−1

b
bc0bc . . .t1 t2 t3 t4 tk

cf1 = 1

f1 f2 f3 f4 fk fk+1

uf1 = 1 uf2 = 1
cf2 = 0

uf3 = 1
cf3 = 0

uf4 = 1
cf4 = 0

ufk = 1
cfk = 0

ufk+1
= 1

cfk+1
= 0

. . .

Figure 5: Metric CFLG and Metric CFLG-FC instance with Sequential PoA equal to 2k.

Proposition 2 (PoS for Metric CFLG-FC). For the Met-
ric CFLG-FC the Price of Stability is Hk, where k is the
number of players of the game.

Proof. As shown by Anshelevich et al. [12], the PoS for
network design is at most Hk, which is true for CFLG-FC
as well. Furthermore, the same example used to prove that
such lower bound is tight can be adapted to facility loca-
tion as well, as shown in Figure 6. Note that in any possi-
ble equilibrium, fk+1 is closed, and since all other facilities
have unitary capacity restrictions, the cost of any equilib-
ria is the sum of the opening costs of facilities f1, . . . , fk,
for a total social cost of 1 + 1

2 + ... + 1
k = Hk, while in

the optimal solution only fk+1 is opened for a total cost
of 1 + ε.

b b b

b b bf1 f2 fk−1 fk

t1 t2 tk−1 tk

fk+1

cf1 = 1 cf2 = 1
2

cfk−1
= 1

k−1 cfk = 1
k

cfk+1
= 1 + ε

Figure 6: Game instance of Metric CFLG-FC with PoS of Hk. Any
possible connection has zero cost. Facilities f1, . . . , fk have unitary
capacities, while fk+1 has capacity k.

For the Metric CFLG, we can show that the PoS is
Ω(2k).

Theorem 4 (PoS for the Metric CFLG). There are in-
stances of the Metric CFLG that admits a PNE and have
a PoS in Ω(2k).

Proof. Consider the instance in Figure 7. Let player i
control terminal ti, player a control ta and player b control
tb. Notice that if terminals t1, . . . , tk connect to facilities
f1, . . . , fk somehow, it is not possible for an equilibrium
to exist since the remaining game involving a and b never
reaches an equilibrium. So, in order for an equilibrium
to exist terminal tk must connect to facility fa, paying at
least 0.5ε of its opening cost. The only scenario where
this happens is when player 1 chooses to connect t1 to f2,

player 2 chooses to connect t2 to f3 and so forth until tk
connects to fa. The cost of this unique equilibrium is the
same as the one for the instance in Figure 5, added the
price for connecting ta and tb, for a total of 2k + 1.5ε. In
the strategy profile with optimal cost, ti connects to fi,
and ta and tb both share fa, for a total cost of 1 + 2.5ε.

Therefore, the PoS for this instance is 2k+1.5ε
1+2.5ε = Ω(2k).

In the case of the SPoS, the results match the SPoA.

Theorem 5 (SPoS for Metric CFLG and CFLG-FC).
There are instances for Sequential Metric CFLG and CFLG-
FC with SPoS in Θ(2k).

Proof. Take the instance shown in Figure 5 and alter the
cost of f1 to cf1 = 1 + ε. As before, each player i controls
terminal ti, connections not shown have cost equal to the
shortest path, and each facility has unitary capacity. Now
let players choose their strategies in order 1, . . . , k. It is
easy to see that the cost to connect and open f1 will always
be ε higher for a player i than the alternative of opening
fi+1, and therefore the unique SPE has cost 20 + 21 +
. . . + 2k−1 = 2k while the optimal social cost is 1 + ε.
Therefore, since the SPE is unique for this instance, we
have SPoS = Ω(2k). Since the SPoA is upper bounded by
2k we have SPoS = Θ(2k).

4. Non-Metric Capacitated Facility Location Games

In this section we consider the versions of the games
CFLG and CFLG-FC with general distance costs. In Sec-
tion 3, we showed that for Metric CFLG there are instances
with no PNE, even with singleton players, while the Metric
CFLG-FC is a potential game, and therefore always posses
a PNE. Clearly the same results apply when considering
general distance costs.

4.1. Bounds for the PoA and PoS

The bounds for PoA for both CFLG and CFLG-FC
follow directly from Theorem 2.

Corollary 3 (PoA for CFLG and CFLG-FC). The PoA
for the CFLG-FC is unbounded. For the CFLG, there are
instances that admits a PNE but whose PoA is unbounded.

