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Abstract

In this paper we study a problem of finding coloured paths of minimum weight in graphs. This problem

has applications in WDM optical networks when high bandwidths are required to send data between a pair

of nodes in the graph. Let G = (V,E) be a (directed) graph with a set of nodes V and a set of edges E in

which each edge has an associated positive weight w(i, j), and let C = {1, 2, . . . , x} be a set of x colours,

x ∈ N. The function c : E 7→ 2C maps each edge of the graph G to a subset of colours. We say that

edge e contains colours c(e) ⊆ C. Given a positive integer k > 1, a k-multicolour path is a path in G such

that there exists a set of k colours K = {c1, . . . , ck} ⊆ C, with K ⊆ c(i, j) for each edge (i, j) in the path.

The problem of finding one or more k-multicolour paths in a graph has applications in optical network and

social network analysis. In the former case, the available wavelengths in the optical fibres are represented by

colours in the edges and the objective is to connect two nodes through a path offering a minimum required

bandwidth. For the latter case, the colours represent relations between elements and paths help identify

structural properties in such networks. In this work we investigate the complexity of the multicolour path

establishment problem. We show it is NP-hard and hard to approximate. Additionally, we develop Branch

and Bound algorithms, ILPs, and heuristics for the problem. We then perform an experimental analysis of

the developed algorithms to compare their performances.

Key Words: Minimum Paths in Coloured Graphs, NP-Hardness, Heuristics, WDM Networks

1 Introduction

Finding paths in a computer network is a basic problem in combinatorial optimization: given a network and

two of its nodes, a source and a target, we want to find one or multiple paths between these nodes with specific
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properties. There are classic examples of such problems in the literature, such as finding shortest paths [10, 13],

node-disjoint or edge-disjoint paths [18, 26], routing, line planning [4], etc.

The shortest path problem is of fundamental importance in network optimization and arises as a subproblem

in many different scenarios: from purely graph theory problems, to VSLI and network design, and even social

network analysis.

Consider the example of social network analysis. Social networks can be represented and studied as graphs;

the vertices represent the elements being analysed and the edges are binary relations between them. Different

kinds of relations might be represented by distinct colours on the edges. Connectivity properties or the

availability of paths between vertices help to identify structural properties like group cohesiveness and centrality

in such networks [3].

Finding paths on edge-coloured graphs can also be used for solving routing problems in Wavelength-Division

Multiplexing (WDM) optical networks. In a WDM network, at any given moment, each optical link (edge)

has a set of available wavelengths through which data can be transmitted in parallel. Data from a source to

a target node is sent by the establishment of a lightpath between this pair of nodes. A lightpath is a special

path for it uses the same wavelength throughout all its links. In order to send data between any pair of nodes,

one has to find a lightpath between them. Two lightpaths can share a link, but if this happens they must use

different wavelengths. When a high bandwidth is required, it is necessary to find multiple lightpaths going

through the same set of edges so that no two lightpaths that share an edge use the same wavelength. This

routing problem in WDM networks is equivalent to finding paths in edge-coloured graphs: the wavelengths

can be directly mapped to colours on the edges, and the objective is to find a path between a source and a

sink node with a certain number of colours. Chen et al. presented in [7] the problem of finding shortest paths

between a pair of nodes such that the total number of wavelengths is k with the restriction that all edges in

those paths must have the same k available wavelengths.

To illustrate this problem, refer to Figure 1 on the following page. The numeric labels on the edges are the

colours available in them. We assume arcs with unitary weights, thus omitting the weights. Suppose we want

to find a path between s and t. A solution for k = 1 is (s, v2, t) or (s, v3, t). For k = 2, the solution is the path

(s, v2, t), highlighted on Figure 2 on the next page, which uses colours 2 and 3. For k ≥ 3, there are no possible

solutions, since the highest number of common colours between the edges on any given path is at most 2.

This article is organized as follows. In Section 1.1, we discuss related works involving coloured graphs and

WDM optical network design. In Section 1.2 we summarize our contributions. Section 2 introduce definitions,

notations, and terms needed throughout the article. In Section 2.1 and Section 3 we define the problem formally

and give a NP-hardness proof for it. Section 4 presents exact Branch and Bound and Integer Linear Programs

algorithms to the problem, whereas Section 5 presents the developed heuristics. In Section 6, we evaluate the

performance of the proposed algorithms through a simulation for execution time, solution cost (Section 6.1)

and blocking ratio (Section 6.2). Conclusions are drawn in Section 7.
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Figure 1: Edge-coloured graph example
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Figure 2: Feasible path for 2 colours

1.1 Related works

In this section we discuss works related to coloured graphs and routing in WDM optical networks.

A colouring of a graph is an assignment of colour labels to elements of a graph. These elements can be

either vertices (vertex colouring), edges (edge colouring), or both (total colouring). Colouring problems consist

in colouring elements in a way to satisfy a certain property. Another variant, given an already coloured graph, is

to find paths satisfying some requirement. Practical problems can be modelled as problems involving colours in

graphs, for example timetabling, frequency assignment in telecommunication networks, social network analysis,

reliability in networks, and so on.

The most common form of graph colouring problem is the vertex colouring. In this type of problem, the

goal is to colour the vertices of a graph such that no two adjacent vertices share the same colour. The minimum

number of colours with which a graph can be vertex-coloured is called chromatic number, and it is represented

by χ(G). The vertex colouring problem was proven to be NP-complete by Karp in 1972 [17]. A survey on the

algorithmic and computational results obtained for the vertex colouring problem can be found in [24, 21].

A related problem studied by Granata et al. [14] is that of finding a path from a vertex s that meets all the

χ(G) colours in a coloured graph G. They proved that, in properly coloured directed graphs, finding a path

that starts at a specific vertex and meets all χ(G) colours is NP-hard. It is also NP-hard to find a shortest (or

longest) path between two given vertices meeting all the colours in a properly coloured directed graph.

When given a vertex-coloured graph G, in which adjacent vertices not necessarily have distinct colours,

a path in G whose internal vertices have the same colours is called a vertex-monochromatic path [5]. We

define a monochromatic vertex-connectivity (MVC)-colouring to be a vertex colouring so that there is a vertex-

monochromatic path between any two vertices in the graph. For a connected graph G, we define as mvc(G) the

maximum number of colours used in a MVC-colouring of G. In [5], Erdös-Gallai-type problems are investigated

for the monochromatic vertex-connectivity number mvc(G) as well as the Nordhaus-Gaddum-type inequality

for mvc(G) is given.

The exact opposite counterpart of determining the mvc number is the well-studied problem of the vertex-

rainbow connectivity number. A vertex-coloured graph is rainbow vertex-connected if any two of its vertices
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are connected by a path whose internal vertices have distinct colours. A descriptive survey is presented in [19]

covering problems related to rainbow connectivity in graphs.

Now we turn our attention to edge-colouring. A problem that has been gaining popularity because of its

use in social network analysis is that of finding paths in edge-coloured graphs. When social networks are

represented as graphs, the vertices represent the elements analysed while the edges represent a binary relation

between these elements. That way, the vertex connectivity is a measure of the information flowing from one

vertex to another. This information can be used for determining group cohesiveness and centrality [3].

Let G = (V,E) be an edge-coloured graph on which there is a colouring c : E 7→ {1, 2, . . . , n}, n ∈ N. In

this case each edge has just one colour. A path in G is a rainbow path if no two edges are coloured the same.

