

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Organização Básica de computadores e linguagem de montagem

Representação de Informações no Computador

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

Como representar informações em um computador?

- Números inteiros?
- Texto?
- Registros?
- Vetores?

Como representar informações em um computador?

- Informações são representadas através de dígitos binários, ou BITs (BInary digiTs).
- Dígitos 0 e I
- Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?

Como representar informações em um computador?

- Informações são representadas através de dígitos binários, ou *BITs* (*BInary digiTs*).
- Dígitos 0 e I
- Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?
 - 8 estados se utilizarmos notação posicional
 - 4 estados se utilizarmos notação não posicional

```
■ 1: 001,010,100 (um bit l e dois bits 0)
■ 2: 110,101,011 (um bit 0 e dois bits 1)
■ 3: 000 (três bits 0)
■ 4: 111 (três bits 1)
```

Notação posicional: valor do dígito depende da sua posição.

- Exemplo: Número decimal 132
 - Valor do dígito 2 = 2
 - Valor do dígito 3 = 30
 - Valor do dígito I = 100

Notação posicional: valor do dígito depende da sua posição.

- Exemplo: Número decimal 132
 - Valor do dígito 2 = 2
 - Valor do dígito 3 = 30
 - Valor do dígito I = 100

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

A quantidade de dígitos distintos define a base numérica. Exemplos

- Base 2, ou binária => 2 dígitos distintos: 0 e 1
- Base 8, ou octal => 8 dítigos distintos: 0, 1, ..., 7
- Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
- ...

Quais são os dígitos utilizados na base 16?

A quantidade de dígitos distintos define a base numérica. Exemplos

- Base 2, ou binária => 2 dígitos distintos: 0 e 1
- Base 8, ou octal => 8 dítigos distintos: 0, 1, ..., 7
- Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
- ...

Quais são os dígitos utilizados na base 16?

Dígitos da base hexadecimal: 0, 1, ..., 9, A, B, C, D, E, F

Qual é a base dos números abaixo?

- FE03
- 8230
- 9210
- 1001

Qual é a base dos números abaixo?

- FE03
- 8230
- 9210
- 1001

Para distinguir temos que anotar o número com a base. Exemplos:

- FE03₁₆
- 1001
- 1001,

Qual é o valor de cada dígito nos números abaixo?

- 9210₁₀
- 1001₂

Qual é o valor de cada dígito nos números abaixo?

- 9210₁₀
- 100₁

O valor de um dígito d em um número na base t é dado por:

d x t posição

Onde a posição é dada pela seguinte convenção:

Qual é o valor de cada número abaixo em decimal?

- 1001₂
- FF₁₆

Qual é o valor de cada número abaixo em decimal?

- 1001₂
- FF₁₆

O valor de um número na base **t** com **n** dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} \mathbf{d}_i \times \mathbf{t}^i$$

onde d_i é o dígito na posição i.

Qual é o valor de cada número abaixo em decimal?

•
$$|00|_2 = |x^2| + 0x^2 + 0x^2 + 1x^2 = 9_{10}$$

•
$$FF_{16}^{2} = F \times 16^{1} + F \times 16^{0} = 15 \times 16 + 15 \times 1 = 255_{10}$$

O valor de um número na base t com n dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} \boldsymbol{d}_{i} \times \boldsymbol{t}^{i}$$

onde d_i é o dígito na posição i.

Conversão de bases numéricas

Como fazemos para converter um número na representação decimal para a representação binária?

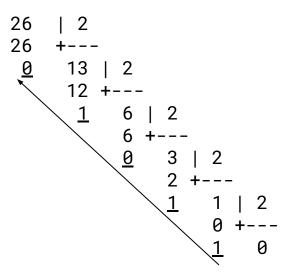
Por exemplo: o número 26₁₀

26

Conversão de bases numéricas

Como fazemos para converter um número na representação decimal para a representação binária?

