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Abstract

The modern embedded market massively relies on RISC processors. The code density of such processors directly
affects memory usage, an expensive resource. Solutions to mitigate this issue include code compression techniques
and ISAs extensions with reduced instructions bit-width, such as Thumb2 and MicroMIPS. This paper proposes a
16-bit extension to the SPARC processor, the SPARC16. Additionally, we provide the first methodology for gen-
erating 16-bit ISAs and evaluate compression among different 16-bit extensions. SPARC16 programs can achieve
better compression ratios than other extensions, attaining results as low as 67%. Moreover, SPARC16 reduces
cache miss rates up to 9%, requiring smaller caches than SPARC processors to achieve the same performance; a
cache size reduction that can reach a factor of 16.

1 Introduction

Code Compression is the alternative representation to program instructions that reduces memory usage and can
be implemented both in software and hardware [7]. In a solely software approach, the goal is to reduce program
size to the fullest, with an associated performance degradation cost during decompression. The hardware approach
focuses on decompression speed, usually at the cost of code size reduction. There are two different approaches
for hardware decompression, one that compresses instructions or blocks of the program in an ad-hoc manner and
other that tries to create an alternative encoding for the instructions in a smaller size: reducing a 32-bit ISA to
a well-defined 16-bit format. This paper focuses on the latter approach to find a new encoding to the SPARCv8
ISA [48].

16-bit ISA extensions exists for RISC architectures such as MIPS, PowerPC and ARM, more details in Sec-
tion 8. However, existing implementations are commercial products [3, 11, 16, 23, 29, 32, 43] and no published
research presents how such extensions are designed. This paper shows how 16-bit extensions can be designed
based on a specific case study: the creation of a 16-bit extension to the SPARC ISA, the SPARC16 [18]. The
method includes an extensive static and dynamic analysis of several benchmarks and binaries to find intrinsic ISA
compression inefficiencies and opportunities. Also, an Integer Linear Programming (ILP) model optimally assists
in the creation of formats and fields encodings for the new 16-bit extension. A general method can be abstracted
from our case study and further applied to other architectures.

Our compiler toolchain is based on LLVM [37] and Binutils [24] Open Source projects and provides SPARC16
support in the Frontend, Backend, Assembler and Linker. The linker is capable of linking object files from
SPARCv8 and SPARC16 altogether, allowing usage of existing SPARCv8 libraries. Target specific optimiza-
tions enhance final SPARC16 code compressibility by approaching code generation specially - intrinsic 16-bit



instructions properties are considered.
The SPARC16 instructions are translated to their 32-bit counterparts during execution time by an additional

hardware decompressor placed between the processor and the instruction cache - we implemented the mechanism
in the SPARCv8 compliant processor Leon3. A SPARC16 emulator is capable of collecting SPARC16 dynamic
execution traces, the input of a cache simulator which evaluates instruction cache usage.

Finally, we evaluate compression and performance results for SPARC16 and compare the results with other
related work. We also present compression ratio results achieved for SPARC16 programs, which can be lower
than most popular 16-bit extensions such as MicroMIPS and Thumb2.

The main contributions of this paper are:

• A method for designing 16-bit ISA extensions from 32-bit ISAs.

• A 16-bit extension for the SPARC architecture.

• Compression ratio evaluation across distinct 16-bit extensions.

This paper is organized as follows: Section 2 focus on the opportunities for code compression among several
architectures, explaining why SPARC is our selected ISA. Section 3 evaluates the SPARCv8 ISA according to
several code analysis for distinct programs, both static and dynamic. The Section 4 describes the Integer Linear
Programming (ILP) model, which assists in the definition of SPARC16 instruction formats; the resulting encoding
is then specified in Section 5. Details of the hardware implementation, emulators, compiler toolchain support and
optimizations are covered in Section 6. The SPARC16 compression ratios and performance results are presented
in Section 7. Finally, Section 8 describes the related work on the area and we finish the paper in Section 9, drawing
our conclusions.

2 The SPARC Compression Potential

In order to apply and construct a method for generating a 16-bit instructions set, we need to choose an architec-
ture for evaluation and case study. Hence, we need to find an architecture with good compression opportunities,
otherwise there is no need for a 16-bit extension.
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Figure 1: Overall SPEC CINT2006 program sizes for several architectures

We evaluated code size behavior of 15 ISAs using the SPEC CINT2006 benchmark [27]. A GCC [49] cross
compiler toolchain is used1 for each architecture and the same code size optimization flag -Os applied across all
configurations. We also used -mcpu option to generate code for specific ISA extensions when needed. Figure 1
shows the code size evaluation for all tested architectures. Results are presented by total size, arithmetic and
geometric means for each architecture. The values are normalized against the smallest one within each category.

1Since some architectures are very old, they need older GCC versions and hence the same version is not used across all compilers



SPEC CINT2006 results for X86, X86 64, M68K and Thumb have high code density and are very compressed.
Mips, ARM and PowerPC already have 16-bit extensions and are not eligible. Alpha EV6 and EV7 have the
lowest measured code density but disqualified because the architecture is discontinued and available toolchains
and libraries are obsolete. Therefore, we choose the SPARC architecture, which has several advantages:

• Low code density, 40% bigger than higher density architectures.

• The SPARC ISA is a IEEE 1754 standard and still widely used – 50 registered members in SPARC Interna-
tional nowadays.

• No previous 16-bit compression mechanism is available for SPARC.

• Used in many academic works as a testbed for compression algorithms.

• Recent and stable software support: operating system kernel, libraries and compilers.

3 Instruction Set Evaluations

To create a new 16-bit extension to the SPARCv8 ISA, we need an extensive analysis of how instructions are
used in existing compiled SPARCv8 applications.

ISA Usage. The first task in the design of a 16-bit extension is to define which instructions or functionalities
from the regular 32-bit ISA must be present in the extension. The main concern is to be representative enough to
effectively achieve compression ratios similar to the ones in the literature. To find potential instructions for the
16-bit extension, we organize our analysis as follows:

• Instructions never used by any analyzed program are removed from our selection pool unless a constraint
exists. For example, short functions may contain specific instructions which are executed very often but have
a low static count. Performance degradation may arise from issuing mode exchange to execute such instruc-
tions when there is no 16-bit counterpart available. Besides, the absence of an instruction not necessarily
means it is not used, it may only mean that the search base is incomplete.