A rainbow (s, t)-path in G is said to be a rainbow path between s and t if its length is d(s, t), the length of

the minimum path between s and t. The survey in [19] also discusses rainbow connectivity in edge-coloured

graphs. Li and Sun [20], discuss the strong rainbow connectivity number of a graph. A graph is said to be

strongly rainbow connected if there exists a rainbow (s, t)-path with length d(s, t) for any two vertices s and t

in the graph. Denoted by src(G), the strong rainbow connectivity number of a graph is the minimum number

of colours needed to make a graph G strongly rainbow connected. In [20], a sharp upper bound for src(G) is

given in terms of the number of edge-disjoint triangles in G. They also investigate the graphs with large strong

rainbow connectivity numbers.

Now let G = (V, E) be an edge-coloured graph, where V is the set of nodes and E = {E1, E2, . . . , Ec} is a

collection of c not necessarily disjoint edge sets. Each Ei ⊆ V × V , 1 ≤ i ≤ c, is the edge set of colour i. Let

Gi = (V,Ei) be the graph with only the edges of colour i.

Wu [27] studied the following problem: given two vertices s, t ∈ V , find the maximum number of mutually

vertex-disjoint uni-colour paths between s and t. We call this problem by Max CDP. He proved it is NP-hard

and cannot be approximated with ratio less than 2 in polynomial time, unless P = NP for c ≥ 2. Bonizzoni

[3] later showed that the Max CDP is not approximable within factor c1−ε for any ε > 0. For c = 1, it can be

reduced to a maximum flow problem, and is therefore polynomial time solvable. A c-approximation algorithm

is given for Max CDP by the use of a greedy strategy by [27].

For the length-bounded case, `-LCDP, where the solution paths’ lengths are required to be upper bounded

by a fixed integer `, Wu proved it can be solved polynomially for ` = 3 through graph matching. He also

proved it is NP-hard for ` ≥ 4 and can be approximated with ratio (` − 1)/2 + ε for any ε > 0. Bonizzoni et

al. also gave a fixed-parameter algorithm for the `-LCDP problem.

Finding disjoint paths in graphs has many applications in other areas of Computer Science. In [23], Ntafos

and Hakimi studied some variants of the problem of covering some elements of a digraph by disjoint paths.

In one version of the problem one is asked to find the minimum number of paths that covers all vertices (or

edges) of a given digraph. In another version of the problem, the objective is to find the minimum number of

paths that covers selected pairs of vertices, this last version being proved to be NP-Hard. They explain how

these problems arise in testing software systems. The problem of finding a cover of paths of a graph such that

selected pairs of vertices belongs to the same path has also applications in Bioinformatics (see Beerenwinkel

et. al. [2] and Rizzi et. al. [25]).
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Although not stated as purely graph problems, the problems of finding paths on optical networks can be

easily mapped to graph problems by mapping the network to a graph and the availability of a wavelength in

a given link (edge) to a colour on that link. With that in mind, we now turn our attention to the problem of

paths establishment in optical networks.

A Wavelength-Division Multiplexing (WDM) approach has been proposed to handle the ever-increasing

bandwidth demands for users of optical fibre networks. WDM can divide the high bandwidth of a fibre into

many non overlapping wavelengths (WDM channels) thus allowing multiple channels coexistence on a single

fibre. In such networks, an optical signal passing through an optical switch may be routed from an input fibre

to an output fibre without undergoing optoelectronic conversion [1].

Chlamtac et al. [8] proposed the lightpath architecture as a means of end users to communicate with

one another via all-optical WDM channels. A lightpath is a path spanning multiple fibre links. Assuming

the absence of wavelength converters, a lightpath must occupy the same wavelength on all the fibre links

through which it traverses (wavelength-continuity constraint). The problem of setting up lightpaths by routing

and assigning a wavelength to each connection in a set of connections is called the Routing and Wavelength-

Assignment (RWA) problem. The objective is to route lightpaths and assign wavelengths in a manner that

minimizes the amount of network resources consumed, while also ensuring that no two lightpaths share the

same wavelength on the same fibre link. In [8] is shown that even when all the connections to be established

are known in advance (Static RWA), the problem is equivalent to a vertex-colouring in a graph and, therefore,

is NP-hard. To solve the RWA problem, one can decouple it into two separate sub problems: routing and

wavelength assignment. Many approaches relying on ILP formulations and heuristics have been presented to

solve the problem and its components [29, 16].

Applications in the scientific and engineering communities and emerging media applications require ex-

tremely high bandwidth connections, typically larger than one wavelength [7]. To accommodate such requests,

Chen et al. [7] propose a modification to the routing problem in WDM networks, to allow for more than one

wavelength to be assigned to a lightpath. The only restriction is that the set of wavelengths assigned to a

lightpath must be available on all of its links. A connection request is blocked when it is either not possible

to route a path between its end points or to assign the required wavelengths to the lightpath found. When

single path routing is deployed, due to a small chance of more than one wavelength per fibre being free for a

given path, a higher blocking is observed. For that reason, a multipath approach is also proposed. Besides

improving blocking ratio when compared to single routing, multipath routing also reduces network resource

consumption, like minimizing bandwidth required for backup paths in case of link failures.

Recent works have been proposed approaches to path provisioning and traffic grooming in more wavelength-

flexible networks (flexgrid optical network) [6, 22, 9].

1.2 Contributions

We address the problem of routing in WDM optical networks with extremely high bandwidth requests presented

in [7]. We consider both versions of single path as well as multi paths. Heuristics and ILP models were developed
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for these problems before (see [7]), but their complexity class was still unknown. We formulate these problems

as an edge-coloured graph problem and study their complexity proving that they are NP-hard and also hard

to approximate.

Unless P = NP, there are no efficient polynomial-time algorithms to solve these problems optimally. There-

fore we develop heuristics and branch-and-bound algorithms and study their performance through a set of

computational experiments also comparing to ILP models presented by Chen et al. [7].

2 Preliminaries

In this section we introduce some definitions, notations, and terms that will be needed throughout the paper.

When describing problems and algorithms for paths in graphs, we make use of the following terms.

A graph G = (V,E) has set of nodes V and set of edges E. The terms node and vertex will be used

interchangeably. The terms arc and edge will be used interchangeably. An arc from a node i to a node j is

represented as (i, j), its given direction pointing from i to j. Arc (i, j) is called an input for j and an output for

i; node j is an i-neighbour if (i, j) is in G. δ+(i) denotes the set of out-neighbours of a node i, i.e., the set of

nodes j for which there exists the edge (i, j) in G. Likewise, δ−(i) denotes the in-neighbours, the set of nodes j

for which (j, i) ∈ E. A directed path is determined by a sequence of nodes i1, i2, . . . , ik; it consists of these nodes

and the arcs connecting them in sequence, (i1, i2), (i2, i3), . . . , (ik−1, ik). We say such path connects nodes i1

and ik and represent it as (i1, ik)-path. Two paths are mutually node-disjoint (arc-disjoint) if they do not

share any vertex (arc) except at the extremes. Likewise, a set of paths is mutually node-disjoint (arc-disjoint)

if they are pairwise mutually node-disjoint (arc-disjoint).

Unless otherwise stated, we assume any given graph is directed. We also assume a graph has no multiple

arcs, that is, there is at most one arc (i, j) from node i to node j. Each arc has an associated non-negative

weight represented as w(i, j).