• Por exemplo: o número $26_{10} = 11010_2$



Conversão de bases numéricas

Tipo de conversão	Procedimento
Decimal => Binário	Divisões sucessivas por 2 até se obter zero no quociente. Leitura dos dígitos binários no resto de baixo para cima.
Binário => Decimal	Soma de potências de 2 cujo expoente é a posição do bit e cujo coeficiente é o próprio bit.
Hexadecimal => Binário	Expandir cada dígito hexa em quatro dígitos binários segundo seu valor.
Binário => Hexadecimal	Compactar cada quatro dígitos binários em um único dígito hexa segundo seu valor.
Decimal => Hexadecimal	Divisões sucessivas por 16 até se obter zero no quociente. Converter restos p/ dígitos hexadecimais. Leitura dos dígitos de baixo para cima.
Hexadecimal => Decimal	Soma de potências de 16 cujo expoente é a posição do dígito e cujo coeficiente é o valor do próprio dígito hexa.

Bases numéricas - Exercícios

Qual o valor em binário dos seguintes números

- 151₆
- 139₁₀

Qual o valor em hexadecimal dos seguintes números

- 101001₂
- 16₁₀
- 240₁₀
- 20₈

Números Sem Sinal

Na representação sem sinal, todos os bits são utilizados como dígitos do número.

• Exemplo: Registradores com 3 bits podem representar 8 números distintos: 0 a 7

$$000_{2} = 0_{10}$$
 $001_{2} = 1_{10}$
 $010_{2} = 2_{10}$
 $011_{2} = 3_{10}$
 $100_{2} = 4_{10}$
 $101_{2} = 5_{10}$
 $111_{2} = 7_{10}$

Números Com Sinal

Três tipos de codificação mais conhecidas

- Sinal e magnitude
- Complemento de I
- Complemento de 2

Sinal e Magnitude

Na representação "sinal e magnitude" o bit mais à esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.

Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?

- 0001 0101₂
- 1000 1010₂

Sinal e Magnitude

Na representação "sinal e magnitude" o bit mais à esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.

Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?

- 0001 0101₂
- 1000 1010₂

E estes números?

- 0000 0000₂
- 1000 0000₂

Sinal e Magnitude

Número binário	Valor na rep. sem sinal	Valor na rep. Sinal e Mag.
000	0	0
001		I
010	2	2
011	3	3
100	4	-0
101	5	-1
110	6	-2
	7	-3

Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit I => o número é negativo. Para descobrir a magnitude, basta inverter todos os bits e computar o valor na representação sem sinal.

Qual é o valor de 10010₂?

Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

 Primeiz alor Magnitude(10010_2) = 01101_2 = 13_{10} repres Primei $Logo: 10010_{2} = -13_{10}$ descol os bits e computar o valor na repre zao sem sinal. Qual é o valor de $10010_9 = -17$

Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de I
000	0	0	0
001	I	I	I
010	2	2	2
011	3	3	3
100	4	-0	
101	5	-1	
110	6	-2	
111	7	-3	

Na representação "complemento de I" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de I
000	0	0	0
001	I	I	I
010	2	2	2
011	3	3	3
100	4	-0	-3
101	5	-1	-2
110	6	-2	- l
111	7	-3	-0

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit I => o número é negativo. Para descobrir a magnitude, devemos inverter todos os bits, somar I, e então computar o valor na representação sem sinal.

Qual é o valor de 10010₂?

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Magnitude(
$$10010_2$$
) = $01101_2 + 1_2 = 01110_2 = 14_{10}$

$$Logo: 10010_2 = -14_{10}$$

os *bits*, somar I, e então d na representação sem sir

Qual é o valor de
$$10010_2 = -14_{10}$$

o valor

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Valor na rep.	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	I	I	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	
101	5	-1	-2	
110	6	-2	- l	
111	7	-3	-0	

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número	Valor na rep.	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	I	I	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
	7	-3	-0	-

Representação de Números

Representações "Sinal e Mag." e "Comp. de I" possuem duas representações para o zero: 0 e -0

=> A representação "complemento de 2" é a mais utilizada.