• Organize instruction in groups of similar functionality and collect statistics about the presence of each group
in the analyzed programs. Most used instructions within the same group tend to share similar formats and
are candidates to share a common 16-bit format. Less used instructions are likely to be discarded from
having a 16-bit counterpart, unless proven worthy by other analysis.

• Usage count of each instruction in the ISA. Top used instructions are directly responsible for final 16-bit
compressibility and need to be the first candidates for inclusion; receiving fewer encoding restrictions for
their 16-bit form than least used ones.

Based on these criteria, we perform experiments using MiBench [25], mediabench [38] and the Linux Kernel,
all compiled with GCC without floating point support and we disconsidered some special privileged instructions
such as traps.

The total usage of SPARCv8 ISA instructions by MiBench, mediabench and Linux Kernel is 42.79%, 42.29%
and 62.69%. The later uses more instructions since it performs specials tasks, such as privileged instructions and
hand crafted assembly code. Roughly, 40% of the ISA instructions are never used, an initial set of instructions to
dis-consider.

We divide instructions by groups of similar functionality and obtain static usage by each group. In Figure 2,
top used instructions in mediabench, MiBench and Linux Kernel are from the alu arith group; 22.42%, 22.63%
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Figure 2: Percentage of SPARCv8 instructions usage by groups

and 17.21% respectively. Table 1 shows alu arith in mediabench, some of the top used instructions are add imm,
subcc imm, add reg and subcc reg. Thus, like mentioned before, instructions like these in each group are the main
candidates.

Table 1: Instruction usage in the top 4 most used groups – mediabench

Usage Group Instructions

22.42% alu arith (29.59%)add imm
(28.49%)subcc imm
(15.93%)add reg
(12.28%)subcc reg
(05.68%)sub reg
(02.37%)smul reg

(01.45%)addcc imm
(01.28%)subx imm
(01.22%)addx imm
(00.33%)umul reg
(00.32%)smul imm
(00.28%)udiv reg

(00.20%)subx reg
(00.17%)addcc reg
(00.16%)sdiv reg
(00.14%)addx reg
(00.04%)udiv imm
(00.04%)sub imm

(00.02%)smulcc reg
(00.01%)udivcc reg
(00.00%)sdivcc reg

15.00% load (61.16%)ld imm
(16.69%)ld reg
(05.59%)ldub reg

(04.46%)lduh imm
(03.54%)ldd imm
(01.85%)ldub imm

(01.71%)ldsb reg
(01.70%)lduh reg
(01.41%)ldsh imm

(00.71%)ldsb imm
(00.65%)ldsh reg
(00.54%)ldd reg

12.14% move (71.93%)or reg (28.07%)or imm

11.76% branch (32.66%)ba
(22.71%)be
(13.58%)bne
(07.86%)ble

(06.06%)bl
(04.79%)bleu
(04.27%)bg
(02.91%)bgu

(02.76%)bge
(00.80%)bcs
(00.67%)bcc
(00.58%)bpos

(00.35%)bneg

Immediate and Register Encoding. The basic fields needed when encoding instructions are opcode, immediate
and registers. The opcode bit-width is determined by the number of instructions in the ISA and by considering
a good compromise between available functionality and opcode space occupation: we must avoid opcode space
waste by refusing to include infrequent functionalities. Additionally, we must consider that a big opcode field
restricts the size of immediate and register fields.

Immediates usually occupy most part of an instruction and are the main target for compression. Thus, as
mentioned in Section 8, 16-bit extensions – Thumb, MIPS16 and MicroMIPS – are designed with instructions
containing restrained immediate fields. SPARCv8 has the following immediate field sizes across three formats:
30, 22 and 13 bits. For instance, the top used instruction groups (Figure 2) alu arith, load, move, store and
alu logic are composed of instructions using the SPARCv8 format with 13-bit immediate field.

Figure 3 shows the accumulated number of bits needed to encode the immediate in all arithmetic, logic, shift,
load and store instructions for the mediabench, MiBench and Linux Kernel. Notice that, although the immediate
field is 13-bits wide, for the three analyzed cases 3a, 3b and 3c, more than 80% of the arithmetic instructions



require 6 bits or less. Also, near 80% of the load and store instructions can be represented with 9 or less immediate
bits.
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(a) mediabench
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(b) MiBench
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Figure 3: Immediate size usage for SPARCv8 Format 3 Instructions – load, store, arithmetic, logical and shift

Figure 4 represents the immediate usage for calls and branches. 80% of call instructions (30-bit immediate
field size) can be encoded using 14-bits (Figure 4a) in mediabench and MiBench whereas the Linux kernel needs
19-bits. 80% of branch instructions (Figure 4b) need only 8 bits out of 22 in the three cases.
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(a) Calls
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(b) Branches

Figure 4: Immediate size usage for SPARCv8 Format 1 and 2 Instructions - calls and branches

Register fields are smaller than immediate ones but also important, since they are an intrinsic part of an in-
struction. SPARCv8 uses a register window architecture [48], containing 32 general purpose registers, encoded in
5-bit register fields, divided into 4 categories: input (%i0-%i7), output (%o0-%o7), local (%l0-%l7) and global
(%g0-%g7). Instruction formats with two and three register fields are available, but two address2 instructions do
not exist. The %g0 register always yields a zero value, %g2-%g7 are never used by ABI [30] restrictions and %o6
and %i6 are aliases to the stack (%sp) and frame pointer (%fp)3.

Immediate field sizes may vary among instructions, but register field sizes are fixed, allowing all instructions to
have the same set of register visibility. In SPARCv8, %fp and %sp are always visible and accessible by all instruc-
tions accessing registers. Furthermore, those registers are only referenced during load and store to local variables
(by ld imm and st imm instructions), function frame allocation (save and restore) and stack frame addresses copies
(add imm). Hence, both registers are reserved and never used by register allocation.

Table 2a shows that %fp is the fifth most used register and is used by 30.7% and 26.53% of all ld imm and
st imm instructions, as shown in Table 2b. The situation suggests that we have specific load, store and save 16-bit
instructions to implicitly access such registers, hiding them from regular instructions, which leaves extra room for
encoding regular registers, improving register allocation.

2Situation where source and destination registers share the same register field.
3Usually %fp is used for accessing the stack frame, but %sp can be used instead if frame pointer is omitted by compilers.



We also analyzed immediates within ld imm and st imm instructions using %fp and no immediate can be en-
coded with less than 5-bits4 as illustrated for ld imm in Table 2c; such instructions highly demand large immediate
fields. However, stack access for ld imm and st imm is always aligned and encoding the two least significant bits is
needless. Then, besides implicitly encoding %fp and %sp, we can mitigate a large immediate field size problem by
not encoding these two bits. A similar approach should be done to the add imm, save imm and restore instructions
using %sp or %fp.