2.1 Problem definition

In this section we formally describe the k-multicolour path problem in edge-coloured graphs. For the following

definitions, we refer to an edge-coloured graph simply as a graph unless otherwise stated. When exemplifying

any of the definitions, we use the graph depicted in Figure 1 on page 3 assuming unit edge weights, therefore

omitting them. The labels in the edges represent the colours available.

An instance of the problem consists of a graph G = (V,E), a set of x colours C = {1, . . . , x}, x ∈ N and a

function c : E 7→ 2C mapping colours to the arcs of the graph, where 2C is the power set of C. So, c(i, j) is

the set of colours associated with arc (i, j).

Let P be a path between two nodes of G and E(P ) the edge set of P . The available colours for the path P ,

denoted by AC(P ), is defined as AC(P ) =
⋂
e∈E(P ) c(e). We then associate a subset of colours from AC(P ) to

P . Let C(P ) ⊆ AC(P ) be the set of colours associated with P . We say P is a k-multicolour path, or a k-path
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for short, if |C(P )| ≥ k; equivalently, we say P contains/uses these k colours.

For the following definitions, consider two positive integers, ki and kj .

Definition 1 (Feasible path) A path Pi in G is feasible with respect to ki if it contains at least ki colours,

i.e., |C(Pi)| ≥ ki.

In Figure 2 on page 3, the path highlighted P = (s, v2, t) is feasible when k ≤ 2 but it is not feasible for

k > 2 since AC(P ) = {2, 3}.

Definition 2 (Compatible paths) Two feasible paths Pi and Pj in G, with respect to ki and kj respectively,

are compatible if one of the following two cases holds:

(1) they are mutually edge-disjoint, or (2) they contain different colours, i.e., C(Pi) ∩ C(Pj) = ∅.

In Figure 3, the path with thicker edges P1 = (s, v1, v3, t) has C(P1) = {2} and the path with dotted edges

P2 = (s, v1, v4, t) has C(P2) = {3, 4}. Even though they share the edge (s, v1), they use different colours,

therefore they are compatible.
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v4 t
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Figure 3: Compatible paths
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Figure 4: Absolutely compatible paths

Definition 3 (Absolutely compatible paths) Two feasible paths Pi and Pj in G, with respect to ki and kj

respectively, are absolutely compatible if they are mutually arc-disjoint.

The highlighted paths in Figure 4, P1 = (s, v2, t) and P2 = (s, v3, t) are absolutely compatible even though

both use colour 3, since they do not share any edges.

We are now ready to formally state our problems.

An input instance consists of a graph G = (V,E), a set of colours C, where each edge e ∈ E is coloured

with colours c(e) ⊆ C, and a tuple (s, t, k, p), where s is the source node, t is the target or destination node,

k is the number of required colours, and p is the number of required paths. For the following definitions, a

shortest path is shortest with respect to the arc weights.
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Definition 4 (Single k-Multicolour Path Problem (SMP)) Input: A graph G, a set of colours C, edges

colour function c, and a tuple (s, t, k, 1) where s and t are source and target nodes, k is the number of required

colours and 1 stands for the number of paths. Output: A single feasible shortest (s, t)-path containing at least

k colours.

Considering the graph from Figure 1 on page 3, the solution to the input (s, t, 2, 1) would be the path

P = (s, v2, t) (highlighted in Figure 2). Although the path P ′ = (s, v1, v4, t) is feasible with respect to k = 2,

P is the only shortest feasible path. For k > 2, there is no solution possible for that graph.

Definition 5 (Multiple k-Multicolour Paths Problem (MMP)) Input: A graph G, a set of colours C,

edges colour function c, and a tuple (s, t, k, p) where s and t are source and target nodes, k is the number

of required colours and p stands for the number of required paths. Output: A set of p compatible (s, t)-paths,

P1, . . . , Pp, with total minimum weight (i.e. minimum
∑p
i=1

∑
e∈Pi

w(e)), so that the sum of colours used by all

paths is at least k, i.e.,
p∑
i=1

|C(Pi)| ≥ k. We require that each path contains at least one colour, i.e, |C(Pi)| ≥ 1.

In Figure 1, the paths P1 = (s, v2, t) and P2 = (s, v1, v4, t) would be the solution for the input (s, t, 4, 2).

P1 and P2 are clearly compatible because they are arc-disjoint.

Definition 6 (Absolute Multiple k-Multicolour Paths Problem (AMMP)) The problem is the same

as in the MMP problem, but now we require that the p paths must be pairwise absolutely compatible.

Referring to Figure 1 again, it is easy to see that there is no solution for an input instance (s, t, 6, 4), since

the fourth path would invariably share an edge with another one.

In the decision version of those problems we ignore the arc weights and the objective is to find only a

single/multiple feasible/compatible (s, t)- path/paths containing the required k colours. The decision version

is represented by a subscripted ‘d’ on the problem’s name (SMPd, MMPd, and AMMPd).

We assume that the colour requirement is k ≥ 2, since the case k = 1 can be easily solved by computing

|C| shortest paths (or computing p minimum multi paths), one for each possible colour, and picking the path

(or paths for MMP and AMMP) with minimum weight.

Also note that if k is bounded by a constant then all problems can also be solved in polynomial time, since

one can enumerate all
(|C|
k

)
combinations of k colours in polynomial time, then for each combination construct

a graph with the edges containing only these colours and solve a minimum path (multi path) problem for each

possible graph.

3 Problem complexity

In this section we prove that the SMPd, MMPd, and AMMPd problems are NP-complete. As a consequence,

the optimization versions are NP-hard. We also establish that these problems are hard to approximate.
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3.1 Single path decision problem

Theorem 1 The SMPd problem is NP-complete.

Proof. The problem is clearly in NP since we can check in polynomial time that a given path is a (s, t)-path

and uses k colours.

We present now a reduction from the 3CNF-SAT [17] to the SMPd problem. Let I be an instance of the

3CNF-SAT problem consisting of a logical formula over a set of n variables X = {x1, . . . , xn} and containing

m clauses K = {K1, . . . ,Km}, where each clause Kj contains exactly three literals Kj = (yj1 ∨ yj2 ∨ yj3). In

the 3CNF-SAT problem, we need to decide if there is an assignment of truth values to the variables in X such

that ∧mj=1Kj is true.

From I, we build an instance (G,C, s, t, n, 1) of the SMP problem such that there is a feasible (s, t)-path P

in G with n colours if and only if there is a truth assignment satisfying I.

The graph G consists of n + m structures, one for each variable xi, 1 ≤ i ≤ n and one for each clause

Kj , 1 ≤ j ≤ m. A structure representing a variable xi ∈ X is depicted in Figure 5 and a structure representing

a clause Kj is depicted in Figure 6.

vxi
vxi+1

exi

ex̄i

Figure 5: Structure for variable xi

vKj
vKj+1

eyj1

eyj2

eyj3

Figure 6: Structure for clause Kj

We create colours czi for each literal zi ∈ Z = {x1, x̄1, . . . , xn, x̄n}. So C = {cx1 , cx̄1 , . . . , cxn , cx̄n} and

|C| = 2n. There are two types of edges in the graph: (1) edges of the structure that have labels in the figure,

such as ezi , containing all colours {czj | zj 6= z̄i and zj ∈ Z}, that is, it contains all colours except the one

which represents the negation of zi, and (2) unlabelled edges containing all 2n colours.

