
Two Dimensional Strip Packing with
Unloading Constraints 1

Jefferson L. M. da Silveira 2, Eduardo C. Xavier 3 and
Flávio K. Miyazawa 4

Institute of Computing
University of Campinas - UNICAMP

Campinas, Brazil

Abstract

In this paper we present approximation algorithms for the two dimensional strip
packing problem with unloading constraints. In this problem, we are given a strip
S of width 1 and unbounded height, and n items of C different classes, each item ai
with height h(ai), width w(ai) and class c(ai). As in the strip packing problem, we
have to pack all items minimizing the used height, but now we have the additional
constraint that items of higher classes cannot block the way out of lower classes
items. In all problems but one we assume that orthogonal rotation of the items is
allowed. For the case in which horizontal and vertical movements to remove the
items are allowed, we design an algorithm whose asymptotic performance bound
is 3. For the case in which only vertical movements are allowed, we design a bin
packing based algorithm with asymptotic approximation ratio of 5.745. Moreover,
we also design approximation algorithms for restricted cases of both versions of
the problem. These problems have practical applications on routing problems with
loading/unloading constraints.

Keywords: Strip Packing Problem, Approximation Algorithms,
Unloading/loading Constraints

1 Introduction

In this paper we study two variants of the strip packing problem with un-
loading constraint, that are generalizations of the well known NP-Hard strip
packing problem. These problems arise in operations research transportation
problems, where items are delivered along a route. In these problems, it is
necessary to consider the order in which items are packed in a vehicle in order
to minimize the effort while unloading it [?,?,?,?].

In the strip packing problem with unloading constraint (SPU), we are given
a strip S of width 1 and unbounded height, and n items of C different classes,
each item ai with height h(ai), width w(ai) and class c(ai). A packing is a
feasible solution, if items do not intersect, all of them are packed inside the
strip, and there is an order to unload the items, such that no item of larger
class blocks the way out of other items. The class values c represent the order
in which items must be removed. While removing one item, only this item
can be moved and only in the available free space of the strip. Since items
are removed in increasing order of values c, we can assume that, in a feasible
packing, when removing item ai, only items aj with class c(aj) ≥ c(ai) are still
packed. The other items ak with c(ak) < c(ai) should be removed previously.
In one version of the problem, denoted by SPUv, only vertical movements
are allowed while removing one item. In this case, if an item ai is packed in
(xi, yi) (i.e. its bottom left corner is placed at this position) and aj is packed
in (xj, yj) and c(aj) > c(ai) then either xj + w(aj) ≤ xi or xi + w(ai) ≤ xj
or yj + h(aj) ≤ yi. These constraints ensure that the item aj is not blocking
ai during its removal while using only vertical movements (see Fig. 1, parts c
and d). The cost of a feasible solution is the height of the used area of the
strip.

We also consider the variant (denoted by SPUvh) in which one horizontal
movement and then one vertical movement are allowed while removing an
item (see Fig 1, parts a and b). In our algorithms we assume that orthogonal
rotation of the items is allowed unless it is said otherwise.

Given an algorithm A to SPUv, and an instance I, we denote by A(I) the
cost of the solution computed by A over the instance I. We denote by OPT (I)
the height used by an optimum packing of I. The proposed algorithm to the
SPUv problem is asymptotically bounded, thus it satisfyA(I) ≤ αOPT (I)+β,

1 This research was supported by CNPQ and FAPESP.
2 Email: jmoises@ic.unicamp.br
3 Email: ecx@ic.unicamp.br
4 Email: fkm@ic.unicamp.br

a b c d

3

1

2

aj
ai ak

aj

ak
ai ai

aj aj

ai

Fig. 1. Suppose that c(aj) > c(ak) > c(ai). (a): An infeasible solution to SPUvh,
because ak and aj are blocking ai. (b): A feasible placement to SPUvh, where the
items can be removed in order 1, 2 and 3. (c): This placement is not a feasible
solution to SPUv, because aj is blocking ai. (d): A feasible placement to SPUv,
where the items can be removed in order.

where β is a constant and α is the asymptotic approximation ratio.

In [?], Azar and Epstein proposed an online 4-competitive algorithm to
a version of the strip packing problem, where while packing one item there
must be a free way from the top of the bin until the position where the item
is packed. In this model, a rectangle arrives from the top of S as in the well
known TETRIS game, and it should be moved continuously using only the
free space until it reaches its place. In this case both horizontal and vertical
movements are allowed. If we consider that items can perform both horizontal
and vertical movements, their online algorithm can be easily modified to an
offline algorithm to the problem SPUvh. If we sort the list L of items by non-
increasing order of class values we get L′, and then if we use their algorithm
in L′ we find a feasible solution to SPUvh, since each item ai had reached its
place when there were packed only items of class greater than or equal to c(ai).
Since it could be packed in order, it can also be removed in order. This way,
we easily devise an offline 4-approximation algorithm for the SPUvh problem.