Registers5 Usage
%g1 16.77%
%i0 9.15%
%o0 8.97%
%o5 6.46%
%i6/%fp 6.31%

(a) Overall top 5 used registers

Instructions %fp or %sp Usage
ld imm 30.75%
st imm 26.53%
save imm 13.54%
add imm 13.18%
std imm 3.64%

(b) Top %fp or %sp Usage In Instructions

Bits Coverage
1-4 0%
5 12.34%
6 36.89%
7 52.40%
8 79.43%

(c) ld imm with %fp: Necessary bits
to encode immediates

Table 2: Used registers and other %sp and %fp relative measurements for all benchmarks

The analysis in Figure 5a dis-consider %fp and %sp usage and shows that 8 distinct registers are responsible
for 62%, 64% and 81% of the total register usage in instructions from mediabench, MiBench and Linux Kernel
respectively. In Figure 5b, 67%, 69% and 85% of the total registers defined in all instructions are represented by
only 8 different registers. The results show that using 3-bits for registers fields in the 16-bit extension is a good
tradeoff: although 4-bits could be used, we reduce by a factor of four the number of registers and cover roughly
65% of all register usage, leaving one more bit for opcode or immediate.
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(a) Registers Used in a Instruction
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(b) Registers Defined in a Instruction

Figure 5: Overall register usage cover by number of registers

27% and 37% of three address instructions in alu arith and alu shift groups behave like two-address instructions
- one of the source registers is the same as destination. In fact, even for instructions addressing only two registers
in the alu arith group, 26% of them uses the same source and destination register. Hence, two-address 16-bit
instructions can be created based on instructions following the mentioned profiles.

Dynamic analysis. We analyzed execution of SPARCv8 binaries to dynamically collect information about the
overall presence of instructions. Those with very low static usage count can have a high execution count. The
dynamic analysis gives weight to highly executed instructions so they can have a 16-bit counterpart, mitigating a

4SPARCv8 ABI reserves a 16 byte space closer to %fp which had no use in any analyzed binary
5Registers %g0 and %g2-%g7 are disconsidered from the analysis because of aforementioned explanation about such registers.



potential performance degradation. For example, the instruction xor reg takes 0.10% of all instruction usage in
MiBench, while it represents 10% of all executed instruction in the same benchmark.

4 Integer Linear Programming Model

Based on the analysis described in Section 3, we developed an ILP to represent the problem of finding the
best field sizes for every instruction format in the 16-bit extension. The ILP solution assisted in the creation and
definition of SPARC16 instruction formats.

An input instance to the ILP model consists of a tuple (S, F, I, c). Each element s ∈ S is a set of fields. Table 3a
shows the fields for each of the sets s ∈ S. A field can be a primary opcode, a secondary opcode, a register or an
immediate. The primary opcode is mandatory for every s ∈ S. Secondary opcodes and immediates are optional,
but limited to one per s ∈ S. Registers are also optional, but each s ∈ S has three bits.

Fields
s ∈ S 1st Opcode 2nd Opcode Register(s) Imm

I opc1 imm1

RI opc1 reg1 imm2

RRI opc1 reg1, reg2 imm3

RR opc1 reg1, reg2
RRR opc1 reg1, reg2, reg3
I2 opc1 opc2 imm4

RI2 opc1 opc3 reg1 imm5

RRI2 opc1 opc4 reg1, reg2 imm6

RR2 opc1 opc5 reg1, reg2
RRR2 opc1 opc6 reg1, reg2, reg3

(a) Fields s ∈ S

Field sizes (bits)
Formats opc1 reg1 reg2 imm3

F1 1 3 3 9
F2 2 3 3 8
F3 3 3 3 7
F4 4 3 3 6
F5 5 3 3 5
F6 6 3 3 4
F7 7 3 3 3

(b) Possible RRI formats

Table 3: Description of ILP fields and inputs

An attribution of size to each of the fields of an element s ∈ S corresponds to a format. Formats follow two
rules: the sum of sizes of each of its fields equals sixteen and the size of a register field is always three. For each
s ∈ S, we generated every possible format following the aforementioned rules and placed them into the set F . For
example, Table 3b presents generated formats for the RRI set - containing one primary opcode, two registers and
a immediate. The maximum opcode size is 7 bits which can encode 128 different instructions; usage of more bits
to opcode field would reduce available bits to encode registers and immediates.

The set I contains SPARC16 candidate instructions. We took as candidates SPARCv8 instructions and pseudo-
instructions. Pseudo-instructions were included because we wanted to hide the existence of certain registers, such
as %g0, %sp, %fp and %ra, not only does this approach mitigates the impact of having only three bits to index the
register bank, but also to increase the size of immediate fields, since the pseudo-instructions reference registers
implicitly.

The cost function c : I × F → I specifies the cost of mapping i ∈ I to format f ∈ F . Certain mappings
are invalid, for instance, associating an instruction that needs an immediate to a format that does not have an
immediate field. The c function disregards those. The costs were calculated using the programs mentioned in
Section 3. For every instruction in those programs, we identified an equivalent in I , and attributed the cost of
associating it to every valid format taking into account factors such as the immediate field size being big enough to
accommodate constants and attempts to represent three-addresses instructions as two-addresses instructions (i.e.,
forcing a register to work simultaneously as source and destination of an operation).

In order to allow the ILP to discard candidate instructions, the special format 0 was created. The cost of
associating i ∈ I to 0 represents the cost of not supporting i in SPARC16. We calculated that by estimating
the number of supported SPARC16 instructions that would have to be executed to achieve the same effect as i.
Obviously, this is an speculative value, since the SPARC16 ISA is yet to be determined.



Therefore, the problem is to map every instruction to a single format minimizing the total cost incurred in this
mapping. The mapping is subject to several constraints that guarantee that the obtained mapping makes sense —
meaning that the primary opcode has the same number of bits in every chosen format, and that the number of bits
attributed to the opcode fields affects the number of instructions that can be placed in a format. Below we describe
the ILP model.