The meaning of a structure for a variable xi is this: a path may use exactly one of the two edges ezi or

ez̄i . The edge used determines which of the literals zi or z̄i is going to be true. The structure for a clause

Kj = (yj1 ∨ yj2 ∨ yj3) has the following meaning: a path is going to use exactly one of the three edges eyj1 ,

eyj2 or eyj3 representing a literal that is true and makes the clause be satisfied.

The complete graph is created connecting the structures of the variables, one to another in sequence, where

we set s = v1, and then connecting the structures of the clauses, where the last vertex is t. It is clear that the

whole transformation takes polynomial time. The complete graph is depicted in Figure 7 on the next page.
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Figure 7: Graph built from a 3CNF-SAT instance

We show that there exists a valid assignment satisfying the formula of I if and only if there is a feasible

(s, t)-path in G with n colours.

Let A : X 7→ {T, F} be a truth assignment satisfying the formula of I. In G, the path P will use the

colours whose respective literals have a truth assignment. We construct P as follows: starting from s, for each

structure associated with a variable xi, if A(xi) = T , then P uses the subpath that goes through edge exi

(colour cxi is used); otherwise, P will use the subpath going over ex̄i (colour cx̄i is used). Since A is a valid

assignment, it is not possible for both exi
and ex̄i

to be used at the same time in P neither the colours cxi
and

cx̄i
. At the end of the variable structures, the path will be using exactly n colours, one for each truth literal.

Since A is a truth assignment, at least one of the literals of Kj has a truth assignment, therefore, we can

complete path P by picking the subpath in the Kj ’s structure whose edge has the least index and corresponds

to a literal with truth assignment.

Now let P be a feasible (s, t)-path using n colours in G. First notice that any (s, t)-path cannot contain

both edges exi and ex̄i because of the bifurcation in the structure corresponding to the variable xi. So it is

not possible to use both colours cxi
and cx̄i

at the same time. At the end of the variable structures (at node

vxn+1
), P must have chosen exactly n colours: if P uses edge exi

it must use colour cxi
, since colour cx̄i

is

not available in exi
; similarly, if P uses edge ex̄i

it must use colour cx̄i
. The assignment A is obtained in the

following manner: for each variable xi, we make xi = T if exi is used in P and xi = F if ex̄i is used in P .

To prove that A satisfies the formula of I, we show that every clause Kj = (yj1 ∨ yj2 ∨ yj3) is satisfied.

Some edge eyji is used in P for some i ∈ {1, 2, 3}, since P is feasible. This means that P must use the colour

corresponding to the literal yji. By the definition of A, yji = T then Kj is satisfied. ut

3.2 Multiple paths decision problems

Even if the colours requirement can be split into multiple paths, i.e., p > 1 subject to the constraint
p∑
i=1

|C(Pi)| ≥
k, we prove that the problem still remains NP-complete.

Theorem 2 The MMPd problem is NP-complete.

Proof. We reduce the Set Cover problem [17] to the MMPd problem. Let I be an instance of the Set Cover

consisting of a set of n elements U = {u1, . . . , un}, a collection S = {S1, . . . , Sm} of subsets of U , and a positive

integer K ≤ |S|. The problem is to decide if there are at most K subsets from S whose union equals U . We
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construct an instance (G,C, s, t, n,K) to the MMPd problem, such that there exists a solution to I if and only

if there are K compatible (s, t)-paths in G using n colours.

Firstly, we create nodes s and t. There will exist n colours C = {cu1
, . . . , cun

} each one representing one

element from U . There will also exist edges eSi
representing each subset Si ∈ S. These edges contain the

colours {cui
| ui ∈ Si}. The remaining unlabelled edges contain all the n colours. The number of required

compatible paths is p = K and the number of required colours is n. We remark that this procedure can be

done in polynomial time. The complete graph is depicted in Figure 8.

s u S2

S1

Sm

v t
eS2

eS2

··
·

e S 1
e
S
1

e
S
m eSm

Figure 8: Graph built from an instance of the Set Cover

problem

s′ G2

G1

Gp

t′

e1

e2

ep

e′1

e′2

e′p

··
·

Figure 9: Reduction for absolutely compatible paths

We show that there is a set cover S ′ ⊆ S for U such that |S ′| ≤ K if and only if there are K compatible

(s, t)-paths in G containing n colours.

Let P1, . . . , PK be K compatible (s, t)-paths on G using n colours. Note that the n colours used must be

distinct, one for each element, since all paths are compatible and share the edges (s, u) and (v, t). If the path

Pi contains the edge eSi
, then the set Si is used as part of the solution of the Set Cover, i.e., S ′ = S ′ ∪ Si,

1 ≤ i ≤ K. Since there are exactly K paths, |S ′| ≤ K (the less than or equal comes from the fact that different

paths may use the same edges as long as they use different colours). Furthermore, we know that the K paths

are compatible and use n colours. Therefore, S ′ contains all the elements in U , and it is a valid solution to the

Set Cover problem.

Now assume S ′ = {S1, . . . , SK′}, K ′ ≤ K, is a solution for an instance I of the Set Cover. First we construct

K ′ (s, t)-paths, P1, . . . , PK′ in G that use n colours as follows. All K ′ (s, t)-paths will use the unlabelled edges.

For each set Si in the solution S ′ we will have a (s, t)-path Pi. Path Pi uses the edges eSi corresponding to

Si and, consequently, uses colours cuj such that uj ∈ Si as long as cuj is not already being used by another

path. We need to prove that these (s, t)-paths are compatible. It is easy to see that each path Pi is feasible,

for it uses colours cx1
, . . . , cxj

on the edges eSi
and those colours are also present in the edges without labels.

Moreover, any two paths are compatible because, by definition, each path uses only those colours not already

being used by any other path. We know P1, . . . , PK′ use n colours because S ′ is a solution for the Set Cover

thus it “covers” all the elements in U , implying that we have K ′ (s, t)-paths using n colours. In order to obtain

the remaining K −K ′ paths we can construct extra compatible paths. For paths Pi that use more than one
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colour, we can split Pi into two or more paths using different colours in each one. We repeat this process until

we obtain K paths. These paths are compatible since we split the colours of one path among the created ones

and it is always possible to construct K paths since K ≤ n.

ut

We also show that the AMMPd problem, which requires absolutely compatible paths, is NP-complete.

Theorem 3 The AMMPd problem is NP-complete.

Proof. We can reduce the 3CNF-SAT to this problem: let Gi be the graph obtained from an instance of the

3CNF-SAT like in the reduction for the SMPd problem. Consider p > 1 copies of this graph, each one with

new colours (although still representing the same literals). In this way, there are 2np colours. Create nodes s′

and t′, edges ei and e′i, for i = 1, . . . , p, containing all the colours and make s′ adjacent to s of Gi through the

edge ei and t′ adjacent to t of Gi through e′i, as illustrated in Figure 9 on the previous page.

Finally, let the required number of colours to the AMMPd problem be np. It is not hard to see that a

formula to the 3CNF-SAT can be satisfied if and only if there are p absolutely compatible paths in G using

exactly np colours. ut

3.3 Single and Multipath optimization problems

The original optimization versions of the problems SMP, MMP, and AMMP assume weighted edges and the

goal is to find multicolour paths of a minimum total weight. As a corollary of the previous theorems, the

optimization versions of the SMP, MMP, and AMMP problems do not admit approximation algorithms, since

we could use such algorithms to decide, in polynomial time, the decision version of theses problems.

