
RV32IM assembly instructions reference card
Prof. Edson Borin

Institute of Computing - Unicamp

RV32IM registers (prefix x) and their aliases
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

zero ra sp gp tp t0 t1 t2 s0 s1 a0 a1 a2 a3 a4 a5

x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31

a6 a7 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 t3 t4 t5 t6

Main control status registers
CSRs: mtvec mepc mcause mtval mstatus mscratch

Fields of mstatus: mie mpie mip

Logic, Shift, and Arithmetic instructions

and rd, rs1, rs2
Performs the bitwise “and” operation on rs1 and rs2 and stores the result on
rd.

or rd, rs1, rs2 Performs the bitwise “or” operation on rs1 and rs2 and stores the result on rd.
xor rd, rs1, rs2 Performs the bitwise “xor” operation on rs1 and rs2 and stores the result on rd.

andi rd, rs1, imm
Performs the bitwise “and” operation on rs1 and imm and stores the result on
rd.

ori rd, rs1, imm Performs the bitwise “or” operation on rs1 and imm and stores the result on rd.
xori rd, rs1, imm Performs the bitwise “xor” operation on rs1 and imm and stores the result on rd.

sll rd, rs1, rs2
Performs a logical left shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the value on rs2.

srl rd, rs1, rs2
Performs a logical right shift on the value at rs1 and stores the result on rd. The
amount of right shifts is indicated by the value on rs2.

sra rd, rs1, rs2
Performs an arithmetic right shift on the value at rs1 and stores the result on
rd. The amount of right shifts is indicated by the value on rs2.

slli rd, rs1, imm
Performs a logical left shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the immediate value imm.

srli rd, rs1, imm
Performs a logical right shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the immediate value imm.

srai rd, rs1, imm
Performs an arithmetic right shift on the value at rs1 and stores the result on
rd. The amount of left shifts is indicated by the immediate value imm.

add rd, rs1, rs2 Adds the values in rs1 and rs2 and stores the result on rd.
sub rd, rs1, rs2 Subtracts the value in rs2 from the value in rs1 and stores the result on rd.
addi rd, rs1, imm Adds the value in rs1 to the immediate value imm and stores the result on rd.
mul rd, rs1, rs2 Multiplies the values in rs1 and rs2 and stores the result on rd.

div{u} rd, rs1, rs2

Divides the value in rs1 by the value in rs2 and stores the result on rd. The U

su�x is optional and must be used to indicate that the values in rs1 and rs2 are
unsigned.

rem{u} rd, rs1, rs2

Calculates the remainder of the division of the value in rs1 by the value in rs2

and stores the result on rd. The U su�x is optional and must be used to indicate
that the values in rs1 and rs2 are unsigned.

Unconditional control-flow instructions

j lab Jumps to address indicated by symbol sym (Pseudo-instruction).
jr rs1 Jumps to the address stored on register rs1 (Pseudo-instruction).

jal lab
Stores the return address (PC+4) on the return register (ra), then jumps to label
lab (Pseudo-instruction).

jal rd, lab Stores the return address (PC+4) on register rd, then jumps to label lab.

jarl rd, rs1, imm
Stores the return address (PC+4) on register rd, then jumps to the address
calculated by adding the immediate value imm to the value on register rs1.

ret Jumps to the address stored on the return register (ra) (Pseudo-instruction).
ecall Generates a software interruption. Used to perform system calls.
mret Returns from an interrupt handler.