We have binary variables xif that indicate if instruction i is going to be mapped to format f or not. We also have
binary variables yf that specify if the format f is going to be used. A format can have at most two opcode fields
(a primary and a secondary). There are at most K opcode fields identified by OP1, OP2, . . . , OPK . The primary
opcode (OP1) is shared amongst every s ∈ S, while the secondary opcodes (OP2, . . . , OPK) are exclusive. Each
opcode has at most L bits. There are binary variables opkl indicating that the k-th opcode uses l bits. There is a
special integer variable T that specifies the number of primary opcode available slots. For each k ∈ {2, . . . ,K}
and l ∈ {1, . . . , L} we create integer variables Gkl that state the number of primary opcode slots, among the total
T , that will be occupied by instructions mapped to a format that has the k-th opcode with l bits as its secondary
opcode. Notice that we can map at most 2lGkl instructions to the format in question. The integer variable G1
states the number of primary opcode slots occupied by instructions mapped to a format that has no secondary
opcode. We use f ∈ s to denote that a format f ∈ F was generated from a set s ∈ S. We use i ∈ f to denote that
instruction i ∈ I can be mapped to format f ∈ F and we call the set of formats to which i can be mapped Fi.

Min
∑
i∈I

∑
f∈Fi

c(i, f)xif

Subject to ∑
f∈s yf ≤ 1, for s ∈ S (1)

xif − yf ≤ 0, for i ∈ I and f ∈ Fi (2)∑
f∈Fi

xif = 1, for i ∈ I (3)

yf + yf ′ ≤ 1, for f, f ′ ∈ F inconsistent (4)∑
l≤L opkl = 1, for k ≤ K (5)

yf − opkl ≤ 0, for each k and l, f has opkl (6)
T −

∑
l≤L 2lop1l ≤ 0 (7)

G1 +
∑K

k=2

∑
l≤LGkl − T ≤ 0 (8)

Gkl − 2Lopkl ≤ 0, for each k and l (9)∑
(i,f)∈G1 xif −G1 ≤ 0 (10)∑
(i,f)∈Gkl

xif − 2lGkl ≤ 0, for each k and l (11)

Constraint (1) assures that at most one format f ∈ F of each set s ∈ S is chosen. Constraint (2) establishes that
an instruction is assigned to a format only if the format is chosen. Constraint (3) guarantees that each instruction
is assigned to a format (remember that every instruction can be mapped to format 0). Constraint (4) assures that
inconsistent formats, i.e. formats that attributed different sizes to a field in common, cannot be used at the same
time. For example, this guarantees that all the chosen formats will have the same number of bits dedicated to
the primary opcode (since OP1 is shared amongst all formats). Constraint (5) establishes that each opcode field
will have a fixed size of l of bits. Constraint (6) says that one format with the k-th opcode using l bits, can be
used only if the solution uses that opcode with l bits. Constraint (7) calculates the total amount T of slots for the
primary opcode. Constraint (8) guarantees that the number of slots of the primary opcode that are spread among
the groups is at most T . Constraint (9) assures that group Gkl is going to be used only if in the solution, opcode
k uses l bits. Constraints (10) and (11) limit the number of instructions that can be assigned to each format. For



these constraints, (i, f) ∈ G1 refers to instructions i ∈ I mapped to a format f ∈ F with no secondary opcode,
while (i, f) ∈ Gkl refers to instructions i ∈ I mapped to a format that has k with l bits as its secondary opcode.

5 The SPARC16 ISA

The ILP solution yields a initial set of formats, each holding one or more instructions. The formats are post
processed and modified in order to build a more regular ISA. We also manually include other special instructions
to perform specific tasks.

Instruction Formats. SPARC16 instructions formats, illustrated in Table 4, have different shapes and sizes.
Every format is identified by a 5-bit major opcode and some formats also hold a secondary opcode - expanding
the number of total opcodes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I-type op immediate
IB-type op a immediate
RI-type op immediate reg
RRI-type op immediate reg reg
LW/ST-type op op2 immediate reg reg
I2-type op op2 a immediate
I2B-type op op2 immediate
RI2-type op op2 immediate reg
RRI2-type op op2 imm reg reg
RR-type op op2 reg reg
RRR-type op op2 reg reg reg
MOV-type op op2 T reg32 reg8

Table 4: SPARC16 formats

For instance, the I format is used to accommodate call instructions, which requires a large immediate field, but
no registers. IB format hold some branches; always, if equal and if not equal, with the annul [48] field in bit 10.
On the other hand, RRR format has no immediate field and is used to encode instructions that operate on three
registers, such as add, which sums the values held by two source registers and stores the result in a third register.
The RR format is also available and is used to encode SPARC16 two-address instructions: one of the registers is
used as source and destination of the operation.

The instructions load word and store word are allocated in the RRI format whereas other types of load and
store belong to the LW/ST format. In SPARCv8, load and store instructions should always access aligned memory
addresses regarding their intrinsic alignment; byte, half, word and double. Therefore, SPARC16 load and store
instructions, as suggested in Section 3, discard the bits necessary for alignment in the immediate field encoding,
the immediate is then shifted back accordingly prior to execution. For example, the immediate value 16 in a load
word instructions, is encoded as the value 4, saving the need for two extra bits in the immediate field. Call and
branch instructions are encoded using the same restrictions: both have 2-byte aligned immediates.

The format RRI2, very similar to RRI, represents instructions with a low usage rate, such as division and
multiplication.

Mode exchange. The alternation between SPARCv8 and SPARC16 modes is accomplished by special instruc-
tions. Call with exchange (callx) or branch with exchange (bx16) instructions are used to switch from SPARC16 to
SPARCv8. Conversely, jump and link with exchange (jmplx) and branch with exchange (brx) instructions are used
to switch back. Both were added to the SPARCv8 ISA by using opcodes in reserved space. The least significant
bit in the 32-bit target address determines the target routine’s mode – 0 means SPARCv8 and 1 means SPARC16.



Register access. SPARC16 uses a subset of the SPARCv8 registers. From the 32 SPARCv8 registers, 8 are
visible and can be explicitly referenced by SPARC16. To access hidden registers, two special instructions are
provided – MOV8to32 and MOV32to8. The former moves data from a visible register to a hidden one, the latter
performs the opposite operation. The MOV format is used to represent these instructions using a three bit field
reg8, used to index a SPARC16 visible register, and a five bit field reg32, used to index one of the 32 registers
from the SPARCv8 register bank. These instructions are used to move function arguments into specific registers
and to compute more elaborate arithmetic involving %sp or %fp.