In [?], Fekete, Kamphans and Schweer, proposed a 2.6154-competitive on-
line algorithm for the strip packing problem, where items must be squares. In
this algorithm, the items are packed from the top of S and are moved only
with vertical movements to reach its final position. In addition, an item is not
allowed to move upwards and has to be supported from below when reaching
its final position. These conditions are called gravity constraints. Their slot
based algorithm can be easily used to the SPUv problem, achieving a 2.6154-
approximation, in the special case where items are squares. We just need to

sort the items in non-increasing order of class values. To the authors knowl-
edge the best online algorithm for the general case of rectangles for the strip
packing problem, is still the result of Azar and Epstein [?].

In this paper we present an algorithm with asymptotic approximation ratio
5.745 to the SPUv problem and another one with approximation ratio 3 to
the SPUvh problem when rotations are allowed. We show an algorithm for the
parametric cases of both versions problems. For the SPUvh problem we design
an algorithm for the oriented case in which the rectangles have width bounded
by 1/m, where m ≥ 2. This algorithm has asymptotic ratio (m

m−1 + ε) plus

an additive constant of 2+ε
ε

. For the parametric case of the SPUv problem,
in which the rectangles have width bounded by 1/m, m ≥ 3, we design an
asymptotic

(
m
m−2

)
-approximation algorithm.

2 An algorithm for the SPUvh problem

In this section we describe a 3-approximation algorithm, denoted by Avh, for
the SPUvh problem. We assume the constraint that items must be removed
in order from the final packing using vertical and horizontal movements in the
available free space of the strip. We assume that both width and height of
each rectangle is bounded by 1. First, we present two algorithms that will be
used as routines in the Avh algorithm.

Consider the following four types of items:

• L: items ai with h(ai) and w(ai) > 2/3.

• T : items ai with h(ai) > 2/3 and w(ai) < 1/3.

• M: items ai with any h(ai) and 2/3 ≥ w(ai) ≥ 1/3.

• S: items ai with h(ai) and w(ai) < 1/3.

It is easy to see that one can properly rotate an item such that it fits into
one of these four item types.

We present now a modified version of the classical NFDH (Next Fit De-
creasing Height) algorithm, called MNFDH (Modified NFDH) (Alg. 1) . The
NFDH algorithm generates a packing divided into horizontal levels, each level
has height equal to the maximum rectangle height among the rectangles in
the level. Rectangles packed in a same level are packed side by side. As in
the classical NFDH algorithm, the MNFDH pack the items into horizontal
sub-strips (levels), but the rule to close a sub-strip is modified. The MNFDH
algorithm deals with items of width strictly smaller than w and generate sub-
strips of height h only (w and h are parameters of this algorithm). In the

MNFDH algorithm, a sub-strip F is closed if w(F) ≥ 1− w.

Algorithm 1. Modified NFDH

1: Input: List L of items with width smaller than w and the parameters w
and h.

2: Begin
3: F ← ∅.
4: Let F be a strip at the bottom of S (level 0) of height h and width
w(F) = 0.

5: for each item a ∈ L in the input order do
6: pack a into F at the left-most position.
7: w(F) = w(F) + w(a)
8: if w(F) ≥ 1− w then
9: F ← F ∪ F .

10: Close the actual strip F and create a new sub-strip F , with w(F) = 0
and height h, above the last one.

11: Let Fnf be the set containing the last sub-strip created if its width is
smaller than 1− w.

12: Return: (F , Fnf).
13: end.

Denote each closed sub-strip as a full sub-strip (Alg. 1, line 10) and non-
full otherwise. Notice that all the generated sub-strips are full, except possible
the last one, since each item a has w(a) < w . Furthermore, if we remove the
last item (the right-most one) of each full sub-strip F , then w(F) < 1 − w,
since once w(F) ≥ 1− w the sub-strip is closed.

Now we present an algorithm called Base (Alg. 2) which deals with items
of typesM, T and S. The algorithm MNFDH is used by the Base algorithm
as a routine to pack items of types T and S. The algorithm Base starts
rotating the items a of types S and T , such that h(a) ≥ w(a) and items of
type M such that, 2/3 ≥ w(a) ≥ 1/3 (Line 3). After that, it generates five
sets of sub-strips, based on the types of each item (Lines 8 - 10). The types
S and T are packed with the MNFDH algorithm and the items of type M
are just piled left justified on the strip S (packed in individual sub-strips).
The sub-strips containing one item of type M, are considered full. Finally, it
generates the final packing by properly sorting and packing the sets of sub-
strips created, aiming to attend the unloading constraint (Lines 11 - 14 and
Fig. 2).

