
A Branch-and-Cut Approach for the Vehicle Routing
Problem with Loading Constraints

Pedro Hokama
Instituto de Computação, IC, UNICAMP,

13084-971, Campinas, SP

e-mail: hokama@ic.unicamp.br

Flávio K. Miyazawa,

Instituto de Computação, IC, UNICAMP,

13084-971, Campinas, SP

e-mail: fkm@ic.unicamp.br

Eduardo C. Xavier,

Instituto de Computação, IC, UNICAMP,

13084-971, Campinas, SP

e-mail: ecx@ic.unicamp.br

ABSTRACT

We consider a transport system problem which involves route planning for vehicles with

containers attached, and cargo accommodation. The specific problem considered is the ve-

hicle routing problem with loading constraints. Its input consists of a weighted undirected

graph where vertices corresponds to clients and edges costs represents the cost to move the

vehicle along that edge. Each vertex has a demand for a set of items (which are two or three

dimensional rectangles). There is also a special vertex that represents a depot where all items

are stored at first. The problem is to determine a set of routes, each one leaving the depot,

with minimum total cost, such that all clients are visited exactly once. The corresponding

cargo for the clients of each route must fit into the container. As it would be too expensive to

remove and rearrange the cargo at each point in the route, it is interesting that the goods to be

unloaded in a client must be removed without moving the remaining cargo. These are called

unloading constraints. In this paper we describe a branch-and-cut algorithm for the vehicle

routing problem with loading constraints, using several techniques to prune the search tree.

The problem of finding feasible loadings into the bins are solved using techniques adapted

from the literature. These techniques involves branch-and-bound, constraint programming

and metaheuristics. The efficiency of the algorithms are evaluated by an experimental anal-

ysis with instances from the literature, and compared with other algorithms.

KEYWORDS. Vehicle routing. Two-dimensional packing. Three-dimensional packing.

1

Branch-and-cut. Combinatorial Optimization.

1 Introduction

Several problems in transport systems involve route planning for vehicles with containers attached and

accommodation of cargo into these containers. The route planning problem and the packing problem

are well known problems in the research literature, and they were largely explored separately. However,

in recent years there has been some interest in considering both problems combined, leading to better

global solutions.

In the Vehicle Routing Problem with D-Dimensional Unloading Constraints (DL-CVRP), clients

have a demand for goods stored into a depot, and k vehicles must be used to deliver these goods. Each

travel from the depot to a client, or from a client to a next one has a cost. The problem is to find k

routes leaving the depot, one route for each vehicle, such that all clients are visited exactly once, and

such that the items of clients of a route can be packed in the vehicle’s container. The objective function

of the problem is to minimize the total cost of the routes. As it would be too expensive to rearrange

the cargo at each visit, we add a condition that the goods to be unloaded in a client must be removed

without moving the remaining goods, these are the so called unloading constraint. We consider two and

three-dimensional unloading constraints.

The capacitated vehicle routing problem with two-dimensional unloading constraints (2L-CVRP)

was first addressed by Iori et al. [17]. They introduced an exact method to solve the problem. Azevedo

et al. [1] presented an exact method with different cut strategies and packing algorithms obtaining better

solutions in most cases. Due to the difficulty of solving this problem exactly, several heuristics were

also proposed. Gendreau et al. [11] presented a tabu search method to the 2L-CVRP. Fuellerer et al.

[9] employed an ant colony method. Zachariadis et al. [28] introduced a guided tabu search method.

Duhamel et al. [8] presented a GRASP approach for the case without unloading constraints. Approxima-

tion algorithms for the associated packing problem that considers unloading constraints were proposed

by Silveira et. al. [5, 7, 6].

The capacitated vehicle routing problem with three-dimensional unloading constraints (3L-CVRP)

was first considered by Gendreau et al. [10]. They presented a tabu search method to solve the problem.

Junqueira et al. [18] presented an exact method for the 3L-CVRP with practical constraints where an

integer linear programming model was able to solve instances of moderate size. For more references on

routing and loading problems we refer to a survey by Iori et al. [16].

In the 2L-CVRP and 3L-CVRP problems we face a packing subproblem of determining if a set of

items can be packed in a bin, this is the so called Orthogonal Packing Problem (OPP). In this problem it is

given a set of items and a bin with bounded dimensions, and the objective is to find a placement of these

items in the bin, or prove that it is unfeasible. When the items and the bins are two-dimensional objects

(respectively three), we have the two-dimensional orthogonal packing problem - 2OPP (respectively the

three-dimensional orthogonal packing problem - 3OPP). Clautiax et al. [3] presented an efficient method

2

for solving the 2OPP using Constraint Programming. Their work was further extended to include new

bounds by Mesyagutov et al. [22], and to consider the three-dimensional case by Mesyagutov et al. [23].

Recently the problem was considered with the unloading constraint by Côté et al. [4], who presented an

exact algorithm using branch-and-cut and a set of lower bounds.

The Constraint Programming (CP) paradigm has been proved to be a very efficient method for solving

many different problems [26]. This paradigm was well known by other areas but just in the last decades

was rediscovered by researchers in the combinatorial optimization community. The Integer Linear Pro-

gramming (ILP) is probably the most used method for solving combinatorial optimization problems [27].

The use of both, CP and ILP together is a hot topic and has obtained good results for many problems

[15].

In this paper we propose an algorithm to solve the 2L-CVRP and the 3L-CVRP. The Routing Prob-

lem is solved by a branch-and-cut algorithm using different cut strategies, including those presented by

Lysgaard et al. [19] and Naddef et al. [24]. The demand of items for each client is used to add mini-

mal infeasible cuts, that reduce branches, which can not lead to feasible solutions. The search for these

cuts is done by solving the OPP. To this purpose, we tested a number of different originals and adapted

algorithms. Among the algorithms to find feasible loadings into the bins, branch-and-bound, and con-

straint programming techniques were explored. The efficiency of the algorithms are evaluated by an

experimental analysis with instances from the literature, and compared with other algorithms.

2 Orthogonal Packing Problem With Unloading Constraints

In this section we formally describe the Orthogonal Packing Problem with Unloading Constraint (OP-

PUL). We present exact algorithms, some heuristics, and lower bounds for the two and three-dimensional

version of this problem.

2.1 Problem Description

The orthogonal packing problem with unloading constraint can be defined as follows: It is given a D-

dimensional container B of dimensions pW 1, . . . ,WDq with total volume VpBq “
śD
d“1W

d, where

W d P Z`, 1 ď d ď D; n sets of D-dimensional items pI1, . . . , Inq, let I “
Ťn
v“1 Iv. Each item i P Iv

has dimensions pw1
i , . . . , w

D
i q, where wdi P Z`. The volume of an item i is denoted by Vpiq “

śD
d“1w

d
i

and the volume of a set of items I is denoted by VpIq “
ř

iPI Vpiq. The problem is to find a packing PI
of the items I in the bin B that respects the unloading constraints in the direction of the last dimension

D.

More precisely, a packing PI of items I in a container B “ pW 1, . . . ,WDq that satisfy unloading

constraints is a function PI : I Ñ r0,W 1q ˆ . . .ˆ r0,WDq such that:

(i) The packing must be orthogonal, i.e. the edges of the items must be parallel to the respective

container’s edges.

3

(ii) The packing must be oriented, i. e., the items must be packed in the original orientation given in

I .

(iii) Items of I must be packed within the container’s boundaries. That is, if the position where the

item is packed is given by PIpiq “ px1i , . . . , xDi q, for each i P I , then

0 ď xdi ď xdi ` w
d
i ďW d, for 1 ď d ď D. (1)

(iv) Items must not overlap. That is, if the region occupied by the item i is given byRpiq “ rx1i , x1i `
w1
i q ˆ . . .ˆ rx

D
i , x

D
i ` w

D
i q then

Rpiq XRpjq “ H, for all pairs i ‰ j P I. (2)

(v) Items belonging to a set Iv are not blocked by any item belonging to a set Iu if u ą v. That is,

if item i must be unloaded before item j, j can not be packed in the region between i and the end of the

container, in the unloading dimension D. More precisely consider the region that includes the item i and

it’s way to the exit of the container defined by Repiq “
D´1
Ś

d“1

rxdi , x
d
i ` wdi q ˆ rx

D
i ,W

Dq. A packing PI
of I “ I1 Y . . .Y In in the bin B respects the unloading constraints if it satisfy

Repiq XRpjq “ H for all i P Iv and j P Iu with 1 ď v ă u ď n, (3)

2.1.1 Definitions

An important concept used in several algorithms for packing problems is the Envelope of a packing or a

partial packing. Let I be a set of items, each item i P I with dimensions pw1
i , . . . , w

D
i q, and PI a packing

of these items in a bin of dimensions pW 1, . . . ,WDq. An envelope of PI is the region defined by

SpPIq “ tpx1, . . . , xDq P RD` : Di P I with x1 ă x1i ` w
1
i ^ . . .^ x

D ă xDi ` w
D
i u.