Some instructions in SPARC16 include implicit access to registers %sp, %fp, %g0 and %ra, mitigating the
drawback of having a smaller set of visible registers. Also, a implicit register reference means three free bits to
encode a larger immediate. For example, ldfp and ldsp load instructions implicitly uses %fp and %sp as source
registers, both encoded in the RI format. The addfp and addsp instructions work the same way but providing
direct stack offsets computations through addition. The savesp implicitly uses and defines %sp, optimizing the
very common SPARCv8 stack frame allocation pattern save %sp,imm,%sp, leaving room for more immediate
encoding.

The EXTEND mechanism. Loading large constants using only SPARC16 is an expensive operation in terms
of number of instructions. The reduced immediate field forces that several instructions might be used, yielding
sometimes, a code size equal or worse than performing the same operation within SPARCv8. At the same time,
the penalty of a SPARCv8 mode exchange to perform a simple constant load is prohibitive.

Large immediates are handled using an auxiliary instruction similar to the MIPS16 EXTEND, Thumb2 and
MicroMIPS 32-bit instruction intermix. The 16-bit EXTEND instruction is used for increasing the available bits
for encoding immediates. It has a reserved opcode, must precede a regular 16-bit instruction and contain an extra
immediate field for use by the following instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTENDED immediate[21:11] opc1 immediate[10:0]
EXTENDED unused rs2 opc1 opc2 rs1 rd

Table 5: Extended formats I and RR - 32 bits

Instructions needing larger immediate can be extended using the available bits from the EXTEND instruction.
The mechanism is also applied to provide additional registers for some instructions, a functionality not present in
MIPS16. We also provide a 32-bit SETHI instruction which can be used in 16-bit mode, has a reserved opcode
and does not use the EXTEND mechanism. The instruction can directly address a 22-bit immediate and a 3-bit
destination register - the EXTEND instruction provides the maximum of 19 bits to any other instruction. SETHI or
instructions which depend on a preceding EXTEND can be used interchangeably with all other 16-bit instructions
without the need of any alignment requirement.

6 Implementation

This section describes the hardware and software base used to evaluate the SPARC16 extension. Additionally,
we present compiler optimizations to assist in 16-bit code generation.

6.1 Hardware

SPARC16 is an extension to the SPARCv8 instruction set and it relies on a regular SPARCv8 pipeline. The
SPARC16 instructions are translated to their 32-bit counterparts during execution time by placing a PDC decom-
pressor between the instruction cache and the SPARCv8 pipeline, as shown in Figure 6. A PDC design yields
more performance than other mechanisms (see Section 8) and is adopted by Thumb [3] and MIPS16 [32].
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Figure 6: SPARC16 decompression diagram

The decompressor is integrated into a SPARCv8 processor Leon3 [22]. The implementation [17] focused on
three key factors:

• Integrate the decompressor with the minimum hardware overhead in the Leon3 processor.

• No processor cycle time degradation after integration.

• Guarantee that SPARC16 code is reachable through jumps and calls, even if the target is not 4-byte aligned.

We avoid overhead and cycle time degradation by carefully choosing the bit encoding for each 16-bit instruction,
simplifing the conversion between SPARC16 and SPARCv8. The processor clock is not reduced by two reasons:
(1) The critical path in the chosen SPARCv8 processor is not in the Instruction Decode stage, and (2) The bigger
decode lookup table only has 32 lines (5-bit address).

6.2 Software

Emulators. In order to validate SPARC16 instructions by running real programs and to collect extra information
about execution, we used the QEMU emulator [5]. QEMU is a flexible process and system virtual machine,
translating instructions from a target architecture into instructions of the host. We integrated a SPARC16 front-end
into the existing SPARCv8 port, making it possible to run any SPARC16 compiled application.

Toolchain. A toolchain consists of a compiler front-end, back-end, assembler, linker and libraries to compile
applications for a given architecture. We developed a SPARC16 toolchain based on LLVM 3.2 [37] from front-
end to assembler; GNU Binutils 2.22 [24] for the linker and the uClibc [1] C library compiled for SPARCv8.

The SPARC16 linker can merge together object files from SPARC16 and SPARCv8. The approach is limited
and, during linking time, all calls to external modules are considered to target SPARCv8 code. Thumb2 and
MicroMIPS toolchains provide different mechanisms to allow a similar linking behavior between different modes.
Using this method, we reuse a SPARCv8 compiled uClibc in our toolchain.

.c

IR .o

.c

.c

IR

IR

IR

SP16

Executable

SPARCv8
libraries

Objectclang

clang

clang

llc

(1) LLVM Link: llvm-link(2)

(3)

Final Link Phase: ld(4)

Figure 7: SPARC16 Toolchain - Compilation flow



One issue with the mentioned approach is the compilation of multi-source applications. In a common compi-
lation flow, each source code is translated to a separated object file prior to linking - yielding several modules or
object files with SPARC16 code, breaking the linker restriction. The LLVM infrastructure mitigates this problem
by providing a linking phase between its intermediate representation modules prior to code generation.

The complete compiler flow for SPARC16 applications, illustrated in Figure 7, follows: (1) LLVM’s interme-
diate representation IR is generated for each source code (2) Different IR modules are linked together inside one
final IR module (3) The final IR module is translated into an object file (4) The object file is linked with other
SPARCv8 objects and libraries.

ABI. The Application Binary Interface ABI defines a set of conventions to be followed by compilers and oper-
ating systems to make sure applications and libraries from different sources are able to interact with each other.
Function calling sequence, ELF headers, object files relocations and dynamic linking are example of conventions
mentioned in a ABI.

The SPARC16 ABI is an extension of the SPARCv8 ABI [30] and inherits most part of its conventions. The
%o0-%o5 and %i0-%i5 group of regitsers are used to pass and receive the first six arguments within a function
call, while the remainder are passed on the stack. MOV8to32 and MOV32to8 instructions move the arguments to
and from the hidden registers - %o3-%o5 and %i3-%i5. The stack layout remains the same, including the reserved
space on the stack for variable arguments.

Regarding the calling convention, no modifications need to be implemented to support interoperability between
SPARC16 and SPARCv8. The only necessary ABI addition relies on the definition of relocations. SPARC16
preserves all relocations definitions from SPARCv8 and additionally define its own group. Hence, the linker is
able to link between modes since it can understand relocations from both of them together.

6.3 Compiler Optimizations.

During code generation, the compiler should minimize the code compression ratio considering the 16 bits
extension constraints; thus, we developed a set of specific target optimizations for SPARC16 ISA to enhance
compressibility using the LLVM compiler pass interfaces.