We prove two lemmas concerning the Base algorithm. The first one (Lemma

Algorithm 2. Base

1: Input: List L of items of types T ,M and S, partitioned into C classes.
2: Begin
3: Rotate the items a of type S and T such that h(a) ≥ w(a) and the items

of type M such that, 2/3 ≥ w(a) ≥ 1/3.
4: Let LP = {a ∈ L: a has type S}
5: Let LT = {a ∈ L: a has type T }
6: Let LM = {a ∈ L: a has type M}
7: Partition the set LP into LP0 , LP1 , . . . , LPk

, such that, a ∈ LPi
iff 1

2i·3 ≥
h(a) > 1

2i+1·3 .

8: (PF
i ,PNF

i) ← MNFDH(LPi
, 1/3, 1

2i·3), for 0 ≤ i ≤ k
9: (TF ,TNF) ← MNFDH(LR, 1/3, 1)

10: Sort items of LM in non-increasing order of class and pack each item
a ∈ LM in an individual sub-strip left justified. Denote this packing by
M.

11: For each sub-strip in TF ,TNF , PF
i and PNF

i (0 ≤ i ≤ k) sort its items by
non-increasing order of class (Starting from left).

12: Let F← TF ∪ (PF
i , 0 ≤ i ≤ k) be the final packing.

13: Sort the sub-strips in F in non-increasing order of class value of the right-
most item. Pack in S the sub-strips of F in this order.

14: Pack in S, TNF , PNF
i , 0 ≤ i ≤ k and M, in order.

15: Return: The packing in S.
16: end.

2.1), deals with the unloading constraint and Lemma 2.2 deals with the frac-
tion of occupied area of the strip S.

Lemma 2.1 The packing produced by Base satisfies the constraints of SPUvh

Proof. We are going to show that any item can be removed from the strip S
using one horizontal movement and the one vertical movement.

If an item a ∈ M then it can be removed from S since the items that
are packed above a have lower class values (Line 10). Now consider an item
a ∈ TNF ∪ (PNF

i , 1 ≤ i ≤ k). In this case, the items in the same sub-strip of
a that are to its right will be removed before a (Line 11). Moreover, since a
can reach the right-boudary of S, it can be removed from S since all strips F
above it have w(F) ≤ 2/3 (Line 14). Finally, consider an item a ∈ TF ∪ (PF

i ,
1 ≤ i ≤ k), packed in a sub-strip F . Since the items in F are sorted, from left
to right, by non-increasing class, a can reach the right-most side of S (Line

 1/3

am+1

 2/3

PF

RF

PNF
 U TNF

M
am

as
ak
aja2a1

Fig. 2. The packing generated by the Base algorithm. Items in each sub-strip
are sorted by class in non-increasing order (i.e. c(a1) ≥ c(a2) ≥ . . . ≥ c(aj).
Furthermore, the sub-strips in PF ∪ TF are sorted by the class of the right most
item (i.e. c(aj) ≥ c(ak) ≥ c(al)). Finally, the items in M are sorted by class in
non-increasing order (i.e. c(am) ≥ c(am+1)).

10). Furthermore, since the strips are sorted, starting from the bottom of S,
in non-increasing order of the class of the right-most item in the sub-strip,
we can conclude that at least one item (the right-most one) of each sub-strip
above F , in TF ∪ (PF

i , 1 ≤ i ≤ k), will be removed before a. Thus, a can be
removed using the right-most side of S, since at this moment each sub-strip
above F has width strictly smaller than 1− w = 2/3. 2

Lemma 2.2 The sub-strips in the sets F and M generated by the Base algo-
rithm have at least 1/3 of occupied area.

Proof. We are going to show that the strips in TF , (PF
i , 0 ≤ i ≤ k) and M,

have at least 1/3 of occupied area.

The sub-strips F with one item a of typeM have w(a) ≥ 1/3 and h(F) =
h(a) , we can conclude that this sub-strips has at least, w(a) ·h(a)/h(F) ≥ 1/3
of occupied area.