The complement of the envelope S̄pPIq is the region of the Bin B that is not in the envelope. The

complement of the envelope is often considered as a feasible region to pack new items in different al-

gorithms. The volume of the envelope SpPIq and its complement S̄pPIq is denoted respectively by

VpSpPIqq and VpS̄pPIqq. Figure 6 show an example of a two-dimensional packing and it‘s envelope.

Another important concept is the set of Corner Points ĈpPIq, which is defined by,

ĈpPIq “ tpx1, . . . , xDq P S̄pPIq : Epx11, . . . , x1Dq P S̄pPIqztpx1, . . . , xDqu, x11 ď x1^. . .^x1D ď xDu.

Figure 1c presents the set of corner points for the packing, the black dots are the corner points.

2.2 Two-dimensional Orthogonal Packing Problem with Unloading Constraints

To solve the Two-dimensional Orthogonal Packing Problem with Unloading Constraints (2OPPUL), we

consider two different exact algorithms found in the literature, which we modified to include unloading

4

(a) Packing (b) Envelope (c) Corner Points

Figure 1: (a) Example of a two-dimensional packing, (b) it’s envelope and (c) the corner points for this

packing.

constraints. The first is the OneBin algorithm presented by Martello et al. [20]. The second is a constraint

programming algorithm presented by Clautiax et al. [3]. Both algorithms were modified to consider the

customer’s order of visit and the associated unloading constraints when generating a feasible packing.

To make the notation clear, when considering the Two-dimensional Orthogonal Packing Problems

the Bin has dimensions pW,Hq and each item i has dimensions pwi, hiq and it is packed in the position

pxi, yiq in a feasible solution.

2.2.1 Branch-and-Bound algorithm

The algorithm OneBin works as follows: let I be the set off all items, J be a set of packed items and

PJ a packing of these items in J . Let ĈpPJq be the set of corner points defined by PJ and let J̄ “ IzJ

be the set of items not packed yet. At each iteration, ĈpPJq and VpSpPJqq are computed. For each

item j P J̄ and for each corner point c P ĈpPJq, j is assigned at c and OneBin is called recursively.

Whenever VpBq´VpSpPJqq ď VpJ̄q happens, backtracking occurs, because the remaining items cannot

be packed. Empty space inside the envelope is not used by this algorithm. Our algorithm is an adaptation

to the OneBin source code provided by Martello et al. [20].

To deal with the unloading constraint, we modified the algorithm as follows: when an item is assigned

to a corner point, the algorithm verifies if the item blocks any item that will be removed first. In this case,

the algorithm backtracks. We also modified the initial ordering of items, ordering first by its customer’s

visiting order and then by nondecreasing volume.

2.2.2 CP model

The second exact algorithm was presented by Clautiax et al. [3], based on the constraint programming

paradigm, to which we refer from now on as CP2D. In the CP2D algorithm, variables Xi and Yi are

5

associated to the bottom left corner of each item i. The domain of each variable is defined by Xi P

t0, . . . ,W ´ wiu and Yi P t0, . . . ,H ´ hiu. For each pair (i, j) of items the following constraints

must be satisfied: prXi ` wi ď Xjs or rXj ` wj ď Xis or rYi ` hi ď Yjs or rYj ` hj ď Yisq. These

constraints guarantee that two items do not overlap. In order to consider the unloading constraints, we

adapted the algorithm as follow: if i will be unloaded before item j, we replace the previous constraints

by prXi ` wi ď Xjs or rXj ` wj ď Xis or rYj ` hj ď Yisq. With the aim of improving this constraint

programming model, Clautiax et al. [3] proposed a redundant constraint programming model for a non-

preemptive cumulative-scheduling problem associated with two relaxations of 2OPPUL, which are linked

to the original problem. A set of activities tAw1 , . . . , A
w
|I|u, and a resource Rw are defined. Each activity

Awi requires hi of resource Rw, and has processing time wi. The resource Rw has maximum capacity H .

All activities must be executed by time W , and at any given time all activities being executed must not

exceed the resource’s maximum capacity. Analogously, we define the set tAh1 , . . . , A
h
|I|u and resource

Rh with maximum capacity W . Each activity Ahi requires wi of resource Rh, and has processing time

hi and all activities must be executed by time H .

To link these scheduling problems with the packing problem, the start time of an activity Awi must be

equal to Xi and the start time of an activity Ahi must be equal to Yi. Using this model Clautiax et al. [3]

proposed a series of pruning and propagation methods.

Reducing the Domain of Variables
In the formulation above, for each variable Xi, Clautiax et al. [3] considered all integer values between

0 and W ´ wI and for each variable Yi the integer values between 0 and H ´ hi. This can be improved

by reducing the domain of each variable, reducing the number of choices where each item can be placed.

For each dimension, we must find the discretization points, a reduced set of coordinates where items

can be placed without changing the feasibility of the instance. The set of discretization points in a

certain dimension is defined by all possible combinations of item’s sizes in that dimension. Following

the notation used by Côté et al. [4], consider Iěi the set of items to be unloaded with, or after i. Let PHi
be a set of coordinates over the Y -axis that item i can assume, defined as

PHi “

$

&

%

y “
ÿ

jPIěi ztiu

hjξj : 0 ď y ď H ´ hi, ξj P t0, 1u, j P I
ě
i ztiu

,

.

-

. (4)

Let PWi be a set of coordinates over the X-axis that item i can assume, defined as

PWi “

$

&

%

x “
ÿ

jPIztiu

wjξj : 0 ď x ďW ´ wi, ξj P t0, 1u, j P Iztiu

,

.

-

, (5)

This way, we define for each item i P I:

DompXiq “ PWi , (6)

DompYiq “ PHi . (7)

6

Figure 2: Example of packing using top-bottom mixfill.

Herz [14] shows that any feasible solution for a given instance of the problem, has a corresponding

solution over the discretization points, this way we do not lose any solution by reducing the domain to

the discretization points.

The top-bottom mixfill strategy
To take advantage of the unloading constraints we decided to apply the top-bottom mixfill strategy pre-

sented by Côté et al. [4] in the formulation of Clautiax et al. [3]. The unloading order can be explored

to fill the bin not only from the bottom to the top, but from the top to bottom too. This can be done by

dividing the items into those who will be unloaded first, and the others, to be unloaded later. Let c be the

cut point between these two sets, that is, items in IT “ I1 Y . . .Y Ic will be packed from the top to the

bottom, and items in IB “ Ic`1 Y . . .Y In will be packed from the bottom to the top. This way, we can

redefine the coordinates in the Y -axis where an item can be placed. To this purpose consider IT,ďi the set

of items from IT that will be unloaded with or before i, and IB,ěi the set of items from IB that will be

unloaded with or after i. Let PHi be the new set of coordinates y where item i can be packed, if i P IT :

PHi “

$

&

%

y1 “ H ´ y : y “
ÿ

jPIT,ď
i ztiu

hjξj , 0 ď y ď H ´ hi, ξj P t0, 1u, j P I
T,ď
i ztiu

,

.

-

. (8)

If i P IB:

PHi “

$

&

%

y “
ÿ

jPIB,ě
i ztiu

hjξj : 0 ď y ď H ´ hi, ξj P t0, 1u, j P I
B,ě
i ztiu

,

.

-

. (9)

Figure 2 presents an example of packing using the top-bottom mixfill strategy. Côté et al. [4] proved

that if a solution is feasible for a given cut point c, it is feasible for every cut point. This way we can

choose the cut point that generates the least number of discretization points.

2.3 Heuristic and Hash

Besides the exact approach, a fast heuristic was employed to help decreasing the time spent solving

the 2OPPUL. The exact algorithms are not called if a feasible packing can be found by a Bottom Left

7

Decreasing Width heuristic (BLDW), modified to consider the unloading constraints. For a description

of the BLDW algorithm see [2].

To reduce the computational effort, known routes are stored in a hash table. A route is stored whether

it is feasible or not, therefore the same route will not have its feasibility checked twice. Two routes will

have the same hash, excluding collisions, if they serve the same customers and have an identical visiting

order.