Delay slots. The SPARCv8 architecture defines that branches and call instructions requires a following delay
slot instruction [48]. The delay slot can be fulfilled with any instruction without data or control hazards, or by a
simple no-operation NOP instruction. The SPARC16 inherits the same restrictions in its 2-byte branches and calls
and poses an additional restriction: instructions containing the EXTEND prefix must not be present in a delay slot
because logically they represent a 4-byte instruction. A dedicate SPARC16 pass handles the delay slot fulfillment.

Instruction size reducer. All the instructions containing immediates – arithmetic, logic, load, stores, branches
and calls – are conservatively emitted by the code generator with the EXTEND form. Then, by default, all such
instructions prior to register allocation appear as 32-bit instructions.

In a late, post register allocation pass, the EXTEND instructions is removed whenever 16-bit instructions have
enough immediate bits to represent the entire immediate. The pass is not able to reduce the sizes of external calls
because computing targets and relocations is only possible at linking time.

Assembler relaxation. The LLVM SPARC16 assembler uses a pass [28] to relax all possible branch and call
instructions in a module and reduce their instruction sizes to 16-bit whenever the target displacement fits.
Mixed Stack Access. Immediate field sizes are heterogeneous across SPARC16 instructions and the EXTEND
is always used to increase constant coverage. When the immediate needs more bits than EXTEND may provide, a
sethi and extend+or is used, an approach similar to SPARCv8. We name this group of instructions SethiEOr.



Unoptimized
; Save visible on hidden
mov8to32 %l6, %o2
; Load offset
mov32to8 %fp, %o0
sethi32 4194273, %o2
eor16 %o2, 192, %o2
; Final stack address
add16 %o2, %o0, %o0
; Restore visible
mov32to8 %l6, %o2
; Use final stack address 
st %i0, [%o0]

Optimized

; Use final stack address 
stsp %i0, [24]

(a) Unoptimized vs Optimized

%fp

%sp

Stack Growth
Direction

Lower Address

Higer Address

W
Y

A
B

...
Z

...

∆Wsp

∆Wfp
addr(W)

...

(b) SPARC16 Stack Frame

∆Wfp = abs(addr(Y) - %fp)
∆Wsp = abs(addr(Y) - %fp)
if (∆Wsp < ∆Wfp)
    Use %sp
else
    Use %fp

(c) Stack computation

Figure 8: Mixed %fp and %sp optimization

However, the use of instructions from SethiEOr increases code size and must only be used if no smaller ap-
proach is found. For instance, access to stack locations relying on large stack offsets is done via SethiEOr and
additional instructions to copy the stack pointer, a situation illustrated in the unoptimized fragment from Fig-
ure 8a. We propose an optimization to this scenario, by accessing stack locations from closer locations when
possible, avoiding the use of many instructions. The result is shown in the optimized fragment from Figure 8a.

The optimization is accomplished by using the closer available stack pointer register: %fp or %sp. Figure 8b
shows that everything between the two registers is the current stack frame. We compute a delta of the stack element
address against %fp and %sp (see Figure 8c); the shorter delta indicates which register to use when accessing the
stack. The approach is limited to functions which preserve the frame pointer register %fp, make no use of stack
alloca functions and have no dynamic stack reallocation.

7 Results

Program Ratio
rawcaudio 71.8%
rawdaudio 72.1%
g271 68.7%
gsm 77.3%
jpeg 68.1%
mpeg2decode 75.1%
GeoMean 72.09%

(a) mediabench

Program Ratio Program Ratio
basicmath 81.8% bitcount 68.7%
susan 81.9% jpeg 71.0%
lame 82.3% dijkstra 75.9%
patricia 67.1% stringsearch 69.2%
blowfish 71.8% rijndael 77.6%
sha 72.4% CRC32 69.6%
fft 80.3% adpcm 72.1%
gsm 77.3% GeoMean 74.43%

(b) MiBench

Program Ratio
400.perlbench 71.7%
401.bzip2 72.9%
429.mcf 71%
456.hmmer 74.1%
462.libquantum 69.3%
GeoMean 71.78%

(c) SPEC CINT2006

Table 6: mediabench, MiBench and SPEC CINT2006 - Compression Ratios

We evaluate SPARC16 code compression by computing the compression ratio for programs in the media-
bench, MiBench and SPEC CINT2006 benchmarks. The compilation of each program relies on the LLVM based
toolchain for SPARC16 and SPARCv8. The compiler flag -Os, a set of code size optimizations, is used among all
programs. In mediabench (Table 6a), the best compression ratio is 68.1% for jpeg and the worst case 77.3% for
gsm. Table 6b shows that MiBench ratios are heterogeneous, ranging from 67.1% in patricia to 82.3% in lame.
Programs from SPEC CINT2006 have a very homogeneous compression ratio, Table 6c shows a geometric mean
of 71.78%.

The optimizations mentioned in Section 6.3 have an important role in the achieved compression ratios: op-
timizations are responsible, in average, for reducing 20% in code size from SPARC16 programs. In order to
maintain a fair comparison against SPARCv8, the optimizations explore SPARC16 instructions set compression
opportunities, avoiding compiler misusage of such new instructions.
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Figure 9: Effect of optimizations in code size reduction of SPARC16 programs

Figure 9 shows the overall code size reduction achieved in unoptimized SPARC16 programs by applying op-
timizations. The size reducer and relaxation cause a greater reductions in most analyzed programs, whereas the
mixed %sp/%fp approach is effective in programs with functions containing big stack frames and many stack
accesses.

In mediabench, Figure 9a, relaxation reduces code size by an average of 7% and the size reducer by 10%.
This is roughly the same reduction caused by both optimizations in SPEC CINT2006 (Figure 9c) and MiBench
(Figure 9b). The mixed %sp/%fp optimization causes a 2.1% and 2.8% code size reduction in 401.bzip2 and
456.hmmer programs from SPEC CINT2006 while blowfish, susan and lame from MiBench are reduced by 16%,
3.5% and 2.2% respectively.
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Figure 10: Compression ratio comparison between SPARC16, Thumb2 and Mips16

We also evaluate SPARC16 compression ratios against Cortex-A9 ARM/Thumb2 and Mips32/Mips16 by com-
piling programs for both architectures using LLVM 3.3. Figure 10 compares mediabench, MiBench and SPEC
CINT2006 benchmarks; the geometric mean between all programs for each shows that SPARC16 achieves very
similar compression ratios than Thumb2 and Mips16. Actually, SPARC16 yields better compression ratios than
MIPS16 for 50% of MediaBench programs, and better than Thumb2 for 50% of MiBench programs. For instance,
in the adpcm program, SPARC16 compression ratio is 15% smaller than Thumb2. Note that, although Mips16
and Thumb2 code generation are production quality and take advantage of other optimizations, code compression
ratios are very similar from our implementation.