The sub-strips F ∈ TF have h(F) = 1 and w(F) ≥ 1 − w = 2/3. They
have, at least (2/3)2 > 1

3
of occupied area, since items of type T items have

height strictly larger than 2/3. Finally, the sub-strips in PF
i have height 1

2i·3

and are used to pack items of height larger than 1
2i+1·3 , so, they have, at least

(1− w) · 1
2i+1·3

1
2i·3

=
1

3

of occupied area. 2

Now we present the algorithm Avh (Alg. 3) that computes the packing
of all items. The algorithm starts sorting the list L in non-increasing order
of class value with ties broken by widest first (Line 4). Then the algorithm
proceeds selecting a maximal prefix of items of types S, T and M, which
are going to be packed with the algorithm Base (Lines 10 to 12). After that
(Lines 13 to 15), the algorithm selects and removes a maximal prefix of items
of type L items, which are going to be packed in individual strips (like the
items of type M in Base algorithm). The next step of the algorithm is to
push in front of L the non-full sub-strips which do not brake the unloading
constraint (Lines 16 to 20). Then the algorithm proceeds packing the selected
items and sub-strips (Lines 20 and 21). The algorithm ends when there are
no more items to be packed.

Lemma 2.3 The packing produced by Avh satisfies the constraints of the
SPUvh problem.

Proof. We are going to prove that the unloading constraint is satisfied as a
loop invariant for line 5 of the Avh algorithm.

Notice that before the first iteration we have an empty solution or a se-
quence of type L items piled left justified on S, which is trivially feasible. Now
suppose that the algorithm is starting its ith iteration over the while loop con-
sidered, and assume that the current solution is feasible. Let F be the set of
sub-strips generated in this iteration and {b1, . . . , bj} be the set of items of
type L that will be packed in this iteration. By Lemma 2.1 the packing is
feasible considering items in F. The only problem are those items of types T
and S in F with classes higher than the classes of the items already packed.
These items came from non-full sub-strips F that were not packed in previous
iterations because w(F) + w(b) ≤ 1 (for some item b of type L) Notice that
w(F) ≤ 1 − w(b) ≤ 1/3 (Line 12). Then, each new sub-strip F ′ of type T
or S contains at most w′ = 1/3 of width occupied with higher class items.
Since items in each one of these sub-strips are sorted by non-increasing order
of class, these higher classes items can not block any other item a already
packed because it can block only items of type L. But this does not occur

Algorithm 3. Avh
1: Input: List L of n items partitioned into C classes.
2: Begin
3: Assign each item of L into one of the types L, T ,M and S doing rotations

if necessary.
4: For each item ai ∈ L ∪ S rotate it such that h(ai) ≥ w(ai), 1 ≤ i ≤ n.
5: Sort items of L by class value in non-increasing order. Ties are broken by

widest first.
6: Let B = {b1, . . . , bj} be a maximal prefix containing only items of type L.

in L.
7: Pack B left justified in individual sub-strips at the bottom of S in order.
8: L← L\B
9: while L 6= ∅ do

10: Let {a1, . . . , ai} be a maximal prefix of L containing only items of types
S, T or M.

11: Let F ← Base({a1, . . . , ai})
12: L← L\{a1, . . . , ai}
13: Let B = {b1, . . . , bj} be a maximal prefix of items of type L in L.
14: L← L\B
15: Let b be the widest item in B
16: for each non-full sub-strip F ∈ F do
17: if w(F) + w(b) ≤ 1 then
18: F ← F\{F}.
19: for each item a′ ∈ F do
20: Insert a′ in L, keeping it sorted.
21: Pack F in S in order.
22: Pack items in B left justified in individual sub-strips above all previous

items.
23: Return: The generated packing.
24: end.

since w′ + w(b) ≤ 1 for all items b of type L of lower classes.

2

2.1 Avh Analysis

Lemma 2.4 The set of sub-strips generated by the Avh algorithm has at least
1/3 of occupied area, except for 5/3 of height.

Proof. At first, notice that the full sub-strips have, at least, 1/3 of occupied

area (Lemma 2.2).

So we just need to prove that the non-full sub-strips and the strips with
items of type L also have, at least 1/3 of occupied area on average. We are
going to associate each non-full sub-strip packed in line 16 of theAvh algorithm
with the largest item of type L above it packed in the same iteration. Notice
that at any given iteration, the Base algorithms generates at most one non-full
sub-strip in TNF of type T and at most one non-full sub-strip PNF

i for each
i ≥ 0, that packs items of type S.

The total height of PNF
i sub-strips is

sh =
∞∑
i=0

1

2i · 3
= 2/3

The total height of an item of type T is 1.

If at some iteration no item of type L is packed, then this is the last
iteration. So at most 5/3 of height of non-full sub-strips will not be associated
with any items of type L.

Consider some iterations where non-full sub-strips aare packed, and let b
be the widest item of type L packed in this same iteration above this non-full
sub-strips. We associate them uniquely with b.