Corollary 4 For any polynomial time computable value α > 1, there is no α-approximation algorithm for the

SMP, MMP, or AMMP problems unless P = NP .

Proof. Let I be an instance of the decision version of the problem SMPd (or MMPd, or AMMPd). Suppose

for the purpose of contradiction that A is an α-approximation algorithm for the optimization problem SMP

(or MMP, or AMMP respectively). Let I ′ be an instance of the optimization version of SMP (MMP, AMMP,

respec.) that is equal to I except that each arc in the graph is given a weight equal to 1, and a new arc (s, t)

is included with weight α|V |+ 1 (or p new (s, t) arcs with weight α|V |p+ 1 each, for MMP and AMMP), and

with k new colours. Note that the new added arcs can be replaced with new paths with the same cost using

new vertices in order to construct a graph without multiple edges. If I admits a feasible solution then A(I ′)

must produce a solution with cost ≤ α|V | (or ≤ α|V |p for MMP and AMMP). If I does not admit a feasible

solution then A(I ′) ≥ α|V |+ 1 since the only solution must use the new added arc (or ≥ α|V |p+ 1 for MMP

and AMMP). Then A(I ′) can be used to decide SMPd (respec. MMPd, AMMPd) in polynomial time. ut
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It is interesting to think of another optimization measures, instead of path weights, in theses problems.

As an example, an interesting problem is the following: suppose a SMP (MMP or AMMP) problem where

edges do not have weights and the objective is to find a path (or multi paths) that maximizes the number of

used colours. We leave the study of approximation algorithms for these variations of the problem as a future

research topic.

4 Exact algorithms

We now introduce two types of exact algorithms: Branch and Bound and Integer Linear Program (ILP).

We present Branch and Bound algorithms for the SMP and AMMP problems in Sections 4.1 and 4.2. ILP

formulations for SMP, MMP, and AMMP are presented in Section 4.3.

4.1 Branch and Bound for SMP

For the description of our branch and bound solution, we need the concept of a partial path and potential

solution. A partial path P ls is just a regular path from the source node s to some node l. A partial path P ls is

a potential solution if it satisfies |c(P ls)| = | ∩e∈P l
s
c(e)| ≥ k, i.e the number of colours available in the path is

at least k. We call it potential because it has not yet reached the destination node t. The weight of a potential

solution P ls is w(P ls) =
∑
e∈P l

s
w(e).

In our algorithm, at any given point in time, the search tree is composed of a set of potential solutions. At

each iteration, we choose and expand the most promising potential solution, which is the one with the minimum

estimated cost to reach t. Let P ls be this promising potential solution. We expand it by considering the node

l and checking, for each out-neighbour u of l: (1) whether the number of common colours in the expanded

path including the neighbour u is at least k, i.e, |c(P ls) ∩ c(l, u)| ≥ k, and (2) whether the destination node t

is reachable from u. If any of these conditions is not met, the node representing Pus is discarded; otherwise, a

new potential solution Pus = P ls + (l, u) including the edge (l, u) to P ls is added to the search tree (in a heap).

The cost of this new potential solution is w(Pus ) = w(P ls) + w(l, u).

The starting potential solution is composed of the path P ss with only the node s, containing all colours

c(P ss ) = C, with weight w(P ss ) = 0 and estimated weight d(s, t) (to be defined below).

When choosing a promising potential solution to evaluate, we use a best bound strategy: we select the

potential solution with least estimated weight to the destination. The estimated weight is the sum of weights

of the edges in the potential solution plus a lower bound in the weight of a path to the destination: the weight

of the shortest path from the last node of the partial path to the destination without considering the colour

requirement. In short, the estimated weight of a potential solution is w(P ls) + d(l, t), where d(l, t) is the

shortest distance between l and t disregarding the colours.

Let Grev be the path obtained from G by reversing the direction of all arcs. In our algorithm, we get the

shortest distance d(i, t) between all nodes i and t, from a shortest path tree rooted in t obtained from running
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the Dijkstra’s shortest path algorithm on Grev.

Notice that when evaluating a potential solution, if it contains the destination node as the last node, then

this path corresponds to the optimal solution, since we are using a best-bound strategy.

4.2 Branch and Bound for AMMP

A set of partial paths is arc-disjoint if and only if their partial paths are pairwise mutually arc-disjoint. A

potential solution for the AMMP consists of p arc-disjoint partial paths that have at least k colours available

in total. Then the same algorithmic idea in the SMP problem can be expanded to the AMMP problem. The

weight of a potential solution is the sum of weights of its p partial paths. The estimated weight is the sum of

the estimated weights to t of these partial paths.

The starting potential solution is composed of p copies of P ss . At each iteration of the algorithm, we expand

one partial path of the most promising potential solution, repeating this procedure until all partial paths in a

potential solution reach the destination node or no potential solution is left to evaluate.

4.3 Integer Linear Programs

In this section we present two Integer Linear Programming (ILP) models for the SMP problem and one for the

MMP and AMMP problems. With respect to the formulations, consider the following variables:

fij: binary variable indicating the usage of edge (i, j).

fijx: binary variable indicating the usage of colour x on the edge (i, j).

fpij: binary variable indicating the presence of the edge (i, j) in the path p.

fpijx: binary variable indicating the presence of colour x on the edge (i, j) of path p.

cx: binary variable indicating the usage of colour x ∈ C.

cpx: binary variable indicating if colour x is used by path p.

k: constant that represents the number of required colours.

wij: constant that represents the weight of the edge (i, j).

All the variables above are subject to:

fij , fijx, fpij , fpijx ∈ {0, 1}, cx, cpx ∈ {0, 1}, x ∈ {1, 2, . . . , C}, (i, j) ∈ E

We present next two formulations for the SMP problem: one that can be easily extended for more than one

path and a more compact (and faster) one.
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4.3.1 ILP model for SMP:

The formulation presented in this section was proposed in [7] and we replicate it here for easy of comparison

with our own formulation (ILP fast) to be introduced in the following.

(ILP original)

min
∑

(i,j)∈E
fij · wij

s.t.
∑

j∈δ+(i)

fijx −
∑

j∈δ−(i)

fjix =


cx, if i = s

−cx, if i = t,

0, otw

∀i ∈ V, ∀x ∈ C (1)

C∑
x=1

cx = k (2)

C∑
x=1

fijx = k · fij ∀(i, j) ∈ E (3)

Constraints (1), are flow conservation constraints, such that a path is formed from s to t for each used

colour. Constraint (2) ensures the number of colours used is equal to k. Constraints (3) ensure that just one

path from s to t is formed.

4.3.2 New Faster ILP model for SMP:

Whereas the formulation ILP original was constructed so that it was extensible to the multipath case, we intro-

duce here some modifications resulting in a faster model with fewer variables. We achieve that by decoupling

the choice for arcs in the paths from the choice of colours.

(ILP fast)

min
∑

(i,j)∈E
fij · wij

s.t.
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji =


1, if i = s

−1, if i = t,

0, otw

∀i ∈ V (4)

C∑
x=1

cx = k (5)

∑
x∈c(i,j)

cx ≥ k · fij ∀(i, j) ∈ E (6)

(7)

Constraints (4) are flow conservation constraints, such that a single path is formed from s to t. Constraint

(5) ensures that k colours are used. Constraints (6) ensure that each edge in the path contains the same k

colours.
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4.3.3 ILP models for MMP and AMMP:

Now we present a formulation for both versions of the multipath problem: the compatible paths case and the

absolutely compatible paths. The objective now is to find P paths with minimum total weight satisfying the

k colours requirement. We denote by [P ] the set {1, . . . , P}.