Número	Valor na rep.	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	I	I	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	- l	-2
111	7	-3	-0	- l

Representação de Números

Número	Valor na rep.	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001	I	I	I	I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-l	-2	-3
110	6	-2	-l	-2
111	7	-3	-0	-1

Maior	7	3	3	3
Menor	0	-3	-3	-4

Representação de Números

Número	Valor na rep.	Valor na rep.	Valor na rep.	Valor na rep.
binário	sem sinal	Sinal e Mag.	Comp. de I	Comp. de 2
000	0	0	0	0
001	I	I		I
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-l	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-l
Maior	7	3	3	3
Menor	0	-3	-3	-4

Maior	2 ⁿ -1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1
Menor	0	-(2 ^{n-l} -1)	-(2 ^{n-l} -1)	-(2 ⁿ⁻¹)

Números no Computador

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

Números no Computador

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

 Quantos bits o computador usa para codificar cada número?

Números no Computador

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

- Quantos bits o computador usa para codificar cada número?
 - O IAS utiliza 40 bits!
 - Palavras da memória possuem 40 bits
 - Registradores da ULA possuem 40 bits.

 \bigcirc

Números no Computador

Computadores modernos codificam números com palavras de 8, 16, 32, 64 ou mais bits.

Geralmente é uma potência de 2.

Uma arquitetura de 32 bits é uma arquitetura que é capaz de armazenar e realizar operações aritméticas em números com até 32 bits.

Complemento de 2

Números de 32 bits em Complemento de 2:

```
0000 0000 0000 0000 0000 0000 0000 _2 = 0_{10}
0000 0000 0000 0000 0000 0000 0000 _2 = + 1_{10}
0000 0000 0000 0000 0000 0000 _2 = + 2_{10}
                                                     maxint
minint
```

Aritmética Binária: Soma e Subtração

Como no ensino fundamental: (vai-um/vem-um)

Aritmética Binária: Soma e Subtração

Como no ensino fundamental: (vai-um/vem-um)

Subtração em complemento de 2 pode ser feita com uma soma (A - B = A + (-B)).

• Ex:
$$7 - 6 = 7 + (-6)$$

Aritmética Binária: Overflow

Overflow: quando o resultado é maior (menor) do que a palavra do computador pode representar.

Exemplo: Ocorre overflow na operação abaixo?

```
0111 (7)
+ 0001 (1)
  1000
```

Aritmética Binária: Overflow

Overflow: quando o resultado é maior (menor) do que a palavra do computador pode representar.

• Exemplo: Ocorre overflow na operação abaixo?

0111 (7)
+ 0001 (1)

Na representação sem sinal não ocorre overflow.

Note que 7+1 = 8

Na representação complemento de 2 ocorre overflow.

Note que 7+1 != -8

Aritmética Binária: Detecção de *Overflow*

- Não ocorre overflow quando adicionamos um número positivo a um número negativo
- Não ocorre overflow quando os sinais dos números são os mesmos na subtração
- Ocorre overflow quando os valores afetam o sinal:
 - Somar dois números positivos resulta em um número negativo
 - Somar dois números negativos resulta em um número positivo
 - Subtrair um número negativo de um positivo resulta em um negativo
 - Subtrair um número positivo de um negativo resulta em um positivo

Aritmética Binária: Detecção de *Overflow*

Exercício: Compute o resultado da operação abaixo e verifique se houve overflow

4 + 5 em uma representação com **números** sinalizados de 8 bits

(4)

<u>+</u>(5)

Aritmética Binária: Detecção de Overflow

Exercício: Compute o resultado da operação abaixo e verifique se houve *overflow*

4 + 5 em uma representação com **números** sinalizados de 4 bits

(4)

<u>+</u>(5)

Cada caractere é associado a um número distinto. Existem diversos padrões.

Exemplo: Padrão ASCII - American Standard Code for Information -- Usa 7 bits, (128 caracteres distintos)

64	@
65	A
66	В
67	С
68	D
69	E
70	F
71	G
72	Н
73	I

•
а
b
С
d
е
f
g
h
i

0
1
2
3
4
5
6
7
8
9

Cada caractere é associado a um número distinto.