2.4 Metaheuristic for the Two-Dimensional Orthogonal Packing Problem With Unload-
ing Constraints

With the aim to reduce the total processing time of our exact algorithm, we also present some heuristics to

the 2OPPUL based on the Biased Random-Key Genetic Algorithm (BRKGA). We first give an overview

of the BRKGA, and then we show more details of some heuristics for the 2OPPUL problem under this

approach.

2.4.1 The BRKGA

The BRKGA presented by [12] is a general search metaheuristic for finding solutions to combinatorial

optimization problems. This algorithm uses a chromosome of fixed size m of random keys over the in-

terval r0, 1q, where the value of m depends on the instance of the optimization problem. An evolutionary

process involves crossing-over different chromosomes and exchanges among different populations. The

BRKGA also introduces new chromosomes called mutants to add variety.

The BRKGA involves the following main parameters:

• m is the size of a chromosome;

• p is the number of individuals (chromosomes) in a population;

• pe is the percentage of elite individuals in a population;

• pm is the percentage of new mutants to be introduced in a population at each generation;

• ρe is the probability that a gene is inherited from the elite parent;

• K is the number of independent populations;

• MaxGen is the number of generations evolved;

• Exch is the number of generations before Exchange best individuals among populations;

• NExch is the number of best individuals to be exchanged among populations.

The BRKGA initializes each population with p randomly generated chromosomes, each having m

random keys. Then it evolves each population by MaxGen generations. The evolution of a population is

composed of the following steps:

8

1. Compute the fitness function for each chromosome. A chromosome when associated with its

fitness is called an individual.

2. Producing the next generation includes:

(a) The elite set of the previous generation,

(b) pm new randomly generated mutants.

(c) Chromosomes produced by matching two individuals from previous generations, one from

the elite set and another from the non-elite set. Each gene has a probability ρe to be copied

from the elite parent.

To use this metaheuristic as a framework to an optimization problem we need the following steps:

define the number of genes in a chromosome, define a decoder which maps a chromosome into a solution

(feasible or not) to our specific problem, and define the fitness value of the chromosome, which will

measure the quality of the solution. In the subsequent subsections we describe these steps for some

heuristics developed.

2.4.2 Heuristic Bottom-Left

Chromosome Each item i P I has an associated gene gi.

Decoder In this heuristic items are placed in the inverse sequence which they will be unloaded, that is,

set Iu is packed before set Iv if u ą v. Within each set Iv items are sorted according to the corresponding

genes’ values in the chromosome, that is, if i P Iv and j P Iv, i is placed before j if gi ă gj .

Let J be the set of all packed items, initially J is empty, and let be PJ the packing of those items

in the Bin. Consider the set of corner points ĈpPJq as defined in section 2.1.1. We call an eligible

bottom-left corner point, the point p “ pxp, ypq P ĈpPJq, such that, yp is minimum and xp ` wi ď W .

Each item i in the order obtained from the chromosome is placed in the eligible bottom-left corner point.

The order which items are placed guarantee that the unloading constraints are respected. We allow items

to overflow the height H of the bin.

Fitness Value The fitness value of an individual is given by the height used by the packing in the

heuristic. If at any time we have an individual with fitness less than or equal to H we have a feasible

packing.

2.4.3 Heuristic Bottom-Left and Left-bottom

Chromosome Each item i P I has two associated genes g1i and g2i .

9

Decoder In this heuristic items are placed in the order given by the genes, item i is placed before j if

g1i ă g1j . Based on the heuristic proposed by Gonçalves et al. [13], items can be placed in two different

positions. Let J be the set of all packed items, initially J is empty, and let PJ be the packing of those

items in the Bin. An item i is placed in the eligible bottom left corner point p “ pxp, ypq or in the eligible

left-bottom corner point denoted by q “ pxq, yqq P ĈpPJq, such that xq is minimum. Item i is placed in

point p or q according to the gene g2i , if g2i ă 0.5 it is placed in p, otherwise, it is placed in point q. We

allow items to overflow the height H of the bin.

Fitness Value The fitness value of an individual is given by the height used in the packing given in the

heuristic, plus a penalty of value H for each unloading constraint violated, that is, for each pair of items,

if the unloading constraint is violated one penalty is applied. At the end of the process if we have an

individual with fitness less than or equal to H we have a feasible packing.

2.4.4 Heuristic Tetris

Chromosome Each item i P I has two associated genes g1i and g2i .

Decoder In this heuristic items are placed in the inverse sequence which they will be unloaded, that is,

set Iu is packed before set Iv if u ą v. Within each set Iv items are sorted according to the genes g1, that

is, if i P Iv and j P Iv, i is placed before j if g1i ă g1j .

The gene g2i represents the position x where the item i will be packed, and y is the lowest possible

value, respecting the overlapping constraints. That is, item i will have position xi defined by:

xi “ tg2i pW ´ wi ` 1qu. (10)

The order in which items are placed guarantee that the unloading constraints are respected.

Fitness Value The fitness value of an individual is given by the height used in the packing given in the

heuristic. At the end of the process if we have an individual with fitness less than or equal to H we have

a feasible packing.

2.4.5 Heuristic Double-Layer Tetris

This heuristics has two stages. In the outer stage the order that each item will be placed is decided using

the BRKGA, and then for a given sequence, in the inner stage the x positions are decided also using a

BRKGA.

Chromosome In the outer stage each chromosome has size equal to n. Each item i P I has an associ-

ated gene g1i . We will call this a sequence chromosome.

10

Decoder Items are placed in the inverse sequence which they will be unloaded, that is, set Iu is packed

before set Iv if u ą v. Within each set Iv items are sorted according to the chromosome, that is, if i P Iv
and j P Iv, item i is placed before item j if g1i ă g1j .

For each sequence chromosome we search for the packing positions by executing another BRKGA.

In this inner stage we call a chromosome by position chromosome, where each item has an associated

gene g2i representing the position x where the item i will be packed, that is, item i will have position xi
defined by:

xi “ tg2i pW ´ wi ` 1qu, (11)

and y is the lowest possible value, respecting the overlapping constraints. The fitness value in this step

is given by the height used by the packing obtained. The order which items are placed guarantee that the

unloading constraints are respected.

Fitness Value The fitness value is the height used by the packing given by the best position chromo-

some found in the inner stage. At the end of the process if we have an individual with fitness less than or

equal to H we have a feasible packing.

2.4.6 Heuristic Bottom-Left Penalty

Chromosome Each item i P I has an associated gene gi.

Decoder The packing order of item i is given exclusively by the gene gi, that is, if gi ă gj , i will be

packed before j independently of the unloading order. Items are packed in this order using the bottom

left heuristic. This may lead to an unfeasible solution, so for each violation a penalty of value H is added

to the fitness value.

Fitness Value The fitness value of an individual is given by the height used in the packing given by

the heuristic, plus a penalty for each violated unloading constraint, that is, for each pair of items, if the

unloading constraint is violated one penalty is applied. At the end of the process if we have an individual

with fitness less than or equal to H we have a feasible packing.

2.4.7 Heuristic Absolute Position

Chromosome Each item i P I has two associated genes gxi and gyi .

Decoder In this heuristic an item i is placed, if possible, on the position pxi, yiq given by:

xi “ tgxi pW ´ wi ` 1qu, (12)

yi “ tgyi pH ´ hi ` 1qu. (13)

11

Items are packed on the reverse order which they will be unloaded. Items from a same set Iv are

packed in the order given in the input. If item i violates the overlap constraint or the unloading constraint

we do not pack the item i. At the end there might be items not packed. Let I be the set of all items, J be

the set of packed items, and c the total number of conflicts.

Fitness Value The fitness value is given by

|I| ´ |J | ` pc{n2q. (14)

If an individual has fitness value 0, then all items are packed and the solution is feasible. The last term of

the fitness value helps to compare two individuals with the same number of packed items. If one solution

has less conflicts, then it is closer to a feasible solution.

2.4.8 Heuristic Best Corner Point

Chromosome Each item i has an associated gene gi.

Decoder Each gene represents the order of the packing, that is, if gi ă gj , i will be packed before j.

For each item i the heuristic packs it in the corner point that generates the minimum amount of waste,

and do not violate the unloading constraints. For each corner point s, it verifies if i can be placed on s

without exceeding the limits of the Bin, and without violating the unloading constraints with the items

already packed. If no violation occurs, s is a candidate point to i. For each candidate s, the heuristic

computes the volume of the complement of the envelope with item i packed on s, and chooses the one

with the biggest volume. An item may have no candidates, in this case it is not packed.