(ILP Mult)

min
∑
p∈[P ]

∑
(i,j)∈E

fpij · wij

s.t.
∑
p∈[P ]

∑
x∈C

cpx = k (8)

fpijx ≤ cpx (i, j) ∈ E, p ∈ [P ], x ∈ C (9)

∑
j∈δ+(i)

fpijx −
∑

j∈δ−(i)

fpjix =


cpx, if i = s

−cpx, if i = t

0, otw

i ∈ V, p ∈ [P ], x ∈ C (10)

fpijx ≤ fpij (i, j) ∈ E, x ∈ C, p ∈ [P ] (11)

∑
j∈δ+(i)

fpij −
∑

j∈δ−(i)

fpji =


1, if i = s

−1, if i = t

0, otw

i ∈ V, p ∈ [P ] (12)

∑
x∈C

cpx ≥ 1 p ∈ [P ] (13)

∑
p∈[P ]

fpijx ≤ 1 (i, j) ∈ E, x ∈ C (14)

Constraints (8) ensure that the P paths have k colours in total. Constraints (10) are flow conservation

constraints and together with (9) ensure that if a path is using some colour then that colour is accounted for

in the variable cpx. Constraints (11) and (12) guarantee that for each p, a single path using exactly the same

colours is formed. Constraint (13) ensures at least one colour is used in each path, and constraint (14) ensures

the paths are compatible.

By modifying ILP Mult, we can extend it for the absolutely compatible paths case. To do that, replace

constraint (14) by a restriction ensuring the paths are disjoint:

∑
p∈[P ]

fpij ≤ 1, (i, j) ∈ E

5 Heuristics

We developed some heuristics to these problems. They are divided into two algorithmic ideas: Dijkstra-based

and graph intersection-based. In the following sections, we outline each one of them and analyse their running

times.
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5.1 Dijkstra-based heuristics for SMP

We propose three heuristics for the SMP problem based on the Dijkstra’s algorithm [10]. The heuristics inherit

Dijkstra’s main characteristic: at each step, a node with minimum value according to some criterion is chosen,

from which the search is expanded further towards the destination node. Nodes already chosen by Dijkstra’s

algorithm have their minimum path discovered and are not visited any more. Each node not yet visited has

an estimated value for the minimum path between the source and itself. The main difference introduced by

our heuristics is with respect to how a node is chosen. Besides the estimated cost between the source and each

node, we take into account the number of available colours when including a node as part of some path. The

heuristics keep track of the number of available colours through the path found so far. For a new node to be

part of the path, the number of colours in the resulting path needs to be at least k.

From the distinct ways on how to select a node, three heuristics arise: DijkstraQ, DijkstraT and DijkstraX.

In what follows, we describe each one of them in details.

5.1.1 DijkstraQ heuristic:

The DijkstraQ heuristic separates the unvisited nodes into “quadrants” between two axes. One of these axes

considers the estimated distance between the source and the unvisited nodes. The other corresponds to the

number of common colours between a path and the edge linking that path to a node. We compute the average

distance (davg) and the average number of common colours (cavg) considering all unvisited nodes for which a

distance label was set. We are interested in the nodes with estimated distance shorter than the average and

with number of common colours higher than the average. The algorithm chooses randomly one of the nodes

satisfying this criterion. The heuristic choice in this case aims to find a shortest path while keeping a high

number of common colours, in the hope that, upon finishing, there will be at least k common colours in the

path. Because the step for finding the next node to be visited involves a linear search, the time complexity is

O(|V |2).

5.1.2 DijkstraX heuristic:

The problem with the previous DijkstraQ algorithm is that selecting a node to visit is not as efficient as using

a heap. However, we can assign a score to the nodes. This score would take into account the distance from the

source and the number of common colours. This way, the selection of the minimum node to visit can be made

more efficiently than before. The score function can be adapted to give more weight to shortest paths or paths

with more colours in common. The score function used in our algorithm is score(i) = dist(i) − D
k c(i), where

dist(i) is the shortest distance from the source to node i, c(i) is the set of common colours in the path from

the source to i found so far, and D is the minimum path distance between the source s and target t. Notice

that if the minimum path between s and t has k colours then its score is 0. The idea of this score function is

that among the paths that have at least k colours, we are searching for the one with minimum difference from

the shortest path. The time complexity of the DijkstraX algorithm is the same as Dijkstra’s.
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5.1.3 DijkstraT heuristic:

The DijkstraT heuristic, in turn, makes use of a positive real parameter T . At each iteration, we choose

the node with minimum estimated distance among those that have at least bT · kc common colours in the

path from the source node. We then update T by decreasing its value by some constant amount. Roughly

speaking, we choose nodes according to the shortest distance and a linear decreasing function in the number of

common colours. The heuristic choice in this case is that we need more colours in common in the beginning,

because of the higher number of possible nodes to choose from, but this requirement loosens as we approach

the destination node. The time complexity is the same as Dijkstra’s, O(|E|+ |V | log |V |). In our experiments,

T = 1.5 and it is decremented by T/n, where n is the number of nodes in the graph, for each iteration of the

algorithm.

5.2 Dijkstra-based heuristics for MMP and AMMP

Denote by p the number of paths to be found by the algorithm and by k the colour requirement. Denote by

np the number of paths found so far, np ≤ p. The algorithmic idea for a Dijkstra-based algorithm for the

multipath problems is to repeat the following procedure for the number of paths desired:

1. compute a shortest (s, t)-path P ;

2. select up to nk = k − p+ np + 1 colours in C(P );

3. add P to the solution;

4. increment np by 1;

5. k ← k − nk;

6. modify the graph G.

Step 2 above is necessary since each one of the p paths must use at least one colour. The type of graph

modification on step 6 depends on the problem we are solving. Let P be the shortest path found in the current

iteration of the algorithm. For the MMP, we modify the graph by removing all colours selected for P on its

arcs in G. For the AMMP, because we want arc-disjoint paths, we removed all arcs in P from G. The time

complexity for both algorithms is O(p{|E|+ |V | log |V |}). We call this heuristic MMPMin.

5.3 Intersection-based heuristic for SMP

Let Ei denote the set of edges in G that contains the colour i. Denote the set of all Ei’s, 1 ≤ i ≤ x, by

E = {E1, E2, . . . , Ex}. The graph Gi = (V,Ei) is the subgraph of G in which all edges contain the colour i.

We say Gi is the subgraph of G induced by colour i. Let
(E
k

)
denote the set of all k-combinations of E . Then

if Ek = {Ej1, Ej2, . . . , Ejk}, is a random selection of a set in
(E
k

)
, we denote by G∗k = (V,E∗k), E∗k =

⋂
Ejl∈Ek

Ejl,

18



the graph resulting from the intersection of the subgraphs Gjl = (V,Ejl), ∀Ejl ∈ Ek. If there is a (s, t)-path

in G∗k, it is easy to see that it is also a k-path because every edge in G∗k has exactly the same k colours. So

all we need is to increase the odds that there will be a (s, t)-path in G∗k. For that end, we could pick Ek so

that the intersection of its elements results on the highest number of edges in G∗k. In other words, we want

to find an Ek such that | ⋂
Ej∈Ek

Ej | ≥ |
⋂

El∈Ek′
El|, ∀Ek′ ∈

(E
k

)
. However, because finding such Ek is, by itself,

a hard problem [28], we have to employ a heuristic strategy instead. In this case, we sort Ei’s by decreasing

cardinality and pick the first k with highest number of edges. We call this algorithm IntersectionFast. We

could further restrict the heuristic choice by picking only those Ei’s with highest cardinality as long as they

contain a (s, t)-path (we call this algorithm by Intersection).