Conditional set and control-flow instructions

slt rd, rs1, rs2
Sets rd with 1 if the signed value in rs1 is less than the signed value in rs2,
otherwise, sets it with 0.

slti rd, rs1, imm
Sets rd with 1 if the signed value in rs1 is less than the sign-extended immediate
value imm, otherwise, sets it with 0.

sltu rd, rs1, rs2
Sets rd with 1 if the unsigned value in rs1 is less than the unsigned value in rs2,
otherwise, sets it with 0.

sltui rd, rs1, imm
Sets rd with 1 if the unsigned value in rs1 is less than the unsigned immediate
value imm, otherwise, sets it with 0.

seqz rd, rs1
Sets rd with 1 if the value in rs1 is equal to zero, otherwise, sets it with 0
(Pseudo-instruction).

snez rd, rs1
Sets rd with 1 if the value in rs1 is not equal to zero, otherwise, sets it with 0
(Pseudo-instruction).

sltz rd, rs1
Sets rd with 1 if the signed value in rs1 is less than zero, otherwise, sets it with
0 (Pseudo-instruction).

sgtz rd, rs1
Sets rd with 1 if the signed value in rs1 is greater than zero, otherwise, sets it
with 0 (Pseudo-instruction).

beq rs1, rs2, lab Jumps to label lab if the value in rs1 is equal to the value in rs2.
bne rs1, rs2, lab Jumps to label lab if the value in rs1 is di↵erent from the value in rs2.
beqz rs1, lab Jumps to label lab if the value in rs1 is equal to zero (Pseudo-instruction).
bnez rs1, lab Jumps to label lab if the value in rs1 is not equal to zero (Pseudo-instruction).

blt rs1, rs2, lab
Jumps to label lab if the signed value in rs1 is smaller than the signed value in
rs2.

bltu rs1, rs2, lab
Jumps to label lab if the unsigned value in rs1 is smaller than the unsigned value
in rs2.

bge rs1, rs2, lab
Jumps to label lab if the signed value in rs1 is greater or equal to the signed
value in rs2.

bgeu rs1, rs2, lab
Jumps to label lab if the unsigned value in rs1 is greater or equal to the unsigned
value in rs2.

Data movement instructions

mv rd, rs Copies the value from register rs into register rd (Pseudo-instruction).
li rd, imm Loads the immediate value imm into register rd (Pseudo-instruction).
la rd, rot Loads the label address rot into register rd (Pseudo-instruction).

lw rd, imm(rs1)

Loads a 32-bit signed or unsigned word from memory into register rd. The
memory address is calculated by adding the immediate value imm to the value
in rs1.

lh rd, imm(rs1)
Loads a 16-bit signed halfword from memory into register rd. The memory
address is calculated by adding the immediate value imm to the value in rs1.

lhu rd, imm(rs1)

Loads a 16-bit unsigned halfword from memory into register rd. The mem-
ory address is calculated by adding the immediate value imm to the value in
rs1.

lb rd, imm(rs1)
Loads a 8-bit signed byte from memory into register rd. The memory ad-
dress is calculated by adding the immediate value imm to the value in rs1.

lbu rd, imm(rs1)
Loads a 8-bit unsigned byte from memory into register rd. The memory
address is calculated by adding the immediate value imm to the value in rs1.

sw rs1, imm(rs2)
Stores the 32-bit value at register rs1 into memory. The memory address is
calculated by adding the immediate value imm to the value in rs2.

sh rs1, imm(rs2)
Stores the 16 least significant bits from register rs1 into memory. The memory
address is calculated by adding the immediate value imm to the value in rs2.

sb rs1, imm(rs2)
Stores the 8 least significant bits from register rs1 into memory. The memory
address is calculated by adding the immediate value imm to the value in rs2.

L{W|H|HU|B|BU} rd, lab

For each one of the lw, lh, lhu, lb, and lbu machine instructions there is a
pseudo-instruction that performs the same operation, but the memory address
is calculated based on a label (lab) (Pseudo-instruction).

S{W|H|B} rd, lab

For each one of the sw, sh, and sb machine instructions there is a pseudo-
instruction that performs the same operation, but the memory address is
calculated based on a label (lab) (Pseudo-instruction).

Control and Status Read and Write instructions

csrr rd, csr
Copies the value from the control and status register csr into register rd (Pseudo-
instruction).

csrw csr, rs
Copies the value from register rs into the control and status register csr (Pseudo-
instruction).

csrrw rd, csr, rs1

Copies the value from the control and status register csr into register rd and the
value from the rs1 register to the control and status register csr. If rd=rs1, the
instruction performs an atomic swap between registers csr and rs1..

csrc csr, rs
Clears control and status register (csr) bits using the contents of the rs register
as a bit mask. (Pseudo-instruction).

csrs csr, rs
Sets control and status register (csr) bits using the contents of the rs register as
a bit mask. (Pseudo-instruction).