Performance. We evaluate SPARC16 performance by measuring and comparing SPARC16 versus SPARCv8
code impact on the instruction cache. The reduction of instruction cache misses leverages overall performance
and at the same time leads to power consumption reduction.

Using SPARC16 and SPARCv8 support in QEMU, we collected execution traces of several programs and



analyzed the traces using Dinero IV [19] cache simulator. We simulated power of two cache sizes from 128 bytes
to 32 kbytes, in a 2-way, 32 bytes per line cache.

basicmath bitcount blowfish CRC32 dijkstra fft gsm
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Figure 11: SPARCv8 vs SPARC16 Cache Miss Rates

The dynamic instruction count for SPARC16 is usually higher than SPARCv8. The SPARCv8 version of cjpeg,
for instance, dispatches 18M cache demand fetches against 23M in SPARC16 - a 22% increase in the number of
executed instructions. As noted, comparing the absolute miss count values would be misleading; thus, we used the
cache miss rates.

Figure 11 compares instruction cache miss rates between SPARC16 and SPARCv8 for the MiBench, medi-
abench and SPEC CINT2006 benchmarks. In the rijndael program, a reduction of 5% in the cache miss rates
happens in any cache size between 128 and 4k bytes. Additionaly, in a 128 byte cache size configuration, the
cache miss rates for dijkstra and gsm programs are reduced by 9% and 8% respectively.

Two SPARC16 programs have slightly worse miss rates than SPARCv8: basicmath and CRC32. The absence
of alignment restriction between regular 2 byte and extended instructions in SPARC16 may generate more demand
misses; whenever a extended instruction is present across cache lines, an extra cache miss is generated.

Cycles = (Fetches−Misses) +Misses ∗ Penalty

Speedupsp16 = Cyclesv8/Cyclessp16
(1)

Using Equation 1 we evaluate SPARC16 performance against SPARCv8. Figure 12 shows the performance
speedup estimation obtained for different penalty values and instruction cache sizes for the rijndael program. Line
(1) and (2) shows a 13% and 48% performance speedup for a 150 cycle miss penalty. The cache sizes in which



only SPARC16 has no cache misses are represented in Lines (3) and (4) - a linear relation between speedup and
penalty. Moreover, in Line (5) SPARC16 has worse performance than SPARCv8 for all estimated penalties; both
architectures have no cache misses and the number of instruction fetches in SPARC16 is always higher.
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Figure 12: SPARC16 performance speedup against SPARCv8

Figure 13 compares instruction cache sizes from SPARCv8 and SPARC16 and shows that for several programs,
the later can use smaller caches to run the same programs, without any performance degradation. For instance,
considering a 50 cycle penalty miss, 4 programs can run in a 128 byte cache SPARC16 processor with the same
performance the same 4 programs yield in a 256 byte SPARCv8 processor; a reduction in half the size. The
reduction can achieve a factor of 16: one program in 350 cycle penalty configuration can use a 128 byte SPARC16
processor against a 2k byte in SPARCv8. Therefore, SPARC16 is one alternative for shipping devices with less
memory while avoiding performance degradation.
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Figure 13: Equivalence of cache sizes without performance degradation

SPARC16 is faster, more power efficient, requires smaller instruction cache size and proved to be an excellent
alternative to SPARCv8 and other 16 bit architectures.

8 Related Work

We use the term Compression Ratio to represent code size reduction. Equation 2 shows how the Compression
Ratio should be calculated. Notice that, in this case, lower means better. All related overhead to implement
compression must be considered within the ratio computation, a rule not strictly followed by all related work in
the area. Example: a Compression Ratio of 56% means that the program is reduced to 56% of its original size.

Compression Ratio =
Compressed Size+Overhead

Original Size
(2)



16-bit Instruction Sets. The DLX architecture, created by Hennessy and Patterson [45], was the first 32 bits
architecture to have a 16 bit extension. The extension, called D16, had instructions with 2 registers as operands
(the original had 3) and also smaller immediate field. This configuration allowed a 62% compression ratio and 5%
performance loss [11].

ARM introduced Thumb [3] as the first 16-bit extension in ARM7. Later on, Thumb2 was released and super-
seded initial Thumb, introducing additional features. Thumb2 enabled ARM processors are capable of running
code in both 32 and 16 bits modes and allow subroutines of both types to share the same address space. Mode
exchange is achieved during runtime through BX and BLX instructions: branch and call instructions that flip the
current mode bit in a special processor register. A group of only 8 registers including the stack pointer and link
registers are visible, but the remaining registers can also be accessed implicitly or through other special instruc-
tions. Results presented by ARM for Thumb, show a compression ratio ranging from 55% to 70%, with an overall
performance gain of 30% for 16 bit buses and 10% loss for 32 bit ones.

The MIPS16 [32] ISA is the first 16-bit extension released for MIPS. It contains capabilities to exchange be-
tween modes (using the JALX instruction), share address space, has only 8 visible registers and reduced immediate
size. Special move instructions move data between visible and hidden registers, while special instructions may ac-
cess hidden registers implicitly. New features introduced by MIPS16 include the EXTEND instruction: an opcode
and an immediate field that is used to extend the immediate of the following instruction. MIPS16 also has PC and
SP relative addressing that can be used to efficiently load constants and load/store instructions whose computed
effective addresses are shifted to match type alignment. This reduced encoding achieved a 60% compression ratio
according to MIPS technologies [32].

The MicroMIPS [43], released in 2009, is a new 16-bit ISA for MIPS and is not compatible with MIPS16. It
introduces 54 instructions and is supported as a distinct mode from MIPS32 and MIPS64. While in MicroMIPS
mode, each instruction has a 16-bit and 32-bit version and no EXTEND instruction is required, a design very similar
to Thumb2. Additionally, 16-bit and 32-bit instruction can mixed altogether without any alignment restrictions.
Results provided by MIPS technologies [43] reports an average of 65% compression rate for the CSiBE [54]
benchmark and a 2% speed-up against MIPS32 for the Dhrystone benchmark.

Compression and Decompression in Software. Fraser [21] changed the compiler to issue a compact represen-
tation and a custom interpreter to it instead of executable code. Liao [41, 42] abstracts most executed instruction
blocks into procedures and the original code is replaced by a dictionary entry for the procedure. Raeder [12] stud-
ies compression of Java bytecodes with a 70% compression ratio and 30% performance loss. Every compression
approach entirely in software suffer from performance degradation during execution.