Performance-wise, the IntersectionFast algorithm can be implemented with time complexity O(|E||C| +
|V | log |V |). For the Intersection algorithm, it can be implemented with time complexity O(|C|(|E| + |V |) +

|V | log |V |).

6 Computational results

Because heuristic solutions give no guarantee on the quality of the result obtained, we performed a simulation

with the developed algorithms and in this section we present the results obtained. Our aim is to assess the

performance of the algorithms in practical terms, comparing them with the exact Branch and Bound and ILP

algorithms.

We consider three types of metrics: execution time, solution cost and blocking ratio. Each algorithm is fed

with an input instance (s, t, k, p), and with the current state of a network given by an edge-coloured graph G.

Each instance is solved by the algorithm which then returns the p-paths found. If no path was found, we say

the algorithm blocked on that instance. For the SMP problem, p = 1. For the MMP and AMMP, p = 2 due to

the fact that few applications require a large number of multiple paths in practice [7].

For the ILP models we used the CPLEX tool [15]. All simulations rounds were executed in a 2.4GHz

quad-core machine with 8GB of RAM memory. All graphs displaying averages in this section show a 95%

confidence interval.

In Section 6.2 we present results with instances representing real networks making use of a discrete event

simulator to assess the blocking ratio of the algorithms.

6.1 Execution time and solution cost

For each execution round we keep track of the execution time of each algorithm. If valid p-paths are returned,

the cost of the solution is defined as the cost of the paths returned, i.e, the cost of the solution is
∑
p

∑
(i,j)∈p

w(i, j).

We use a simple simulator written in C++. The simulator generates a random connection request and run

each algorithm on this instance.

19



The graphs representing the networks used in the simulations were generated in the following manner. We

start with a random G(n, da, dc) graph. That means the graph has n vertices and each edge is included in the

graph with probability 0 < da < 1. We also call da the arc density of the graph. Each added edge starts off

with 8 colours available. Then, given a colour density 0 < dc < 1, we removed random colours from randomly

selected edges until we reach about |E||C|·dc colours in total in the graph. The purpose of varying the edge and

colour densities is to simulate scenarios with different network loads. The pairs (da, dc) used, in percentage,

were: (10, 10), (10, 40), (10, 70), (30, 40), (30, 60), (30, 80), (40, 10), (40, 40), (40, 70), (60, 30), (60, 60), (60, 80),

(70, 10), (70, 40), (70, 70), (90, 40), (90, 60), and (90, 80).

For each (da, dc) pair, 30 random instances were generated for each graph size. The graph sizes (number of

nodes) used were 100, 250, 500, 750, 1000 and 2500.

Let C+(v) =
⋃
j∈δ+(v) c(v, j) be the set of colours on the output arcs of a node v. Likewise, C−(v) =⋃

j∈δ−(v) c(j, v) is the set of colours in the input arcs of v. We claim that for any path between s and t in

the SMP problem, the colours used will be a subset of C ′ = C+(s) ∩ C−(t). Therefore, we can execute a

preprocessing step in which we remove every edge e ∈ E with |c(e) ∩ C ′| < k. For the MMP and AMMP

problems, we remove the edges with c(e) ∩ C ′ = ∅. This preprocessing step was not included on the running

time of the algorithms.

Following the methodology in [7], each simulation round consisted in generating a connection request from

a source node s to a destination node t, both s and t chosen uniformly among all nodes in the graph, s 6= t.

The number k of colours in the request was chosen uniformly between 2 and 5. We set a time limit of 2

minutes for each algorithm so that the whole simulation would not take more than 30 days. If upon reaching

the 2-minutes mark no solution was returned, the algorithm is terminated and it is considered to have blocked

for that instance.

Figure 10 depicts the effect of the densities on the Branch and Bound algorithm for the SMP problem. As

expected, denser graphs yield “cheaper” solutions. For the case da = 10%, dc = 10%, only 5 instances did not

block for all sizes, therefore the high variance for this case.
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Likewise, Figure 11 on the previous page depicts the effects on execution time of the densities on the Branch

and Bound algorithm. Unlike with the cost, execution time increases as the graphs become denser, due to the

increase in processing needed for these kind of instances.

Figure 12 shows the effect of the number of colours in the request on the solution cost for the Branch and

Bound algorithm. A high colour number request results in higher solution costs. The opposite behaviour is

observed with respect execution time since more nodes are removed in the search tree when k is high, and then

the algorithm tends to run faster. (Figure 13).
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Figure 13: Mean execution time

To compare the algorithms graphically, we present their performance profiles, a comparison method pro-

posed by Dolan and More [11]. This method of comparing optimization software and algorithms consists in

comparing the algorithms among themselves, computing for each instance the ratio between the value of some

metric for that instance and the best result achieved for that instance considering all the algorithms. So, if

some algorithm has ratio equal to 1 for a particular instance, that means it obtained the best result for that

instance among all the other algorithms. In Figure 14 on the following page, the Intersection algorithm has

point (1, 0.35) meaning it solved 35% of the instances with best cost, whereas the point (5, 0.85) indicates it

solved 85% of the instances with cost at most 5 times the best cost. We compute all such ratios for all instances

regarding solution cost and execution time.

In Figure 14 and Figure 15 we present the performance profiles for solution cost and execution time,

respectively, for the SMP problem. Particularly for the time performance case, we replaced the ratio by the

actual running time in milliseconds, so as to give a better perspective for the comparisons. For example, in

Figure 15, the point (100, 0.901) for the Intersection algorithm indicates that it solved 90.1% of the instances

in no more than 100 milliseconds.

Some relevant remarks regarding the simulations for the SMP problem. As it is easily seen from the graphs

in Figure 14 on the next page and Figure 15 on the following page, the ILPs are easily outperformed both in

solution cost and execution time. The original ILP formulation blocked on more than 70% of the instances

by not being able to solve them in 2 minutes. The faster ILP formulation, in turn, blocked on 55% of the
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Performance profiles for the SMP problem
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Figure 14: Solution cost
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Figure 15: Execution time

instances. With a performance better than the ILPs but still slower than the Branch and Bound algorithm,

the Intersection algorithm solved 82% of the instances with cost 4 times the optimum and solved 90% of the

instances in less than 100ms, whereas the IntersectionFast version was able to solve 94.5% in the same time

frame. The Branch and Bound algorithm performed surprisingly well, blocking less than 2% and solving the

majority of the instances in less than 500ms. With respect to the heuristics, DijkstraX was best both in terms

of solution cost (95% solved with best cost) but also in terms of time, being able to solve 53% of the instances

in up to 1ms.