Fitness Value Let I be the set of all items, J be the set of packed items, and S the total volume of the

envelope. The fitness value is given by

|I| ´ |J | ` pW H ´ Sq{p2WHq. (15)

If an individual has fitness value less than 1, them all items were packed and the solution is feasible. The

last term of the fitness value helps to compare two individuals with the same number of packed items,

preferring those who let more remaining space to be used.

2.5 Lower Bounds for the Orthogonal Packing Problem

Some lower bounds presented by Côté et al. [4], are used to obtain a minimum dimension size to pack a

set of items in a Bin. If the lower bound is greater than the dimension size of the bin, then the packing is

unfeasible.

12

2.5.1 Lower Bound L1

The first Lower Bound, L1, considers the minimum height required do pack all items.

L1 “

Rř

iPI wihi
W

V

. (16)

2.5.2 Lower Bound L2

To present the second lower bound, L2, we need the following definitions:

• Ią,W´wi
i is the set of all items to be delivered after i, with width greater thanW´wi, and

řą,W´wi

piq

is the total volume of these items.

•
řą
piq is the total volume of items to be delivered after i.

• Iď,wi
i is the set of items to be delivered before or with i and has width greater than wi.

• Iă,W´wi
i is the set of all items to be delivered before i, with width greater than W ´ wi, and
řă,W´wi

piq is the total volume of these items.

•
řă
piq is the sum of volumes of items to be delivered before i.

• Iě,wi
i is the set of items to be delivered after or with i and has width greater than wi.

• PHi is the set of discretization points where item i can be placed.

The bound L2 also uses the values of ymin
i and ymax

i , which are respectively the minimal position

that can be occupied by the bottom of item i and the maximal position that can be occupied by the top of

item i. To calculate ymin
i and ymax

i the following values must be computed:

ymin,1
i “ max

$

&

%

»

—

—

—

řą,W´wi

piq

W

fi

ffi

ffi

ffi

,maxthj : j P Ią,W´wi
i u

,

.

-

, (17)

ymin,2
i “

S

r
řą
piq´HpW ´ wiq `

ř

jPI
ď,wi
i

hjpwj ´ wiqs
`

wi

W

, (18)

ymax,1
i “ H ´max

$

&

%

»

—

—

—

řă,W´wi

piq

W

fi

ffi

ffi

ffi

,maxthj : j P Iă,W´wi
i u

,

.

-

, (19)

ymax,2
i “ H ´

S

r
řă
piq´HpW ´ wiq `

ř

jPI
ě,wi
i

hjpwj ´ wiqs
`

wi

W

. (20)

(21)

This way ymin
i and ymax

i are computed as follow:

ymin
i “ maxtymin,1

i , ymin,2
i , max

jPI
ą,W´wi
i

tymin
j ` hju,mintt|t P PHi uu, (22)

ymax
i “ mintymax,1

i , ymax,2
i , min

jPI
ă,W´wi
i

tymax
j ´ hju,maxtt|t P PHi u ` hiu. (23)

13

Finally using definitions of ymin
i and ymax

i , L2 can be computed as follow:

L2 “ max
iPI
tymin
i ` hi ` pH ´ y

max
i qu. (24)

2.5.3 Lower Bound L3

Based on the Cutting Stock Problem we can obtain the lower bound LH3 . A cutting pattern is defined as a

subset I 1 Ă I , such that
ř

iPI 1 wi ď W . Let KW be the set of all feasible patterns, and aik “ 1 if item i

belongs to pattern k, and aik “ 0 otherwise. The following Integer Linear Program is constructed, where

vk is the variable that represents the number of times pattern k appears in the solution.

min
ÿ

kPKW

vk (25)

ÿ

kPKW

aikvk ě hi i P I (26)

vk ě 0, vk P Z k P KW . (27)

The Cutting Stock Problem is usually solved by column generation, solving a series of knapsack

problems with reduced costs. The knapsack problem is efficiently solved by Dynamic Programming.

The optimal solution of the Cutting Stock Problem (CSP) gives a lower bound on the minimum height of

the Bin necessary to pack all items. Let LH3 be the value of the optimal solution of CSP, if LH3 ă H we

know that the packing of items I into bin B “ pW,Hq is unfeasible.

Analogously, the bound LW3 can be defined by doing the same process over the transversal axis. The

resulting Cutting Stock Problem will give a lower bound on the width necessary to pack the items.

2.6 Three-dimensional Orthogonal Packing Problem With Unloading Constraints

To solve the Three-dimensional Orthogonal Packing Problem With Unloading Constraints (3OPPUL),

we used two different exact algorithms. The first is the OneBin_General algorithm presented by Martello

et al. [21]. The algorithm was slightly modified to consider the customer’s items and their unloading

order when generating a feasible packing. The second is a natural CP model to the problem.

2.6.1 CP based algorithm - relative positions

The first algorithm used to solve the 3OPPUL is the OneBin_General algorithm, introduced by Martello

et al. [21]. This algorithm is based on constraint programming, and uses the following idea, two items

pi, jq do not overlap if item i is left of, right of, under, above, behind, or in front of item j. To represent

this relation between items i and j, it is created a variable rij for each pair of items, this variable can

assume one of the following values tl,r,u,a,b,fu.

The problem is solved recursively by the algorithm OneBin_General. At each call two items i, j are

considered and one of the relative positions are assigned to rij . The new assignment must be checked for

14

its feasibility with the previous assignments made.

In each call, after assignments were made in the variables r, the algorithm needs to find the positions

px, yq for the placement of each item. To this purpose it initializes the position pxi, yiq of each item iwith

xi “ 0 and yi “ 0. For each relation already assigned, one of the following assignments is performed: if

rij “ l and xj ă xi ` wi, the item j is "pushed" left by doing xj “ xi ` wi; otherwise if rij “ r and

xi ă xj `wj , item i is "pushed" left by doing xi “ xj `wj . A similar assignment is made for the other

possible relations. The algorithm repeats this procedure until no modifications are made. If at any point

an item is positioned such that it exceeds the size of the bin, the last assignment has been proved to be

unfeasible.

We have adapted the original algorithm to consider the unloading constraints. For a certain variable

rij , we remove from its domain the value f(front) if i must be unloaded after j, or remove b(behind) if i

must be unloaded before j.

2.6.2 A natural CP model - absolute positions

We now describe a natural constraint programming formulation for the Three-dimensional Loading prob-

lem. Similarly to the CP2D, variablesXi, Yi and Zi are defined for each item i P B, where pXi, Yi, Ziq is

the position where item i will be packed. The initial domains are defined as Xi P t0, . . . ,W ´wiu, Yi P

t0, . . . ,H ´ hiu and Zi P t0, . . . , D ´ diu.

For each pair of items i, j, we include a constraint rXi ` wi ď Xjs or rXj`wj ď Xis or rYi`hi ď

Yjs or rYj ` hj ď Yis or rZi ` di ď Zjs or rZj ` dj ď Zis. To attend the unloading constraint, if i must

be unloaded before j, we replace this constraint by rXi ` wi ď Xjs or rXj ` wj ď Xis or rYi ` hi ď

Yjs or rYj ` hj ď Yis or rZj ` dj ď Zis. We call this algorithm by CP3D.

3 Capacitated Vehicle Routing Problem with Loading Constraints

In this section we formally describe the Capacitated Vehicle Routing Problem with Loading Constraints

(DL-CVRP). We first formally describe the problem, then we present the formulation been considered.

3.1 Problem Description

The Capacitated Vehicle Routing Problem with Loading Constraints (DL-CVRP) can be defined as fol-

lows: It is given a complete undirected graph G “ pV,Eq, such that, V is a set of n` 1 vertices, where

vertex 0 corresponds to the depot, and vertices 1, . . . , n that corresponds to the n customers, and E is

the set of edges. For each edge e P E there is an associated cost ce P Q`. It is also given a set of K

identical vehicles, each having a weight capacity of M and a container of dimensions W 1, . . . ,WD to

carry the customer’s items, with D been the dimension of the problem. Let V` “ V z t0u be the set of

customers. Each customer v P V` has a demand of a set Iv of items with total weight mv. Each item i in

I “
Ťn
v“1 Iv has dimensions pw1

i , . . . , w
D
i q.

15

We need to find routes for each vehicle, and each route must have a feasible Packing that respects

the unloading constraints. A feasible route C is a cycle in G that contains the depot and satisfies the

following conditions:

(i) The total weight of all items of customers in C must not exceed the vehicle load capacity. That is,

if VC is the set of customers in C then
ř

vPVC
mv ďM .