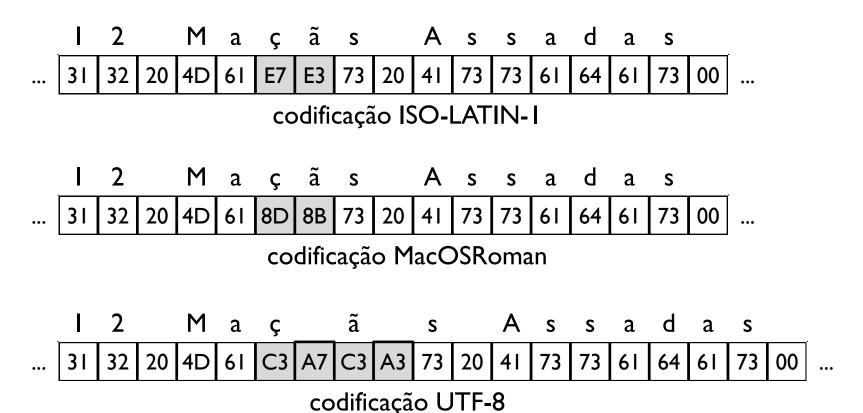
- ASCII usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
 - Posições consecutivas da memória!

Cada caractere é associado a um número distinto.

- ASCII usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
 - Posições consecutivas da memória!

Representação de Cadeias de Caracteres (*strings*) na memória do computador:

Exemplo: "Maçãs Assadas"



Representação de Informações no Computador – Prof. Edson Borin - UNICAMP 51

Caracteres na memória do computador

- No IAS, as palavras da memória possuíam 40 bits!
- A grande maioria das memórias de computadores atuais possuem palavras (unidades de armazenamento endereçáveis) de 1 byte (8 bits).
 - O No endereço 0 cabe um dado de 1 *byte*, no endereço I cabe um dado de I byte e assim por diante.

Caracteres na memória do computador

- No IAS, as palavras da memória possuíam 40 bits!
- A grande maioria das memórias de computadores atuais possuem palavras (unidades de armazenamento endereçáveis) de 1 byte (8 bits).
 - No endereço 0 cabe um dado de 1 byte, no endereço
 I cabe um dado de 1 byte e assim por diante.
- Quando armazenamos números de 7 bits em 1 byte nós desperdiçamos bits da memória. Por outro lado, esta abordagem facilita a leitura dos dados pois cada palavra de memória possui um único caractere e cada caractere está armazenado em uma única palavra de memória.

Números na memória do computador

Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte? Ou seja, em uma memória onde as unidades de armazenamento possuem 1 byte.

Exemplo: Número de 32 *bits* (4 *bytes*) $1025_{10} = 00000000 \ 00000000 \ 00000100 \ 00000001_{2}$

Endereço
00
01
02
03

Números na memória do computador

Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte? Ou seja, em uma memória onde as unidades de armazenamento possuem 1 byte.

Resposta: Depende do *Endianness*.

Exemplo: Número de 32 bits (4 bytes)

 $1025_{10} = 00000000 \ 000000000 \ 00000100 \ 00000001_{2}$

Endereço	Big-Endian
00	
01	
02	
03	

Números na memória do computador

Big-Endian: Byte menos significativo é armazenado no **maior** endereço

Exemplo: Número de 32 bits (4 bytes)

1025₁₀ = 00000000 00000000 00000100 00000001₂

Endereço Big-Endian

00 00000000

01 00000000

02 00000100

03 00000001

Números na memória do computador

Little-Endian: Byte menos significativo é armazenado no menor endereço

Exemplo: Número de 32 bits (4 bytes)

 $1025_{10} = 00000000 \ 000000000 \ 00000100 \ 00000001_{2}$

Endereço	Big-Endian
00	0000000
01	0000000
02	0010000
03	0000001

<u>Little-Endian</u>
0000001
00000100
0000000
0000000

Vetores na memória

Como fazemos para armazenar um vetor de dados em uma memória endereçada a *byte*?