To check at which point the Branch and Bound algorithm would start blocking the instances whereas the

heuristics would solve them, we kept increasing the graph size. The issues encountered while executing this

kind of test were the amount of memory needed (more than we had, causing the use of swap space) because of

the size of the graphs; also, loading and preprocessing the graph took a long time, around 30 minutes each of

these steps for a graph with 10000 nodes. For that case, the Branch and Bound blocked while the heuristics

solved the instance within 20 seconds.

A similar simulation setup to the SMP was used for the MMP and AMMP problems. All requests required

2 paths and between 2 and 5 colours chosen uniformly.

Figure 16 and Figure 17 depict the performance profiles for the AMMP problem. Again the ILP algorithm

is easily surpassed with respect execution time. It blocked on 85% of the instances because of the time limit.

The heuristic MMPMin had the best runtime, solving all non-blocked instances in 500ms. It blocked on 30%

of the instances. The Branch and Bound algorithm solved less than 2% of the instances with the best runtime

and solved 91% of them with less than 50000ms. It blocked only on 1% of the instances.

Figure 18 and Figure 19 show the performance profiles for the MMP problem. For this problem, there was

no Branch and Bound implementation. The ILP algorithm blocked on 91% of the instances. The heuristic

blocked on 32% of the instances and solved the other 68% in less than 500ms.
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Performance profiles for the AMMP problem

 0

 0.2

 0.4

 0.6

 0.8

 1

1  1.5  2  2.5  3

P
ro

b
a

b
ili

ty

Ratio

MBBound MMPMin MILP

Figure 16: Solution cost

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

P
ro

b
a

b
ili

ty

Time (ms)

Figure 17: Execution time

Performance profiles for the MMP problem
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Figure 18: Solution cost
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Figure 19: Execution time

6.2 Blocking ratio

We now discuss the blocking ratio results. The blocking ratio defined in [7] is the bandwidth blocking ratio

(BBR). It is the percentage of blocked bandwidth traffic relative to the total requested bandwidth during

one simulation round for a WDM network. Since a bandwidth value can be directly converted to a number

of colours given the bandwidth capacity of a wavelength, we use the term BBR hereafter. To calculate the

blocking ratio we used a discrete event simulator developed in Java [7, 12] to generate dynamic connection

requests and account for the graph states. Each simulation round is comprised of 10000 connection requests

arriving with negative exponentially distributed inter-arrival time. For each connection request, if the algorithm

fails to provide a suitable solution, the request is blocked and rejected. Otherwise, the paths to be established

provided as output are used to update the graph state accordingly.

The network topologies used for measuring blocking ratios are a grid 5x5 network, with 25 nodes and
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40 bidirectional links, the USA long-distance Mesh Network, with 24 nodes and 43 bidirectional links, the

NSFNet network, with 16 nodes and 25 bidirectional links, and the Pan-European Network, with 28 nodes and

41 bidirectional links. It is assumed each fibre carries 8 colours in all topologies.

For each simulation round, the networks start with all colours available in all arcs. For each one of the 10000

connection requests, source and destination nodes are chosen uniformly among all nodes. Colour requests range

from 1 to 5 colours and they are generated with probability proportionally inverse to the number of colours, i.e,

requests of 1 colour have five times more chance of being generated than those with 5 colours. The established

paths are release after a defined holding time has passed. Connection holding times are sampled in a negative

exponential distribution with mean value of a single unit. For the MMP and AMMP problems, p = 2 for each

connection request.

In Figures 20, 21, 22 and 23 we present the BBR values for the SMP problem for the networks Grid 5x5,

NSFNet, PanEU and USA, respectively.

Apart from the intersection-based algorithms, all algorithms had similar blocking ratios in all network types.

Blocking ratios for the SMP problem
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Figure 20: Grid 5x5 network
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Figure 21: NSFNet network
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Figure 22: PanEU network

10
-2

10
-1

10
0

10
1

10
2

10  20  40  60  80  100  120

M
e

a
n

 B
lo

c
k
in

g
 (

%
)

Network load (Erlang)

BranchBound
DijkstraQ
DijkstraT

DijkstraX
Intersection Fast

Intersection

ILP
ILP original

Figure 23: USA network
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In Figures 24, 25, 26 and 27 we present BBR values for the AMMP problem for the Grid 5x5, NSFNet,

PanEu and USA networks, respectively. Now, the Branch and Bound algorithm achieved the lowest ratio in all

networks for loads up to 50 Erlang. The biggest difference in blocking behaviour is show in the Grid 5x5 for 10

and 20 Erlang; MMPMin blocked 10 times more than the Branch and Bound and the ILP algorithm blocked

10 times more than the heuristic. However, as the load increases, the blocking behaviour of the algorithms

become similar, even slightly higher for the Branch and Bound.

Blocking ratio for the AMMP problem
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Figure 24: Grid 5x5 network
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Figure 25: NSFNet network
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Figure 26: PanEU network
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Figure 27: USA network

The MMPMin heuristic had the best performance for the MMP problem, with blocking ratio equal ou lower

to that of the ILP formulation, as show in Figures 28, 29, 30, and 31. As with the AMMP problem, the biggest

difference between the algorithms is seen for the Grid 5x5 network.
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Blocking ratio for the MMP problem
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Figure 28: Grid 5x5 network
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Figure 29: NSFNet network
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Figure 30: PanEU network
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Figure 31: USA network

7 Conclusions

This work discussed the problem of finding multicolour paths in edge-coloured graphs. The network related

problem of finding multiple lightpaths in WDM optical networks so as to satisfy a high bandwidth requirement

was first formalised as a pure graph problem. Having a formal description of the problem and its variants,

it proceeded then to prove NP-hardness results for the problem. Particularly, it was proven that finding a

single k-multicolour path in an edge-coloured graph is NP-hard; the same result holds for finding p multicolour

paths so that the sum of colours used is k independently if the paths are required to be edge-disjoint or not.

Assuming P 6= NP, there are no efficient polynomial time algorithms to solve NP-hard problems optimally.

Therefore, heuristics were proposed to the problems. These heuristics were based on two algorithmic ideas: the

Dijkstra’s shortest path algorithm and graph intersection. To assess the efficiency as well as the quality of the

solutions returned by the heuristics, computational experiments were devised. These experiments measured

the execution time, the cost of the solution returned and the blocking ratio of the algorithms. As comparison

parameters, exact Branch and Bound and ILP formulations were developed.

26



The simulations results show that the Branch and Bound algorithm is a suitable alternative for the SMP

problem, being able to solve instances with up to 10000 nodes in less than 2 minutes. It also displayed a

low blocking behaviour for lower network loads. Regarding the heuristics, DijkstraX showed the best trade-off

with respect to solution cost, execution time and blocking ratio. The use of a score function makes the im-

plementation faster than the other Dijkstra-based heuristics; besides, the score function can be easily changed

to accommodate different priorities, like prioritizing paths with more colours first, rather than shortest paths.

For finding more than one path, the Branch and Bound solution starts suffering the effects of the exponential

growth of the search tree regarding execution time. In the AMMP problem, the Branch and Bound imple-

mentation is more suitable for low network loads, up to 50 Erlang, whereas the MMPMin heuristic is a better

general choice for both problems with worst blocking ratio in the order of magnitude 10 when compared to the

Branch and Bound solution. For high network loads, there is not much difference on the blocking behaviour

of all algorithms.

Further work based on these problems can explore classes of graphs in which exact solutions can be easily

obtained.

Another possibility is to investigate approximation algorithms when the objective function is to find a

(s, t)-path that contains the maximum number of possible colours.
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