(ii) There is a packing PC for the items of the clients in C in one of the vehicles. The packing PC
must respect the unloading constraints.

The DL-CVRP is to find a set of K feasible routes C “ tC1, . . . , CKu, that minimizes the total

routing cost, that is, minimize cpCq “
řk
i“1

ř

ePCi
ce.

3.2 Formulation

In this section we present the integer linear programming formulation used to model and solve the DL-

CVRP.

Let qe be a variable that indicates the use of an edge e in the solution, that is, qe is equal to one if a

vehicle travels along the edge e, and zero otherwise. Given a subset of customers S Ď V`, mpSq is the

total weight of all items of the customers in S, i.e., mpSq “
ř

iPSmi. We denote by VpBq the volume of

the container and VpSq the total volume of the items of the customers in S, i.e, VpSq “
ř

vPS VpIvq. Let

δpSq be the set of edges in G with exactly one vertex in S. Let rpSq be the minimum number of vehicles

needed to supply the demand of S and K be the number of available vehicles, considering the weight of

the demands of the items. Also let R be the set of routes that are infeasible to be packed respecting the

unloading constrains. The integer programming formulation is:

minimize
ÿ

ePE

ceqe (28)

s.a.
ÿ

ePδptiuq

qe “ 2 @i P V` (29)

ÿ

ePδpSq

qe ě 2rpSq @S Ď V`, |S| ě 2 (30)

ÿ

ePδpt0uq

qe “ 2K (31)

ÿ

ePR

qe ď |R| ´ 1 @R P R (32)

qe P t0, 1u @e P E. (33)

Constraints (29) ensure that each customer is visited exactly once. Constraints (30), the Ca-

pacity Inequalities, impose connectivity and capacity conditions. If rpSq is replaced by kpSq “

maxtrmpSq{M s, rVpSq{VpBqsu, a valid lower bound is achieved. These are known as Rounded Ca-

pacity Inequalities (see [24]).

16

Constraints (31) ensure that exactly K vehicles are used. Constraints (32) ensures that there exists

a packing respecting unloading constraints for each route. Note that to compute if a route R belongs

do R is an NP-Hard problem, since it is equivalent to finding the optimal solution of the Orthogonal

Packing Problem with Unloading Constraints (OPPUL), given the vehicle container and the customers

items. Constraints (33) impose that the variables must be binary. Following [17], we do not allow routes

with only one customer.

4 Branch-and-Cut Algorithm for the DL-CVRP

The DL-CVRP consists of a routing and a packing problem, therefore routing and packing strategies

are needed. Following Azevedo et al. [1] our routing separation routine consists of separating Capacity

Inequalities to ensure connectivity and capacity constraints, and using other families of inequalities to try

reducing the feasible region. The packing is used when no more routing cuts can be found at the current

node, but we can extract some information from the packing problem.

4.1 Routing Separation Routine

The formulation has an exponential number of constraints. The algorithm then starts with a small set of

constraints and add others by separation routines. Constraints (29), (31) and the bounds give us a relax-

ation that can be easily solved, generating a weak lower bound that can be strenghtened by adding cutting

planes. For this reason, the following separation routines were used: Capacity Inequalities, Framed Ca-

pacity Inequalities, Multistar Inequalities, 2-Edges Extended Hypotour Inequalities and Strenghtened

Comb Inequalities. Observe that separation for Capacity Inequalities take into account not only the ca-

pacity of the vehicle, but also its container’s area. Details on the used cuts can be found in [19] and

[24].

Separating Capacity Inequalities is NP-Hard (see [24]), consequently separation is done on Rounded

Capacity Inequalities, obtained by replacing rpSq by kpSq on (30). To separate different CVRP families

of inequalities we used code provided by [19].

Following Azevedo et al. [1], to allow better chances of finding more cutting planes at each iteration

at the root node, two cyclical approaches based on a separation strategy proposed by [19] are used. At

each iteration, the following separation routines can be called: Rounded Capacity Inequalities, Framed

Capacity Inequalities, Multistar Inequalities, Strenghtened Comb Inequalities and 2-Edges Extended Hy-

potour Inequalities. For each separation attempt, every inequality that was found is added to the LP.

Initially, the algorithm tries to separate Rounded Capacity Inequalities. If there is at least one cut

violated by less than a certain limit, the algorithm attempts the Framed Capacity separation. If no Framed

Capacity Inequality is found, two different approaches are used: if the current iteration is a multiple of

five, the algorithm tries to separate Multistar and Strenghtened Comb Inequalities. Otherwise, a circular

strategy is put into action: separation of Multistar, Strenghtened Comb and Hypotour occurs every third

iteration, e.g., if Multistar Inequalities are found, re-optimization occurs and the algorithm will not try to

17

separate this family again until both Strenghtened Comb and Hypotour Inequalities are found. The order

used was Multistar, followed by Strenghtened Comb and then Hypotour Inequalities. It should be noted

that separation is pursued only if the algorithm finds at least one Rounded Capacity Inequality violated

by a predefined limit. This limit is different for each family.

Non-root nodes of the branching tree are treated differently than the root node. First the algorithm

calls the routine to separate Capacity Inequalities, then we try to separate Framed Capacity Inequalities,

followed by Multistar Inequalities and Strenghtened Comb Inequalities. Unlike our approach for the root

node, these procedures are called without any conditions (limits). For each subsequent iteration, only

Capacity separation is attempted.

4.2 Packing Separation Routine

When none of the Routing Separations mentioned are found, we can use the information given by the

packing problem to add some extra cuts. Those cuts will also eliminate unfeasible routes, the ones with

clients such that theis items cannot be packed in a single vehicle. Given a partial solution for the integer

linear program (28-33) described in section 3.2, it is possible that not all variables are integer. Then we

propose two methods that can be used.

In the first method, the Branch-and-Bound is done until all values are integers, so the solution is a

set of routes. To each of these routes, the algorithm searches for a feasible packing. Figure 3 illustrates a

partial solution where all variables are integers. We will call this method BranchFirst.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3: Example of a partial solution, packing can be tested for each route.

The second strategy searches for possible cuts even with fractional values, as illustrated in Figure 4.

We define the problem of finding cuts in this partial solution as Unpackable Path Problem.

18

4.2.1 Unpackable Path Problem

The Unpackable Path Problem is the problem of given a fractional partial solution, find a path whose

customer’s items cannot be packed in that specific order. This path can be removed from the solution, by

adding a new cut.

Heuristic for Unpackable Path Problem
Initially all edges e whose value of xe is below a certain value p ą 0.5 are removed. In the example of

figure 4 we considered p “ 0.7, and removed the dashed edges. The edges incident to the depot are also

removed. We obtain a set of disjoint paths and isolated vertices, these paths are called sub-routes. Let P

be one of these paths, where
ř

ePP

xe ą m´2. The algorithm then check if the packing needed to the path

P is feasible. If it is not, we add the following cut
ř

ePP

xe ď |P | ´ 1, pruning this sub-route from the set

of solutions. We will call this strategy CutFirst.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

1

0.
6

1

1

0
.4

1

1

1

1

0.6

0.4

0.
2

0.6

0.2

0.4

0.
4

0.4

0.
2

0.6

0.4

0.
4

0.4

0.
2

0.
8

1

1

1

1

0.8

Figure 4: Example of a partial solution with fractional variables, packing can also be used to find cuts in

this case.

For each route or sub-route of a solution or partial solution, we perform the following steps: first, we

check if it can be found in the hash table, if so, it means that this route’s packing was solved previously

and its feasibility is known. Otherwise, we try our packing heuristic. The heuristic attempts to pack

the route items in both customer sequences of the route. If a feasible packing is found, we update the

hash table. If it fails, one of the exact algorithms is called and the hash table is updated with the results

found. Thus we avoid multiple calls to identical packing instances. If there is no feasible packing for the

corresponding route a cut equivalent to the route is added to remove this route.

One can also conclude the unfeasibility of routes or sub-routes by looking for unpackable subse-

quences. For instance, consider we wish to know if the route (3, 2, 9, 10, 15) is feasible or not, and we

already have concluded and stored that (3, 9, 10) is unfeasible, we can conclude that the route (3, 2, 9, 10,

15) is also unfeasible. Obviously, the search by this subsection may take some time and do not always

compensate. Therefore we tested with and without this search. Combined with strategy CutFirst, we call

this search by SubSeqSearch.