The sub-strip B that contains b has h(B) = h(b) and w(B) = w(b) ≥ 2/3.
Besides that, the possible sub-strip F ∈ TNF has h(F) = 1 and w(F) ≥
1−w(b) otherwise it would not be packed in this iteration. Furthermore each
item a in F has h(a) ≥ 2/3. Finally, each sub-strip Fi ∈ TNF has h(Fi) = 1

2i·3
and also w(Fi) ≥ 1− w(b). Moreover each item a in Fi has h(a) > 1

2i+1·3 .

We can bound the occupied area in the strips B, F , and all Fi by

h(b) · w(b) + [1− w(b)] · 2/3 + [1− w(b)] · sh
2

h(b) + 1 + sh
(1)

where 2/3 < w(b) ≤ h(b) ≤ 1 and 0 ≤ sh ≤ 2/3. The minimum of this
function occurs when w(b) = h(b) = 2/3 + ε and sh = 2/3 and has value
> 1/3 (see Appendix 7.1). 2

Theorem 2.5 Let L be a list of rectangles, then, Avh(L) ≤ 3 ·OPT (L)+5/3.

Proof. Let S be the solution returned by the algorithm Avh. It is filled by full
sub-strips, and type L items with its associated non-full sub-strips. Due to
Lemma 2.4, the strip S have at least 1/3 of occupied area on average, except
perhaps the 5/3 of height. So we can conclude that (Avh(L) − 5/3) · 1/3 ≤

∑
ai∈L h(ai) · w(ai) and then

Avh(L) ≤ 3 ·OPT (L) + 5/3

2

3 An Algorithm to a parametric oriented case of the
SPUvh Problem

In this version of the problem, we are going to assume that the items can not
be rotated and the width of the items is bounded by 1/m, m ≥ 2. Since the
approximation analysis is based on area arguments the result remain valid for
the case in which rotations are allowed.

The algorithm is called Apvh (Alg. 4) and takes two parameters: the factor
m and a constant ε. The algorithm starts by partitioning the input list L by
the height of the items. Then it generates a set of strips for each partition
using the algorithm MNFDH (Alg. 1). Finally it proceeds by packing and
sorting the full sub-strips and then packing the non-full ones.

Algorithm 4. Apvh
1: Input: List L of items partitioned into C classes, m and ε.
2: Begin
3: P ← ∅ and N ← ∅
4: Let r = 1

1+ε/2

5: Let Li = {a : a ∈ L and ri+1 < h(a) ≤ ri}, for i ≥ 0.
6: for each i do
7: (F ,F ′)← MNFDH(Li, 1/m, r

i)
8: P ← P ∪ F
9: N ← N ∪ F ′

10: Sort items in each sub-strip in P ∪ N by non-increasing order of class
(Starting from left).

11: Sort the sub-strips in P by non-increasing order of class of the right-most
item.

12: Pack P in S in order and then pack , N in S above P .
13: Return: The generated packing.
14: end.

Lemma 3.1 The packing produced by Apvh satisfies the constraints of SPUvh

Proof. This proof is similar to the proof of the Lemma 2.1. 2

3.1 ApvhAnalysis

Theorem 3.2 Let L be a list of rectangles, then Apvh(L) ≤
(

m
m−1 + ε

)
·OPT (L)+

2+ε
ε

.

Proof. First, consider some sub-strip F ∈ P . Since this sub-strip is full,
we have that w(F) ≥ 1 − 1/m and, moreover, suppose that F was created
to pack items from the list Li, which means that this sub-strip has, at least
ri+1

ri
= r of occupied height. Then we can bound the occupied area in the strip

F by r(1 − 1/m) = r(m−1)
m

. Also notice that there is, at most one sub-strip
F ∈ N with items from Li. So we can bound the total height of strips in N
by
∑∞

i=0 r
i = 1

1−r = 2+ε
ε

Finally we have (Apvh(L)− 2+ε
ε

) · r(m−1)
m
≤
∑

ai∈L h(ai) · w(ai) and then

Apvh(L) ≤
(

(1 + ε/2) ·m
m− 1

)
·OPT (L)+

2 + ε

ε
≤
(

m

m− 1
+ ε

)
·OPT (L)+

2 + ε

ε

2

4 An Algorithm to the SPUv Problem

In this Section we present an algorithm, denoted by Av to solve the SPUv

problem when only vertical movements of items are allowed and orthogonal
rotation of items is allowed. We are going to use the NFDH algorithm. In [?],
Meir and Moser proved the following result for the NFDH:

Theorem 4.1 Any list of rectangles L = {a1, . . . , an} with total area A can
be packed by the NFDH algorithm into a unit square if 1 ≥ w(ai) ≥ h(ai), for
i = 1, . . . , n; h(ai) ≥ h(ai+1), for i = 1, . . . , n− 1 and A ≤ 7

16
.