	Foreword
	Glossary
	Acronyms
	I Introduction to computer systems and assembly language
	Execution of programs: a 10,000 ft overview
	Main components of computers
	The main memory
	The CPU

	Executing program instructions
	The boot process

	Data representation on modern computers
	Numeral Systems and the Positional Notation
	Converting numbers between bases

	Representing numbers on computers
	Unsigned numbers
	Signed numbers
	Binary arithmetic and Overflow
	Integer Overflow

	Representing text
	Organizing data on the memory
	Texts on the main memory
	Numbers on the main memory
	Arrays on the main memory
	Structs on the main memory

	Encoding instructions

	Assembly, object, and executable files
	Generating native programs
	Inspecting the contents of object and executable files

	Labels, symbols, references, and relocation
	Labels and symbols
	References to labels and relocation
	Undefined references
	Global vs local symbols
	The program entry point

	Program sections
	Executable vs object files

	Assembly language
	Comments
	Assembly instructions
	Immediate values
	Symbol names
	Labels
	The location counter and the assembling process
	Assembly directives
	Adding values to the program
	The .section directive
	Allocating variables on the .bss section
	The .set and .equ directives
	The .globl directive
	The .align directive

	II User-level programming
	Introduction
	The RV32I ISA
	Datatypes and memory organization
	RV32I registers
	Load/Store architecture
	Pseudo-instructions
	Logic, shift, and arithmetic instructions
	Instructions syntax and operands
	Dealing with large immediate values
	Logic instructions
	Shift instructions
	Arithmetic instructions

	Data movement instructions
	Load instructions
	Store instructions
	Data movement pseudo-instructions

	Control-flow instructions
	Conditional control-flow instructions
	Direct vs indirect control-flow instructions
	Unconditional control-flow instructions
	System Calls

	Conditional set instructions
	Detecting overflow
	Arithmetic on multi-word variables

	Controlling the execution flow
	Conditional statements
	if-then statements
	Comparing signed vs unsigned variables
	if-then-else statements
	Handling non-trivial boolean expressions
	Nested if statements

	Repetition statements
	while loop
	do-while loop
	for loop
	Hoisting loop-invariant code

	Invoking and returning from routines
	Returning values from functions

	Examples
	Searching for the maximum value on an array

	Implementing routines
	The program memory layout
	The program stack
	Types of stacks

	The ABI and software composition
	Passing parameters to and returning values from routines
	Passing parameters to routines
	Returning values from routines

	Value and reference parameters
	Global vs local variables
	Allocating local variables on memory

	Register usage policies
	Caller-saved vs Callee-saved registers
	Saving and restoring the return address

	Stack Frames and the Frame Pointer
	Stack Frames
	The Frame Pointer
	Keeping the stack pointer aligned

	Implementing RISC-V ilp32 compatible routines
	Examples
	Recursive routines
	The standard ``C'' library syscall routines

	III System-level programming
	Accessing peripherals
	Peripherals
	Interacting with peripherals
	Port-mapped I/O
	Memory-mapped I/O

	I/O operations on RISC-V
	Busy waiting

	External Interrupts
	Introduction
	Polling

	External Interrupts
	Detecting external interrupts
	Invoking the proper interrupt service routine

	Interrupts on RV32I
	Control and Status Registers
	Interrupt related Control and Status Registers
	Interrupt Handling Flow
	Implementing an interrupt service routine
	Setting up the Interrupt Handling Mechanism

	Software Interrupts and Exceptions
	Privilege Levels
	Protecting the system
	Exceptions
	Software Interrupts
	Protecting RISC-V systems
	Changing the privilege mode
	Configuring the exception and software interrupt mechanisms
	Handling illegal operations
	Handling system calls

	RV32IM ISA reference card