19

5 Computational Results

The proposed algorithm was implemented in c++ language, and compiled with g++ 4.6.4 in a computer

running Linux. The experiments were run on a 2.93GHz Intel Xeon Cpu. With the exception of the

metaheuristic the algorithm only runs in a single core. The integer linear programing solver used was the

Cplex 12.5.1, and the constraint programing solver was the CP Solver 1.7, both from IBM ILOG.

Following Lysgaard et al.[19] and Azevedo et al. [1] the root node separation strategy tries to separate

different families of cuts only if there is at least one Rounded Capacity Inequality violated by less than a

certain limit. These limits are: 0.2 for Framed Capacity Inequalities, 0.05 for Multistar Inequalities, 0.1

for Strenghtened Comb Inequalities and 0.1 for the 2-Edges Extended Hypotour Inequalities.

5.1 Instances

We tested our algorithm for the 2L-CVRP on the 60 in-

stances used by Iori et al. [17], from the 180 available at

http://www.or.deis.unibo.it/. These instances were based on the CVRP instances

from literature, provided by Reinelt [25]. For the 12 CVRP instances considered, Iori et al. [17] take

the complete graph connecting the clients, the weights mv for each client v and the total capacity M of

each vehicle. The distances from each pair of clients is a integer obtained by truncating the euclidian

distances.

For each one of the 12 CVRP instances, 5 classes were created by Iori, corresponding to different

ways to generate the items for each client. First class is the original instance, creating a single item for

each client with both sizes equals 1, and W “ H “ n. For the remaining classes the vehicles were

considered with sizes W “ 20 and H “ 40. and the number of items per client is a uniformly random

value in the interval r1, rs, where r is the number of the class. For each item it’s shape is selected with

equal probability among: Vertical , Homogeneous and Horizontal, and it’s values are randomly generated

in the intervals given in Table 1.

The number of vehicle available in each instance were obtained by Iori, heuristically solving a Two-

dimensional Bin Packing Problem considering all items, but not considering Unloading Constraints or

gathering items of a same customer in the same container. Then K is set to the maximum value between

this number and the number of vehicles in the original CVRP instance. These could lead to a infeasible

solution, as the number of vehicles available could be less than the number of vehicles required, but the

authors have reported that this do not occurs.

To test the efficiency of the modifications in CP2D we use the instances provided by Côté et al. [4].

These instances were obtained first creating extra instances based on the 2L-CVRP instances available at

http://www.or.deis.unibo.it/, by simply modifying the dimensions of the container accord-

ing with 5 different types:

• Type 1 : H = 40, W = 20

20

Table 1: Classes for the 2L-CVRP instances

Vertical Homogeneous Horizontal

Class Itens per Client h w h w h w

1 1 1 1 1 1 1 1

2 r1, 2s
“

4H
10 ,

9H
10

‰ “

W
10 ,

2W
10

‰ “

2H
10 ,

5H
10

‰ “

2W
10 ,

5W
10

‰ “

H
10 ,

2H
10

‰ “

4W
10 ,

9W
10

‰

3 r1, 3s
“

3H
10 ,

8H
10

‰ “

W
10 ,

2W
10

‰ “

2H
10 ,

4H
10

‰ “

2W
10 ,

4W
10

‰ “

H
10 ,

2H
10

‰ “

3W
10 ,

8W
10

‰

4 r1, 4s
“

2H
10 ,

7H
10

‰ “

W
10 ,

2W
10

‰ “

H
10 ,

4H
10

‰ “

W
10 ,

4W
10

‰ “

H
10 ,

2H
10

‰ “

2W
10 ,

7W
10

‰

5 r1, 5s
“

H
10 ,

6H
10

‰ “

W
10 ,

2W
10

‰ “

H
10 ,

3H
10

‰ “

W
10 ,

3W
10

‰ “

H
10 ,

2H
10

‰ “

W
10 ,

6W
10

‰

• Type 2 : H = 32, W = 25

• Type 3 : H = 50, W = 16

• Type 4 : H = 80, W = 14

• Type 5 : H = 130, W = 14

They end up with 900 2L-CVRP instances, in which they heuristically generate routes of clients

saving those that could not been proved unfeasible by some Lower Bounds. They end up with a total

2183 2OPPUL instances. Which we use to test the efficiency of our packing algorithms.

The heuristics presented in section 2.4 aim to solve some instances were the exact algorithm would

take to much time. As the instances provided by Côté et al. [4] does not reflect this kind of instance,

we create a new set of instances for the two-dimensional orthogonal packing problem. These instances

were generated by running our algorithm for the 2L-CVRP, and when the algorithm faces a 2OPPUL that

cannot be solved by CP2D within 1 second, we save this route as an new 2OPPUL instance. We let this al-

gorithm runs for 10 seconds. We end up with a total of 296 instances. These new instances are available at

the Laboratory of Optimization and Combinatorics website http://www.loco.ic.unicamp.br.

5.2 Efficiency of CP and Discretization Points

The use of the discretization points and the top-bottom mixfill approach were tested in the instances of

[4], and the time limit was set to 600 seconds, we compare the efficiency of CP with the Branch-and-

Bound algorithm OneBin adapted to consider unloading constraints. Column SOB presents the number

of instances solved by the adapted OneBin algorithm, column TOB presentes the average time used in

the instances that were solved. The column S and T indicates respectively the number of instances

solved, and the average time used by the CP2D with complete domain. Analogously columns Sdp and

Tdp indicates numbers of instances solved, ant average time by CP2D with reduced domain, considering

21

Figure 5: Performance of CP with dicretization points and mixfill.

only discretization points as presented in section 2.2.2. Finally columns Sdp_mix and Tdp_mix indicates

respectively the number of instances solved, and the average time used by CP2D using the discretization

points and the top-bottom mixfill presented in section 2.2.2. Those combinations of Class and type where

all the algorithms were able not able to solve any instance were ommited.

Table 2: Performance of CP with dicretization points and mixfill

Class Type #inst SOB TOB S T Sdp Tdp Sdp_mix Tdp_mix

1 3 30 27 80.37 29 9.12 30 10.39 30 8.56

1 4 198 64 185.66 185 33.81 190 28.58 190 25.85

1 5 200 3 384.01 68 153.37 79 147.92 81 151.66

2 2 1 1 0.21 1 0.06 1 0.04 1 0.00

2 3 128 122 62.47 128 18.43 128 9.88 128 8.42

2 4 198 89 195.56 187 50.90 194 47.43 194 43.37

2 5 200 5 405.06 55 162.25 61 152.17 63 159.46

3 3 2 2 32.35 2 0.36 2 0.22 2 0.19

3 4 155 30 194.35 144 30.89 148 22.45 148 22.22

3 5 206 2 345.03 59 147.54 75 124.07 75 116.87

4 4 187 2 218.11 68 152.84 85 118.86 92 114.50

4 5 182 0 0.00 1 136.231 3 332.42 4 363.55

The use of Discretization Points increased the number of solved instances in more than 8% for some

types, for example, Class 4 Type 4 and the use of the top-bottom mixfill increased up to 12% for the same

type, if compared to the CP2D with complete domain. And in none of the types the number of solved

instances has decreased when using these strategies.

22

5.3 Efficiency of metaheuristics

The proposed heuristics to solve the two-dimensional orthogonal packing problem, were implemented

using the brkgaAPI framework, that implements the BRKGA described in section 2.4.1. We use the brk-

gaAPI provided at http://www2.research.att.com/ mgcr/src/brkgaAPI/. The objective of these heuristics

are to improve the time spent to solve each route, found when solving the original set of instances to the

2L-CVRP, where the exact algorithm may take too long to compute the feasibility. Unfortunately, the

set of instances provided by Côté et al. [4] does not reflect the routes that we desire do solve with these

heuristics when solving the 2L-CVRP.

To evaluate the possible performance of these heuristics, we generate a new set of instances as follow:

We execute the branch-and-cut algorithm for 10 seconds for all the original 2L-CVRP instances provided

by Iori et al. [17], and for each route found we first check its feasibility with the lower-bounds. Than if

lower bounds does not prove its unfeasibility, we run the basic BLDW presented in section 2.3, and if it

doesn’t found a packing, we run the CP2D algorithm with 1 second limit. If feasibility or unfeasibility

has not been proved by these methods we store this route in our set of instances. The result is a set of

296 instances to the orthogonal packing problem.