Mixed Software and Hardware. Kirovski et al. [31] compress whole procedures and use a directory service
called Procedure Cache to solve references: decompression is realized by demand in dedicated RAM regions
resulting in a 60% compression ratio and 10% performance loss.

Xu et al. [53] propose a memory compression architecture for the first Thumb ISA, achieving a Thumb code
size reduction from 15% to 20%. A high-speed hardware decompressor also improves timing performance of the
architecture, resulting in performance overheads limited within 5% of the original application. Also, to circumvent
the inefficiencies of only using 16-bit instructions in the first Thumb release, Krishnaswamy [34] creates the
ThumbAX extension, prefixing 16-bit instructions with an extra halfword to achieve equivalent functionality of
a regular 32-bit ARM instructions, without the need of mode exchange. The mechanism is similar to Mips16
EXTEND and a very similar mechanism is present in Thumb2.

Two hardware models can be used for code decompression: Processor Decompressor Memory (CDM) and
Cache Decompressor Cache (PDC). In CDM the hardware decompression engine is present between the processor
and memory, whereas in PDC it is between processor and cache. Compression methods using PDC yields better
performance [6, 8, 39, 40, 44] than CDM [2, 51]. In PDC, because the cache holds compressed code, the number



of cache hits increases, diminishing the number of accesses to the main memory which leverages the bandwidth
between the processor and cache. Lekatsas [40] and Benini [6] propose PDCs respectively resulting in 65% and
72% compression ratio and 25% and 28% performance gain.

Billo [8] and Wanderley [44] also proposes a compression mechanism for the SPARC architecture and combine
a PDC with dictionaries built upon static and dynamic usage of instructions, achieving compression ratios from
72% to 88%, up to 45% performance gain and 35% on power consumption reduction.

The use of a dictionary [4,13,26,35,47] to compress code tends to reduce energy consumption and improves the
performance with a reasonable static compression ratio. Using bitmask and prefix based Huffman encoding [26],
the compression ratio improves by 9–20%. Kumar [35] analyzes compression for variable-length ISA RISC
processors with two approaches: using a bit-vector and using a reserved instruction to identify code words, results
demonstrate an speed-up of up to 15%, reduction in code size (up to 30%), bus-switching activity (up to 20%)
leading to power consumption decline.

Other studies [9,10,14,46] use hardware support approaches to optimize the code compression/decompression.
Bonny [9, 10] achieved compressions ratios as low as 56% using a set of applications applied to ARM, MIPS and
PowerPC architectures. Qin [46] implements a fast parallel decompression and improved the decode bandwidth
up to four times, with minor impact (less than 1%) on compression efficiency. Corliss [14] shows reductions in
code size up to 35%, 10% reduction in power consumption and 20% performance improvements.

Compiler Optimizations. The use of 16-bit extensions do not always guarantee a smaller code size. Code for
loading large constants, for instance, is smaller and faster when using 32-bit instructions, since there is more
space to encode immediates and extra registers. Hence, compiler code generators can apply optimizations to take
advantage of mixed 16 and 32 bits ISAs extensions like MicroMIPS and Thumb2.

Krishnaswamy [33] proposes a coarse grained approach where only one bit-width type of instructions, 16 or
32-bit, could be emitted in each function. Profile information is used to select hot functions and several heuristics
to decide the bit-width of each function in a program are evaluated: results range from 69,5% e 77,2% compression
ratio against pure 16-bit code.

Edler [20] uses a compiler for ARCOMPAT, a mixed 16 and 32-bit ISA, to propose a special instruction selection
heuristic for mixed ISAs. The heuristic avoids the emission of 16-bit instructions when it is not profitable. First,
only 16-bit instructions are selected during instruction selection. Second, a special register allocator annotates
all places where the usage of 16-bit instructions are responsible for generating spills. Finally, the instruction
selection is called again, but using annotated data, avoids using 16-bit instructions in the potential spill sites. The
feedback-guided instruction selection improves improves performance by 17% with 85% compression ratio.

The 32-bit ISA UniCore32 and its 16-bit ISA counterpart UniCore16 are analyzed by Xianhua [52]. UniCore16
has regular instructions, such as add and mov, capable of mode exchange. The compiler emits 32-bit instructions
by default and heuristics may replace them for 16-bit instruction during link-time when profitable. The compres-
sion ratio is 73% against pure UniCore16 without any performance drawback.

Sutter [15, 50] applies link time optimizations to ARM binaries: reconstruction from final executables is done
through the creation of an augmented whole-program control-flow graph (AWPCF), where all text and data sec-
tions are considered and optimizations such as whole-program analyses, duplicate code and data elimination tech-
niques are applied. The mechanism reduces code size from 16% to 18%, provide 8% to 17.4% performance gain
and power consumption reduced by 7.9% to 16.2%.

Kumar [36] evaluates link time optimizations using a peephole technique with finite state machines instead of
string matching, yielding code size reductions from 0.9 to 1.1%.



9 Conclusions

We present a method to analyze and detect compression opportunities in RISC ISAs through the specific
SPARCv8 case study, followed by an extensive evaluation of SPARCv8 programs from different benchmarks
and the Linux Kernel. A Integer Linear Programming uses the extracted information and assists in the selection
of the best 16-bit instruction formats, minimizing the code size. We design and present a 16-bit instruction set
extension for the SPARCv8 architecture: the SPARC16.

A FPGA implementation, software emulation and compiler code generator support are used to evaluate the
SPARC16 extension. We achieve an average compression ratio of 72% for mediabench programs, 74% for
MiBench and 72% for the SPEC2006. We show that some target specific compiler optimizations are crucial
to allow code size reduction benefits from using 16-bit instructions; overall optimizations reduce unoptimized
generated SPARC16 code by 20%. Therefore, we achieve SPARC16 compression ratios similar to the ones ob-
tained by production quality MIPS and ARM 16-bit extensions, achieving better compression ratios than both in
several programs.

Furthermore, we evaluated SPARC16 performance by analyzing effects of code size reduction in the instruc-
tion cache. Although the execution of SPARC16 programs yields more instructions than SPARCv8, lower cache
miss ratios are achieved by SPARC16 compiled programs; the best ratio achieves 9% reduction in dijkstra from
MiBench. Finally, we demonstrate how reduction in cache misses affects performance and that SPARC16 is an
alternative for shipping devices with reduced cache sizes, without any performance degradation.
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