Resposta:

 Os elementos do vetor são armazenados de forma consecutiva na memória.

Vetores na memória

Os elementos de um vetor são armazenados de forma consecutiva na memória.

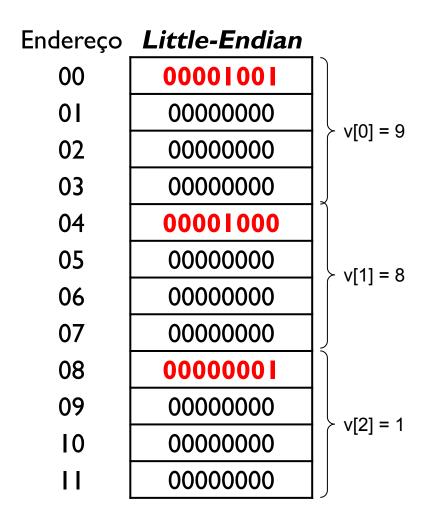
Supondo que cada elemento ocupe TAM bytes, e o vetor se inicie no endereço BASE, então o i-ésimo elemento é armazenado nos bytes associados aos endereços i x BASE a ixBASE+(TAM-I).

- O primeiro elemento (i=0) será armazenado nos bytes associados aos endereços BASE a BASE+(TAM-I)
- O décimo elemento (i=9) será armazenado nos bytes associados aos endereços 9xBASE a 9xBASE+(TAM-I)

Vetores na memória

Ex: int $v[3] = \{9, 8, 1\}$;

 Supondo que o vetor v seja alocado no endereço 0



Registros na memória

Como fazemos para armazenar registros (structs) em uma memória endereçada a byte?

Resposta:

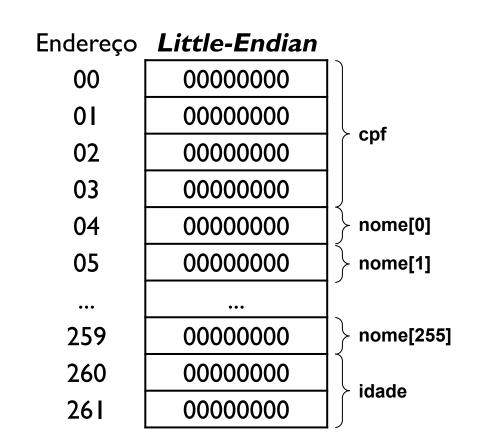
Os campos dos registros são armazenados de forma consecutiva na memória.

Registros na memória

Exemplo:

```
struct id {
   int cpf;
  char nome [256];
  short idade;
  fulano;
```

Supondo que o registro fulano seja armazenado no (a partir do) endereço zero de memória.

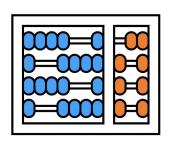


Matrizes na memória

Como fazemos para armazenar uma matriz de dados em uma memória endereçada a byte?

Resposta:

- Depende da linguagem de programação:
 - Em 'C': As linhas da matriz são armazenadas de forma consecutiva na memória (uma linha por vez)
 - Organização conhecida como "row-major order"
 - Em Fortran: As colunas da matriz são armazenadas de forma consecutiva na memória
 - Organização conhecida como "column-major order"



Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Organização Básica de computadores e linguagem de montagem

Representação de Informações no Computador (Extra)

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

Números racionais representam uma ou mais partes de um todo e são muito úteis na resolução de diversos tipos de problemas.

No computador, podemos representar números racionais com as representações ponto-fixo e ponto-flutuante (float).

Números racionais com ponto-fixo

 Utiliza-se um valor inteiro que deve ser implicitamente multiplicado por um fator de escala.

Ex:
$$1033 \times 10^{-2} = 10{,}33$$

Parte inteira

Fator de escala implícito

Números racionais com ponto-fixo

 Utiliza-se um valor inteiro que deve ser implicitamente multiplicado por um fator de escala.