We evaluate the performance of the heuristics based on BRKGA with this new set of instances. Table

3 presents the performance of the Heuristic Absolute Position presented in section 2.4.7, and Heuristic

Better Corner Point presented in section 2.4.8. The column "Type" indicates the type of the instance,

column "#inst" indicates the number of instances of that type and column "avg. it." the average number

of items in these instances. Columns Scp and Tcp represents respectively the number of feasible instances

of that type, and the average time spent by algorithm CP2D to solve the instances. Columns Sabs and

Tabs represents respectively the number of feasible solutions found by Heuristic Absolute Position and

the average time that the best solution was founded. Analogously, columns Sbcp and Tbcp represents

respectively the number of feasible solutions found by Heuristic Better Corner Point and the average

time that the best solution was founded.

Table 3: Performance of metaheuristics to orthogonal packing problem

Type #inst avg. it. Scp Tcp Sabs Tabs Sbcp Tbcp

1 0

2 0

3 22 13.05 1 2.32 0 0.13 0 0.02

4 67 14.94 9 31.11 0 0.21 2 0.03

5 207 19.84 112 62.19 0 0.39 36 0.09

All 296 18.23 122 50.7 0 0.33 38 0.07

Table 4 presents the performance of the remaining heuristics based on BRKGA introduced in section

2.4. For each heuristic h three columns Sh, Th and Hh indicates respectively, the number of feasible

solutions found by heuristic h, the average time that the best solution was founded, and the average best

23

Figure 6: Performance of metaheuristics.

fitness function achieved by heuristic h. The heuristics are

• bl: Heuristic Bottom-Left presented in section 2.4.2

• bl ´ lb: Heuristic Bottom-Left and Left-bottom presented in section 2.4.3

• t: Heuristic Tetris presented in section 2.4.4

• d.t: Heuristic Double-Layer Tetris presented in section 2.4.5

• bl ´ p: Heuristic Bottom-Left Penalty presented in section 2.4.6

Table 4: Performance of metaheuristics to strip packing problem

Type Sbl Tbl Hbl Sbl´lb Tbl´lb Hbl´lb St Tt Ht Sd.t Td.t Hd.t Sbl´p Tbl´p Hbl´p

1

2

3 0 0 53.82 0 0.06 47.05 0 0.16 44.36 0 0.17 43.68 0 0.03 50.18

4 0 0 51.84 1 0.09 47.07 0 0.15 45.03 1 0.22 44.19 0 0.04 50.49

5 4 0.02 49.46 3 0.21 46.79 2 0.27 44.51 17 0.47 43.9 2 0.1 49.67

All 4 0.01 50.32 4 0.17 46.88 2 0.23 44.61 18 0.39 43.95 2 0.08 49.9

Heuristics Better Corner Point and Double-Layer Tetris presented in section has showed the best

results, for this reason we choose to include only these two in the branch-and-cut algorithm, besides the

basic BLDW heuristic.

5.4 Comparation between different algorithms

We compare our algorithm with the exact approach presented by Iori et al. [17]. We transcribed the

results presented in their paper. We run our code in a single core of a Intel Xeon 2.93GHz, while Iori et

al. used a Intel Pentium 3Ghz.

The table 5 presents the instance Name, Class, number of clients (n), total number of items (M)

and number of available vehicles (K). For the results of Iori et al. table 4 shows the total number of

24

Cuts, the gap, the value of obtained solution (z) and The total time spent by its algorithm (Ttot. The

last 7 columns present the results of our algorithm, #Heu is the number of routes that have been proved

feasible by heuristics or by the CP2D limited by 1 second, #Ex is the number of routes that have been

proved feasible by CP2D and #ExUn if the number of unpackable routes proved by the exact algorithm.

The remaining columns presents the total number of cuts based on the packing problem (Cutspack), and

the total number of cuts based on the routing problem (Cutsrout), the total time spent (TBNC) and the

gap.

As we limit our algorithm to 3600 seconds to make the results more compatibles we remove those

lines in which both algorithm take more than an hour to return a solution, remaining 51 instances. Our

approach generates 160% more cuts than the previous approach. Both algorithms could not solve only

one of the remaining 51 instances, while Iori could not solve the instance E030-03g class 1, our approach

did not solve E030-03g class 3. Leaving out these instances our approach has been showed to be in

average 200% faster than the previous Branch-and-Cut.

Obviously no packing cut has been added in the instances of class 1, since all combinations of clients

is packable in this class. We also observe that in all instances of Class 1 (even excluding instance E030-

03g) our algorithm is very effective (more than 600% faster). Which indicates that is a good algorithm

even when only routing is considered.

The heuristics were very effective been able to find the feasible solutions of almost every route. Only

10 feasible routes in 11733 routes founded failed to be found by the heuristics. Noted that the CP2D

limited by 1 second is considered as a Heuristic. While a large number of routes were unpackable,

and discovered only by the exact algorithm, which indicates that a investment in lower bounds may be

worthwhile.

6 Conclusions and Future work

In this paper we presented a branch-and-cut algorithm for the vehicle routing problem with loading

constraints. Our algorithm has showed to be more robust and faster than the compared algorithm.

We also presented adapted exact algorithms to solve the Two and Three-Dimensional Orthogonal

Packing Problem With Unloading Constraints. In particular we adapted the algorithm presented by Clau-

tiax et al. [3], to consider the Unloading Constraints, and improved by 9% with the use of discretization

points and the top-bottom mixfill approach.

We also presented several heuristics for the Two-Dimensional Orthogonal Packing Problem With

Unloading Constraints, those heuristics were evaluated by a new set of instances. Heuristics Best Corner

Point and Double-Layer Tetris were very effective and in fact solved few OPPUL instances where the

exact algorithms were taking much more time.

Several improves yet can be made, the use of an initial primal heuristic, the use of betters algorithms

(exacts and heuristics) for OPP, improved lower bounds. It is also possible to consider variants of this

problem with new pratical constraints. As time windowns, stability.

25

Acknowledgements: This research was partially supported by CAPES, CNPq and FAPESP

proc(2011/13382-3).

References

[1] B. L. P. Azevedo, P. Hokama, F. K. Miyazawa, and E. C. Xavier. A branch-and-cut approach for

the vehicle routing problem with two-dimensional loading constraints. XLI Simposio Brasileiro de

Pesquisa Operacional, 2009.

[2] B. Baker, E. Coffman, and R. Rivest. Orthogonal packings in two dimensions. SIAM Journal on

Computing, 9(4):846–855, 1980.

[3] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming approach for

the orthogonal packing problem. Computers and Operations Research, 35(3):944 – 959, 2008.

[4] J.-F. Côté, M. Gendreau, and J.-Y. Potvin. An exact algorithm for the two-dimensional orthogonal

packing problem with unloading constrains. Technical Report CIRRELT-2013-26, Centre interuni-

versitaire de recherche sur les réseaux d’entreprise, la logistique et le transport, April 2013.

[5] J. L. M. da Silveira, F. K. Miyazawa, and E. C. Xavier. Heuristics for the strip packing problem

with unloading constraints. Computers & OR, 40(4):991–1003, 2013.

[6] J. L. M. da Silveira, F. K. Miyazawa, and E. C. Xavier. Two-dimensional strip packing with un-

loading constraints. Discrete Applied Mathematics, 164, Part 2(0):512 – 521, 2014.

[7] J. L. M. da Silveira, E. C. Xavier, and F. K. Miyazawa. A note on a two dimensional knapsack

problem with unloading constraints. RAIRO - Theor. Inf. and Applic., 47(4):315–324, 2013.

[8] C. Duhamel, P. Lacomme, A. Quilliot, and H. Toussaint. A multi-start evolutionary local search

for the two-dimensional loading capacitated vehicle routing problem. Computers and Operations

Research, 38(3):617 – 640, 2011.

[9] G. Fuellerer, K. Doernera, R. Hartla, and M. Iori. Ant colony optimization for the two-dimensional

loading vehicle routing problem. Computers and Operations Research, 36(3):655–673, 2009.

[10] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search algorithm for a routing and

container loading problem. Transportation Science, 40(3):342–350, 2006.

[11] M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuristic for the vehicle routing

problem with two-dimensional loading constraints. Networks, 51(1):4–18, 2008.

[12] J. Gonçalves and M. Resende. Biased random-key genetic algorithms for combinatorial optimiza-

tion. Journal of Heuristics, 17(5):487–525, 2011.

[13] J. Gonçalves and M. Resende. A biased random key genetic algorithm for 2d and 3d bin packing

problems. International Journal of Production Economics, 145(2):500 – 510, 2013.

26

[14] J. C. Herz. A recursive computational procedure for two-dimensional stock-cutting. ibm, pages

462–469, 1972.

[15] J. Hooker. Integrated Methods for Optimization. International series in operations research &

management science. Springer, 2007.

[16] M. Iori and S. Martello. An annotated bibliography of combined routing and loading problems.