Note that while the example used for the metric case is
a fringe instance with unbounded distance costs, there are
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. . . b
bc bc0 0

0

ta

fb

ufb = 1
cfb = ε

tb0

Figure 7: Metric Capacitated FLG instance with PoS equal to Θ(2k).

non-metric examples with bounded distances costs and yet
with unbounded PoA, such as the example in Figure 9.

As for the Price of Stability, the way opening costs are
divided among players has a big influence on the PoS. For
games with fair cost sharing, the results follow directly
from Proposition 2.

On the other hand, without cost sharing rules we can
prove that there are games with unbounded price of sta-
bility.

Theorem 6 (PoS for CFLG). There are instances of the
CFLG that admit a PNE but have unbounded PoS.

Proof. Suppose we restrict ourselves to instances of this
game where a PNE exists. Based in the game of Fig-
ure 1, we can construct new instances with unbounded
PoS. Consider the game instance in Figure 8, where each
player i ∈ [1, 5] controls terminal ti. Note that the sub-
graph induced by terminals t4, t5 is a game instance with
no equilibrium, unless some amount of the opening cost of
f4 is paid by an external terminal. In fact, in order for this
instance to have an equilibrium, terminal t3 must connect
to f4, paying at most 1 of its opening cost. In an equilib-
rium, t2 must not connect to f3, since doing so t3 would
also choose f3 and thus t4 and t5 would not reach an equi-
librium. Terminal t2 thus must connect to f2, and since
this facility has unitary capacity, t1 must choose facility f1
with opening cost U , since otherwise he would either pay
the greater penalty Uc to connect to f2 or need to connect
to f3 or f4 using infeasible connections with cost at least
Ud. Note that U can be as high as the arbitrarily big cost
Ud, making it unbounded. This is the only possible equi-
librium in this instance, therefore the PoS is unbounded.

t1 t2

f1 f2 f3

t3 t4

f4

t5

f5

cf4 = 2 + ε cf5 = 1
uf4 = 3uf1 = 1

cf1 = U
uf2 = 1
cf2 = 1

uf3 = 2
cf3 = 1

uf5 = 1

Figure 8: Game instance of the CFLG-FC with unbounded PoS. All
shown connections have cost zero. Any connection not shown has a
prohibitively large cost Ud.

4.2. Bounds for the Sequential PoA and Sequential PoS

Perhaps surprisingly, for the sequential versions of ca-
pacitated facility location games, the instance depicted in
Figure 9 proves that both the SPoA and the SPoS are
unbounded, even for games with fair cost sharing.

Proposition 3 (SPoA and SPoS for CFLG and CFLG-FC).
The SPoA and SPoS for the sequential CFLG and the se-
quential CFLG-FC is unbounded.

t1 t2

f1 f2 f3

cf1 = 1 + ε
uf1 = 1

cf2 = 1
uf2 = 1

cf3 = U
uf3 = 1

Figure 9: Game instance of the FLG and FLG-FC with unbounded
Price of Anarchy. All shown connections have cost zero. Any con-
nection not shown has a prohibitively large cost Ud.

Proof. Consider the game in Figure 9, where player 1 con-
trols terminal t1 and player 2 controls terminal t2, and all
facilities have unitary capacities. In the strategy with op-
timal social cost, t1 must connect to f1 and t2 to f2, with a
total cost of 2+ε. For this instance, assume player 1 plays
first and player 2 plays afterwards. Note that since only
one terminal can be connected to a facility, player 1 will
always pay less choosing f2, and therefore player 2 has no
choice but to connect to f3 paying U ≤ Ud. Since player
1 will always play first, the unique SPE of the game is for
player 1 to play (t1, f2) and player 2 to play (t2, f3), and
therefore both the SPoA and the SPoS are unbounded for
the sequential versions of CFLG and CFLG-FC.

5. Conclusions

In this paper, we analyzed the efficiency of capacitated
facility location games. Simultaneous games as well as se-
quential ones were considered, and results for PoA and
PoS were established for these classes of capacitated facil-
ity location games.

Among the main results we show that the PoA is un-
bounded for metric capacitated facility location games,
while the PoS for capacitated facility location games with
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no cost sharing rules is also unbounded. For capacitated
games with no cost sharing rules, we show that it is NP-
complete to decide if an instance of the game possess a
PNE or not, when all players are singleton, which is not the
case for the uncapacitated version. We show that even for
more natural solution concepts for facility location, such
as subgame perfect equilibria, SPoA and even SPoS may
still be unbounded. For the metric capacitated facility lo-
cation games, we show that the SPoA is bounded by 2k,
and that this result is tight.
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