Ex:
$$1033 \times 10^{-2} = 10{,}33$$

 Soma e subtração pode ser feita de forma direta com o mesmo hardware da soma e subtração de números inteiros.

Ex:
$$10,33 + 2,15 = 12,48$$

$$1033 \times 10^{-2} + 215 \times 10^{-2} = (1033 + 215) \times 10^{-2} = 1248 \times 10^{-2}$$

Números racionais com ponto-fixo

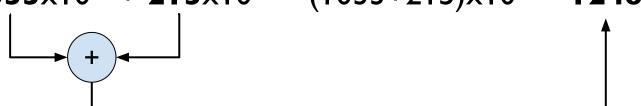
• Utiliza-se um valor inteiro que deve ser implicitamente multiplicado por um fator de escala.

Ex:
$$1033 \times 10^{-2} = 10{,}33$$

Soma e subtração pode ser feita de forma direta com o mesmo hardware da soma e subtração de números inteiros.

$$Ex: 10,33 + 2,15 = 12,48$$

$$1033 \times 10^{-2} + 215 \times 10^{-2} = (1033 + 215) \times 10^{-2} = 1248 \times 10^{-2}$$



Números racionais com ponto-fixo

 Multiplicação e divisão exigem ajustes para preservar o fator de escala!

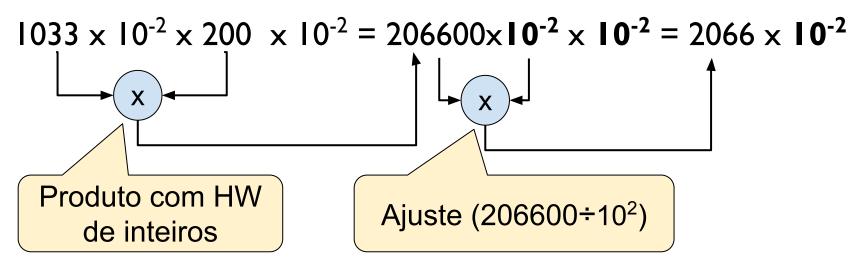
$$A \times 10^{-2} \times B \times 10^{-2} = A \times B \times 10^{-4} = A \times B \times 10^{-2} \times 10^{-2}$$

Números racionais com ponto-fixo

 Multiplicação e divisão exigem ajustes para preservar o fator de escala!

$$A \times 10^{-2} \times B \times 10^{-2} = A \times B \times 10^{-4} = A \times B \times 10^{-2} \times 10^{-2}$$

Ex: $10,33 \times 2,00 = 20,66$



Representação de Informações no Computador – Prof. Edson Borin - UNICAMP

Números racionais com ponto-fixo

 Multiplicação e divisão exigem ajustes - Usar um fator de escala que é potência de 2 facilita o ajuste!

Ex: fator de escala = $1/1024 = 2^{-10}$

$$Ax2^{-10} \times Bx2^{-10} = AxBx2^{-20} = AxBx2^{-10} \times 2^{-10}$$

Números racionais com ponto-fixo

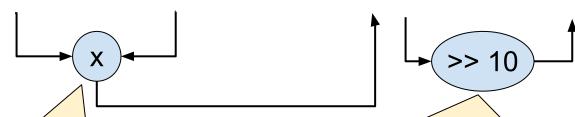
 Multiplicação e divisão exigem ajustes - Usar um fator de escala que é potência de 2 facilita o ajuste!