The algorithm Av computes the solution in two stages. First it packs the
items into bins of height 1 and width 1 (unit square bins), using the NFDH
algorithm. The algorithm also packs some large items alone in one bin. The
bins used to pack these large items have height 1 and width equal to the
width of the item. Then it packs the bins rotated into S (the strip) such
that each level (sub-strip) created by the NFDH becomes vertical, but with
limited height 1, the maximum width of the bin. We first show the bin packing
algorithm named Bin Packing Decreasing Order (BPDO) in Algorithm 5, and
then we present the Av in Algorithm 6.

Denote by Bk the kth bin created by the algorithm BPDO, h(Bk) its
occupied height and w(Bk) the occupied width. Also denote by A(L) =∑

ai∈L h(ai)w(ai), where L = (a1, . . . , am) is a list of items.

The BPDO algorithm starts by sorting the items in non-increasing order
of class values (line 4). Then it selects the largest prefix of items that can
be packed in a bin B of height 1 and width 1 using the NFDH algorithm
(line 6). By Theorem 4.1 these items can be packed in a single bin (line 9).
After packing these items, the algorithm sorts each level created by the NFDH
algorithm by class values (line 10). The algorithm then removes the packed
items from the list of items (line 11). If the first item ai of the remaining list
has w(ai)h(ai) ≥ 0.263422, the algorithm packs it alone in a new bin B′, of
width w(ai) (line 14). The algorithm repeats this process until L = ∅.

Algorithm 5. Bin Packing Decreasing Order (BPDO)

1: Input: List L of items partitioned into C different classes.
2: Begin
3: Let LB = ∅ be a list of bins.
4: Sort items in L in non-increasing order of class value.
5: while (L 6= ∅) do
6: Let L′ = (ai, . . . , ak) be the largest prefix of L such that A(L′) ≤ 7/16 <

A(L′ ∪ {ak+1}).
7: Rotate the items ai in L′ such that w(ai) ≥ h(ai).
8: Sort L′ in non-increasing order of height.
9: Pack L′ using the NFDH algorithm in a new bin B.

10: Sort itens in each generated level in non-increasing order of class value.

11: L← L\L′ and LB ← LB +B
12: if (A({ak+1}) ≥ 0.263422) then
13: Rotate ak+1 such that h(ak+1) ≥ w(ak+1)
14: Pack ak+1 in a new bin B′ of height 1 and width w(ak+1).
15: L← L\{ak+1} and LB ← LB +B′

16: Return LB.
17: end.

The algorithm Av is presented in Algorithm 6. It just calls the algorithm
BPDO, merge all bins returned side by side forming a strip of height 1 and
width equal to the total width of the bins. The strip is rotated to provide a
solution to the original problem.

Algorithm 6. Av
1: Input: L = {a1, a2, . . . ,an}
2: Begin
3: Let B1, B2, . . . , Bm be the bins computed by BPDO in the order they were

created.
4: Concatenate B1, B2, . . . , Bm forming one strip S of height 1 and width∑m

k=1w(Bi).
5: Return S rotated such that its width is 1 and its height is

∑m
k=1w(Bk).

6: end.

Theorem 4.2 The packing produced by Av satisfies the constraints of SPUv

Proof. Let B1, . . . , Bm be the bins created by BPDO in the order they were
created. These bins are packed in the strip S in the order they were created.
For each successive pair of bins Bk and Bk+1 we guarantee that all items in
Bk+1 have class smaller than or equal to the items in Bk, since the algorithm
packs items in non-increasing order of classes. So items in one bin will not
block items in previous bins. Inside each bin, the feasibility of the solution
is guaranteed by the packing in levels. Items in each level are sorted by non-
increasing order of class value. Each level generated by the NFDH algorithm
is rotated in the final solution (line 5 of Alg. 6). Also notice that different
levels does not interfere with each other, since all items are packed completely
inside a sub-strip (level). 2

4.1 Av Analysis

In this Section we use arguments based on the occupied area of each bin to
prove the approximation of the Av algorithm.

Lemma 4.3 Let B1, . . . , Bm be the bins computed by BPDO in the order they
were created. Then B1, . . . , Bm−1 have occupied area of at least 0.174 on av-
erage.