YUGOSLAV JOURNAL OF OPERATIONS RESEARCH, 23(3), 2013.

[17] M. Iori, J. Salazar-González, and D. Vigo. An exact approach for the vehicle routing problem with

two-dimensional loading constrains. Transportation Science, 41(2):253–264, 2007.

[18] L. Junqueira, J. F. Oliveira, M. A. Carravilla, and R. Morabito. An optimization model for the

vehicle routing problem with practical three-dimensional loading constraints. International Trans-

actions in Operational Research, 20(5):645–666, 2013.

[19] J. Lysgaard, A. Lechtford, and R. Eglese. A new branch-and-cut algorithm for the ca-

pacitated vehicle routing problem. Mathematical Programming, 100(2):423–445, 2003.

http://www.hha.dk/˜lys/.

[20] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem. Operations

Research, 48(2):256–267, 2000. http://www.diku.dk/˜pisinger/.

[21] S. Martello, D. Pisinger, D. Vigo, E. D. Boef, and J. Korst. Algorithm 864: General and robot-

packable variants of the three-dimensional bin packing problem. ACM Trans. Math. Softw., 33,

March 2007.

[22] M. Mesyagutov, G. Scheithauer, and G. Belov. {LP} bounds in various constraint programming

approaches for orthogonal packing. Computers and Operations Research, 39(10):2425 – 2438,

2012.

[23] M. Mesyagutov, G. Scheithauer, and G. Belov. New constraint programming approaches for 3d

orthogonal packing. 2012.

[24] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated vrp. toth p. vigo d., eds.

the vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications, 9:53–

84, 2002.

[25] G. Reinelt. TSPLIB - a traveling salesman problem library. Report. Inst. für Mathematik, 1990.

[26] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming (Foundations of Artificial

Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[27] L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.

27

[28] E. Zachariadis, C. Tarantilis, and C. Kiranoudis. A guided tabu search for the vehicle routing

problem with two-dimensional loading constraints. European Journal of Operational Research,

195(3):729–743, 2009.

28

Table 5: Performance different packing strategies

Instance Iori BNC

Name Class n M K z Cuts Ttot Gap #Heu #Ex #ExUn Cutspack Cutsrout TBNC Gap

E016-03m 1 15 15 3 273 209 0.92 0 101 0 0 0 154 0.80 0

2 15 24 3 285 885 24.49 0 271 0 150 177 810 18.36 0

3 15 31 3 280 641 22.05 0 459 0 225 250 1328 89.36 0

4 15 37 4 288 28 2.69 0 21 0 6 6 28 0.16 0

5 15 45 4 279 4 39 0 8 0 1 1 12 1.76 0

E016-03m 1 15 15 5 329 145 0.39 0 49 0 0 0 132 0.53 0

2 15 25 5 342 397 4.27 0 99 0 28 29 526 2.95 0

3 15 31 5 347 379 3.98 0 57 0 24 28 196 1.06 0

4 15 40 5 336 212 19.09 0 103 0 7 8 392 2.15 0

5 15 48 5 329 128 25.34 0 49 0 0 0 132 0.57 0

E021-04m 1 20 20 4 351 352 4.75 0 69 0 0 0 198 0.70 0

2 20 29 5 389 1748 72.64 0 247 0 279 412 1052 19.07 0

3 20 46 5 387 144 5.05 0 145 0 133 172 432 13.57 0

4 20 44 5 374 86 59.36 0 129 0 38 42 222 5.95 0

5 20 49 5 369 46 0.25 0 53 1 2 2 85 15.66 0

E021-06m 1 20 20 6 423 93 0.19 0 93 0 0 0 316 0.92 0

2 20 32 6 434 238 2.08 0 90 0 28 28 533 1.91 0

3 20 43 6 432 432 6.16 0 131 0 29 29 902 4.81 0

4 20 50 6 438 368 6.08 0 104 1 25 25 659 17.57 0

5 20 62 6 423 154 46.31 0 85 2 8 9 319 213.92 0

E022-04g 1 21 21 4 367 41 0.05 0 38 0 0 0 169 0.12 0

2 21 31 4 380 126 2.34 0 126 0 45 50 349 2.69 0

3 21 37 4 373 52 1.95 0 47 0 16 17 219 21.19 0

4 21 41 4 377 383 35.31 0 58 0 22 24 211 0.75 0

5 21 57 5 389 39 1865.66 0 29 0 4 4 59 2.24 0

E022-06m 1 21 21 6 488 519 5.73 0 151 0 0 0 545 2.63 0

2 21 33 6 491 1010 26.52 0 132 0 42 52 852 3.77 0

3 21 40 6 496 1081 35.45 0 319 0 100 110 2948 38.39 0

4 21 57 6 489 491 7.19 0 181 0 54 67 1308 10.94 0

5 21 56 6 488 509 4.67 0 144 2 5 5 545 236.87 0

E023-03g 1 22 22 3 558 30 0.02 0 14 0 0 0 16 0.06 0

2 22 32 5 724 801 23.19 0 734 0 336 638 405 32.96 0

3 22 41 5 698 47 3.25 0 329 0 166 201 158 18.98 0

4 22 51 5 714 238 1668.05 0 734 0 354 680 362 172.79 0

5 22 55 6 742 20 782.42 0 52 0 18 20 28 1.70 0

E023-05s 1 22 22 5 657 6 0.02 0 9 0 0 0 3 0.05 0

2 22 29 5 720 980 34.42 0 611 0 430 889 389 41.26 0

3 22 42 5 730 357 69.05 0 345 0 73 143 1327 79.65 0

4 22 48 5 701 37 17.16 0 587 2 217 389 257 171.24 0

5 22 52 6 721 8 956.05 0 11 0 0 0 3 0.10 0

E026-08m 1 25 25 8 609 727 19.34 0 114 0 0 0 541 1.89 0

2 25 40 8 612 1199 56.49 0 78 0 21 23 677 0.97 0

3 25 61 8 615 1244 156.97 0 153 0 33 35 2287 15.39 0

4 25 63 8 626 1440 246.75 0 220 0 38 41 3455 47.73 0

5 25 91 8 609 527 42.48 0 136 1 18 21 917 89.46 0

E030-03g 1 29 29 3 524 6207 55700.07 0 2526 0 0 0 8912 1537.01 0

3 29 49 6 637 1620 999.16 0 657 1 42 56 1467 >3600 -

E033-03n 1 32 32 3 1991 319 6 0 50 0 0 0 42 0.75 0

E036-11h 1 35 35 11 682 1962 2128.13 0 319 0 0 0 12899 275.48 0

2 35 56 11 682 1857 1427.5 0 237 0 50 51 10919 223.92 0

3 35 74 11 682 1589 987.77 0 219 0 18 18 8886 365.75 0

29

	Introduction
	Orthogonal Packing Problem With Unloading Constraints
	Problem Description
	Definitions

	Two-dimensional Orthogonal Packing Problem with Unloading Constraints
	Branch-and-Bound algorithm
	CP model
	Reducing the Domain of Variables
	The top-bottom mixfill strategy

	Heuristic and Hash
	Metaheuristic for the Two-Dimensional Orthogonal Packing Problem With Unloading Constraints
	The BRKGA
	Heuristic Bottom-Left
	Chromosome
	Decoder
	Fitness Value

	Heuristic Bottom-Left and Left-bottom
	Chromosome
	Decoder
	Fitness Value

	Heuristic Tetris
	Chromosome
	Decoder
	Fitness Value

	Heuristic Double-Layer Tetris
	Chromosome
	Decoder
	Fitness Value

	Heuristic Bottom-Left Penalty
	Chromosome
	Decoder
	Fitness Value

	Heuristic Absolute Position
	Chromosome
	Decoder
	Fitness Value

	Heuristic Best Corner Point
	Chromosome
	Decoder
	Fitness Value

	Lower Bounds for the Orthogonal Packing Problem
	Lower Bound L1
	Lower Bound L2
	Lower Bound L3

	Three-dimensional Orthogonal Packing Problem With Unloading Constraints
	CP based algorithm - relative positions
	CP model - absolute positions

	Capacitated Vehicle Routing Problem with Loading Constraints
	Problem Description
	Formulation

	Branch-and-Cut Algorithm for the DL-CVRP
	Routing Separation Routine
	Packing Separation Routine
	Unpackable Path Problem
	Heuristic for Unpackable Path Problem

	Computational Results
	Instances
	Efficiency of CP and Discretization Points
	Efficiency of metaheuristics
	Comparation between different algorithms

	Conclusions and Future work
	References