Ex: fator de escala =
$$1/1024 = 2^{-10}$$

$$Ax2^{-10} \times Bx2^{-10} = AxBx2^{-20} = AxBx2^{-10} \times 2^{-10}$$

$$Ex: 0.5 \times 0.25 = 0.125$$

$$512 \times 2^{-10} \times 256 \times 2^{-10} = 131072 \times 2^{-20} = 128 \times 2^{-10}$$



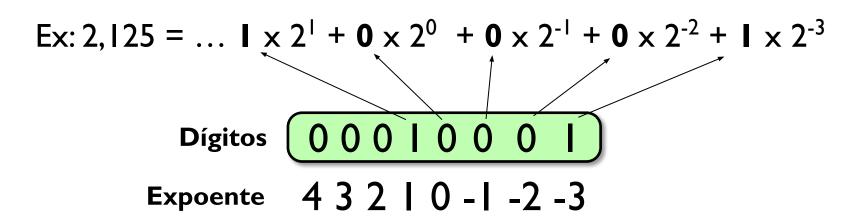
Produto com HW de inteiros

Ajuste: (131072 / 2¹⁰) Pode ser feito com HW de deslocamento de bits

Números racionais com ponto-fixo

 Multiplicação e divisão exigem ajustes - Usar um fator de escala que é potência de 2 facilita o ajuste!

Potência de 2 também facilita a interpretação do valor numérico => dígitos são multiplicados por potências de dois que podem ter expoentes negativos!



Números racionais com ponto-fixo

Multiplicação e divisão e escala que é potência
 Potência de 2 também fi numérico => dígitos são mul que podem ter expoentes ne

Gomo se houvesse um ponto aqui!
dos por potencias de dois os!

Ex: 2,125 = ...
$$I \times 2^{1} + 0 \times 2^{0}$$
 $0 \times 2^{-1} + 0 \times 2^{-2} + I \times 2^{-3}$

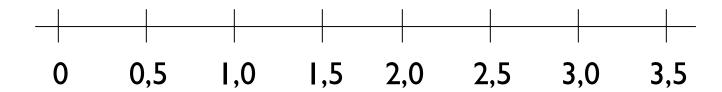
Dígitos $0 \ 0 \ 1 \ 0.0 \ 0$ $0 \ 1$

Expoente $4 \ 3 \ 2 \ 1 \ 0 \ -1 \ -2 \ -3$

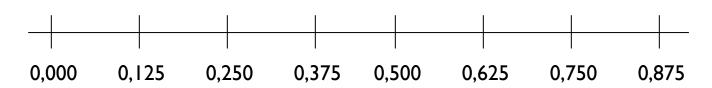
Números racionais com ponto-fixo

 O espaço é discretizado de forma uniforme, de acordo com o fator de escala.

Ex: 3 *bits* (8 estados) e fator =
$$0.5 = (2^{-1})$$



Ex: 3 bits (8 estados) fator = $0.125 = (2^{-3})$



Números racionais com ponto-flutuante (IEEE 754)

- Padrão IEEE 754 é um dos mais utilizados
- Neste padrão, os bits são organizados em três campos:
 - I bit para o sinal (S) bit 3 I
 - 8 bits para o expoente (E) bits 30 a 23
 - 23 bits para mantissa (M) bits 23 a 0

31 30 23 22

s expoente mantissa

Números racionais com ponto-flutuante (IEEE 754)

31 30 23 22

mantissa expoente

Seja b_n o n-ésimo bit da palavra, o valor do número em ponto flutuante é dado pela equação:

$$N = (-1)^{S} * 2^{E-127} * (1 + \sum_{i=1}^{23} b_{23-i} * 2^{-i})$$

Números racionais com ponto-flutuante (IEEE 754)

31 30 23 22

s expoente mantissa

Seja b_n o n-ésimo bit da palavra, o valor do número em ponto flutuante é dado pela equação:

$$N = (-1)^{S} * 2^{E-127} * (1 + \sum_{i=1}^{23} b_{23-i} * 2^{-i})$$

 $0x40490FDB_{16} = 0100000001001001001001111111011011_{2}$ $S=0_{10} \qquad E=128_{10} \qquad M=4788187_{10}$ $(-1)^{0} \times 2^{128-127} \times (1 + 2^{-1} + 2^{-4} + 2^{-7} + 2^{-12} + 2^{-13} + 2^{-14}...)$

78

Números racionais com ponto-flutuante (IEEE 754)

 O espaço é discretizado de forma não uniforme, concentrado em torno do valor zero.