Proof. We will prove that the bins created in each iteration of the main loop
(line 5) have at least 0.174 of occupied area on average (except perhaps the
last created bin). Consider some iteration of the main loop at line 5. Let Bj

be the jth-created bin using NFDH(L′) at line 9, where L′ = {ai, . . . , ak}.
Case 1: Consider that A({ak+1}) < 0.263422. Since A(L′) ≤ 7/16 < A(L′ ∪
{ak+1}) we have

A(L′) > 7/16− A({ak+1}) > 7/16− 0.263422 ≈ 0.174078

and all items in L′ are packed in Bj by Theorem 4.1. Since A({ak+1}) <
0.263422 only this bin is created on this iteration of the loop.

Case 2: Consider that A({ak+1}) ≥ 0.263422. Then ak+1 is rotated, such
that h(ak+1) ≥ w(ak+1), and it is packed in a new bin Bj+1, where w(Bj+1) =
w(ak+1).

The total width occupied in the two bins Bj and Bj+1 is at most (1 +
w(ak+1)) and the total area of the items packed in these two bins is h(ak+1)w(ak+1)+
A(L′). Then we can bound the occupied area in the occupied width of bins
Bk and Bk+1 by

w(ak+1)h(ak+1) + A(L′)

1 + w(ak+1)
(2)

where 1 ≥ h(ak+1) ≥ w(ak+1) > 0, A({ak+1}) > 0.263422 and 0 < A(L′) ≤
7/16. The minimum of this function occurs when w(ak+1) = h(ak+1) ≈
0.51325, A(L′) = 0 and has value ≈ 0.174077 > 0.174 (see 7.2). 2

Theorem 4.4 Let L be a list of rectangles, then, Av(L) ≤ 5.745OPT (L) + 1.

Proof. Due to Lemma 4.3, each bin created by the algorithm has on average
0.174 of occupied area in the corresponding width, except perhaps the last
generated bin. Since the total width of the bins corresponds to the total
height of the used strip we have (Av(L) − 1)0.174 ≤

∑
ai∈Lw(ai) · b(ai) and

then

Av(L) ≤ 5.745
∑
ai∈L

w(ai) · b(ai) + 1 ≤ 5.745OPT (L) + 1.

2

5 An algorithm to a parametric version of the SPUv

problem

In this Section we present an algorithm for a special version of the SPUv

problem where the width and the height of the items are bounded by 1/m,
m ≥ 3 and the items can be rotated. The algorithm presented in this section
is similar to the Av algorithm, but even simpler. In this case we are going to
use a result presented by Li and Cheng [?]

Theorem 5.1 A list L of rectangles L = {ai, . . . an}, can be packed in a unit
square bin by the NFDH algorithm if exists an integer m ≥ 3 such that:

(i) h(ai) ≤ 1
m

, 1 ≤ i ≤ n

(ii) w(ai) ≤ 1
m

, 1 ≤ i ≤ n

(iii)
∑n

i=1 h(ai)w(ai) ≤
(
1− 1

m

)2
The algorithm for this restricted case is called Apv (Alg. 7) and takes only

one parameter, the value of m. The algorithm starts by sorting the input list
L in class in non-increasing order of class (Line 4). Then, while exists items
to be packed, it selects the largest prefix of items that can be packed in a unit
square bin B using the NFDH algorithm (line 6). This prefix is selected using
the Theorem 5.1 (line 9). After packing this prefix, the algorithm sorts items
in each level created by the NFDH algorithm by class values (line 10). The
algorithm repeats this process until L = ∅. Finally, it joins the created bins
forming the final strip S (Line 11).

Algorithm 7. Apv
1: Input: List L of items partitioned into C different classes.
2: Begin
3: Let LB = ∅ be a list of bins.
4: Sort items in L in non-increasing order of class.
5: while (L 6= ∅) do
6: Let L′ = (ai, . . . , ak) be the largest prefix of L such that A(L′) ≤(

1− 1
m

)2
< A(L′ ∪ {ak+1}).

7: Rotate the items ai in L′ such that w(ai) ≥ h(ai).
8: Sort items in L′ in non-increasing order of height.
9: Pack L′ using the NFDH algorithm in a new bin B.

10: Sort items in each generated level in non-increasing order of class value.
11: Concatenate the list LB = {B1, . . . , Bm} in order, forming one strip S of

height 1 and width
∑m

k=1w(Bi).
12: Return S rotated such that its width is 1 and its height is

∑m
k=1w(Bk).

13: end.

Lemma 5.2 The packing produced by Apv satisfies the constraints of SPUv

Proof. This proof is similar to the proof of the Theorem 4.2. 2

5.1 Apv Analysis

Theorem 5.3 Let L be a list of rectangles, then Apv(L) ≤
(

m
m−2

)
·OPT (L)+1.

Proof. Notice that each bin Bi ∈ LB has at least (1 − 1
m

)2 − 1
m2 = m−2

m
of

occupied area, since A(Bi) + h(a)w(a) >
(
1− 1

m

)2
for some item a (Line 6).

Then we have (Apv(L)− 1) · m−2
m
≤
∑

ai∈L h(ai) · w(ai) and then

Apv(L) ≤
(

m

m− 2

)
·OPT (L) + 1

2

6 Concluding Remarks

In this paper we consider a variant of the two dimensional strip packing prob-
lem where we have constraints on how items can be removed from the strip.
These are called unloading constraints and appear in vehicle routing problems
where items are delivered along a route. We presented an algorithm with
asymptotic performance bound 5.745 for the SPUv problem when rotations
are allowed. We also design a 3-approximation algorithm for the SPUvh prob-
lem when rotations are allowed. Finally, we also design two algorithms for
parametric cases of both problems. For the parametric SPUvh problem where
the rectangles have width bounded by 1/m, m ≥ 2, we design an algorithm
with asymptotic ratio (m

m−1 + ε) plus an additive constant of 2+ε
ε

. For the
parametric SPUv problem, in which the rectangles have width bounded by
1/m, m ≥ 3, we design an asymptotic

(
m
m−2

)
-approximation algorithm.

7 Appendix

7.1 Minimizing function (1)

Proof. We have to find the minimum of the function

f(x, y, z) =
xy + (z/2 + 2/3) · (1− y)

x+ z + 1

where 1 ≥ y ≥ x ≥ 2/3 and 2/3 ≥ z ≥ 0.

This function has no critical points in the considered region. Moreover the
function ∂f

∂z
= x(3−9y)+y−1

6(x+z+1)2
< 0, in the considered region. Thus the minimum

of this function can be found on the limits of the region, in this case when
z = 2/3.

So we just need to consider the function

g(x, y) =
3y(x− 1) + 3

3x+ 5

over the regions x = 1, x = y and y = 2/3.

When x = 1 the function g has value 3
8
. If x = y, then we must minimize

the function 3(1−x+x2)
5+3x

, 2/3 < x ≤ 1, which has a point of minimum when
x = 2/3, which leads to a minimum of 1/3. Finally, when y = 2/3, we must
minimize the function 2x+1

3x+5
, 2/3 < x ≤ 1, which has minimum when x = 2/3,

which leads , again, to 1/3.

Thus, the minimum of f relies on x = y = z = 2/3 and has value 1/3. 2

7.2 Minimizing function (2)

Proof. Since A(L′) only adds area to the function we can easily see that the
minimum of the function occurs when A(L′) = 0 and so we have to find the
minimum of the function

f(x, y) =
xy

x+ 1
where 1 ≥ y ≥ x > 0 and xy > 0.263422 (see the analyzed region in Fig. 3).

The critical points of this function can be found with ∂f
∂x

= 0 and ∂f
∂y

= 0

and we have the point (x, y) = (0, 0). Since this point is outside of the
considered region (see Fig. 3) we analyze the boundaries of the region.

Case 1: Consider that y = 1. Then f(x, 1) = x
x+1

which is strictly increasing
at (0.263422; 1] and so we find the minimum with x = 0.263422, which leads
to a minimum of 0.208499.

Case 2: Consider that x = y. Then f(x, x) = x2

x+1
which is strictly increasing

at (
√

0.263422; 1] and so we find the minimum with x =
√

0.263422, which
leads to a minimum of 0.263422

1+
√
0.263422

.

Case 3: Consider that xy = 0.263422. Then f(x, y) = 0.263422
x+1

which is

strictly decreasing at (0.263422,
√

0.263422] and so we find the minimum with
x =
√

0.263422, which leads to a minimum 0.263422
1+
√
0.263422

.

So the minimum of the function

w(ak+1)h(ak+1) + A(L′)

1 + w(ak+1)

occurs when w(ak+1) = h(ak+1) =
√

0.263422, A(L′) = 0 and has value
0.263422

1+
√
0.263422

≈ 0.174077. 2

y

x10.263422

0.263422

1
y = 1

y = x

yx = 0.263422

0.263422

0.263422

Fig. 3. The boundaries of the analyzed region: y = x, y = 1, y = 0.263422
x .

	Introduction
	An algorithm for the SPUvh problem
	Avh Analysis

	An Algorithm to a parametric oriented case of the SPUvh Problem
	ApvhAnalysis

	An Algorithm to the SPUv Problem
	Av Analysis

	An algorithm to a parametric version of the SPUv problem
	Apv Analysis

	Concluding Remarks
	Appendix
	Minimizing function (??)
	Minimizing function (??)

