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RV32IM registers (prefix x) and their aliases
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

zero ra sp gp tp t0 t1 t2 s0 s1 a0 a1 a2 a3 a4 a5

x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31

a6 a7 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 t3 t4 t5 t6

Main control status registers
CSRs: mtvec mepc mcause mtval mstatus mscratch

Fields of mstatus: mie mpie mip

Logic, Shift, and Arithmetic instructions

and rd, rs1, rs2
Performs the bitwise “and” operation on rs1 and rs2 and stores the result on
rd.

or rd, rs1, rs2 Performs the bitwise “or” operation on rs1 and rs2 and stores the result on rd.
xor rd, rs1, rs2 Performs the bitwise “xor” operation on rs1 and rs2 and stores the result on rd.

andi rd, rs1, imm
Performs the bitwise “and” operation on rs1 and imm and stores the result on
rd.

ori rd, rs1, imm Performs the bitwise “or” operation on rs1 and imm and stores the result on rd.
xori rd, rs1, imm Performs the bitwise “xor” operation on rs1 and imm and stores the result on rd.

sll rd, rs1, rs2
Performs a logical left shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the value on rs2.

srl rd, rs1, rs2
Performs a logical right shift on the value at rs1 and stores the result on rd. The
amount of right shifts is indicated by the value on rs2.

sra rd, rs1, rs2
Performs an arithmetic right shift on the value at rs1 and stores the result on
rd. The amount of right shifts is indicated by the value on rs2.

slli rd, rs1, imm
Performs a logical left shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the immediate value imm.

srli rd, rs1, imm
Performs a logical right shift on the value at rs1 and stores the result on rd. The
amount of left shifts is indicated by the immediate value imm.

srai rd, rs1, imm
Performs an arithmetic right shift on the value at rs1 and stores the result on
rd. The amount of left shifts is indicated by the immediate value imm.

add rd, rs1, rs2 Adds the values in rs1 and rs2 and stores the result on rd.
sub rd, rs1, rs2 Subtracts the value in rs2 from the value in rs1 and stores the result on rd.
addi rd, rs1, imm Adds the value in rs1 to the immediate value imm and stores the result on rd.
mul rd, rs1, rs2 Multiplies the values in rs1 and rs2 and stores the result on rd.

div{u} rd, rs1, rs2

Divides the value in rs1 by the value in rs2 and stores the result on rd. The U

su�x is optional and must be used to indicate that the values in rs1 and rs2 are
unsigned.

rem{u} rd, rs1, rs2

Calculates the remainder of the division of the value in rs1 by the value in rs2

and stores the result on rd. The U su�x is optional and must be used to indicate
that the values in rs1 and rs2 are unsigned.

Unconditional control-flow instructions

j lab Jumps to address indicated by symbol sym (Pseudo-instruction).
jr rs1 Jumps to the address stored on register rs1 (Pseudo-instruction).

jal lab
Stores the return address (PC+4) on the return register (ra), then jumps to label
lab (Pseudo-instruction).

jal rd, lab Stores the return address (PC+4) on register rd, then jumps to label lab.

jarl rd, rs1, imm
Stores the return address (PC+4) on register rd, then jumps to the address
calculated by adding the immediate value imm to the value on register rs1.

ret Jumps to the address stored on the return register (ra) (Pseudo-instruction).
ecall Generates a software interruption. Used to perform system calls.
mret Returns from an interrupt handler.



Conditional set and control-flow instructions

slt rd, rs1, rs2
Sets rd with 1 if the signed value in rs1 is less than the signed value in rs2,
otherwise, sets it with 0.

slti rd, rs1, imm
Sets rd with 1 if the signed value in rs1 is less than the sign-extended immediate
value imm, otherwise, sets it with 0.

sltu rd, rs1, rs2
Sets rd with 1 if the unsigned value in rs1 is less than the unsigned value in rs2,
otherwise, sets it with 0.

sltui rd, rs1, imm
Sets rd with 1 if the unsigned value in rs1 is less than the unsigned immediate
value imm, otherwise, sets it with 0.

seqz rd, rs1
Sets rd with 1 if the value in rs1 is equal to zero, otherwise, sets it with 0
(Pseudo-instruction).

snez rd, rs1
Sets rd with 1 if the value in rs1 is not equal to zero, otherwise, sets it with 0
(Pseudo-instruction).

sltz rd, rs1
Sets rd with 1 if the signed value in rs1 is less than zero, otherwise, sets it with
0 (Pseudo-instruction).

sgtz rd, rs1
Sets rd with 1 if the signed value in rs1 is greater than zero, otherwise, sets it
with 0 (Pseudo-instruction).

beq rs1, rs2, lab Jumps to label lab if the value in rs1 is equal to the value in rs2.
bne rs1, rs2, lab Jumps to label lab if the value in rs1 is di↵erent from the value in rs2.
beqz rs1, lab Jumps to label lab if the value in rs1 is equal to zero (Pseudo-instruction).
bnez rs1, lab Jumps to label lab if the value in rs1 is not equal to zero (Pseudo-instruction).

blt rs1, rs2, lab
Jumps to label lab if the signed value in rs1 is smaller than the signed value in
rs2.

bltu rs1, rs2, lab
Jumps to label lab if the unsigned value in rs1 is smaller than the unsigned value
in rs2.

bge rs1, rs2, lab
Jumps to label lab if the signed value in rs1 is greater or equal to the signed
value in rs2.

bgeu rs1, rs2, lab
Jumps to label lab if the unsigned value in rs1 is greater or equal to the unsigned
value in rs2.

Data movement instructions

mv rd, rs Copies the value from register rs into register rd (Pseudo-instruction).
li rd, imm Loads the immediate value imm into register rd (Pseudo-instruction).
la rd, rot Loads the label address rot into register rd (Pseudo-instruction).

lw rd, imm(rs1)

Loads a 32-bit signed or unsigned word from memory into register rd. The
memory address is calculated by adding the immediate value imm to the value
in rs1.

lh rd, imm(rs1)
Loads a 16-bit signed halfword from memory into register rd. The memory
address is calculated by adding the immediate value imm to the value in rs1.

lhu rd, imm(rs1)

Loads a 16-bit unsigned halfword from memory into register rd. The mem-
ory address is calculated by adding the immediate value imm to the value in
rs1.

lb rd, imm(rs1)
Loads a 8-bit signed byte from memory into register rd. The memory ad-
dress is calculated by adding the immediate value imm to the value in rs1.

lbu rd, imm(rs1)
Loads a 8-bit unsigned byte from memory into register rd. The memory
address is calculated by adding the immediate value imm to the value in rs1.

sw rs1, imm(rs2)
Stores the 32-bit value at register rs1 into memory. The memory address is
calculated by adding the immediate value imm to the value in rs2.

sh rs1, imm(rs2)
Stores the 16 least significant bits from register rs1 into memory. The memory
address is calculated by adding the immediate value imm to the value in rs2.

sb rs1, imm(rs2)
Stores the 8 least significant bits from register rs1 into memory. The memory
address is calculated by adding the immediate value imm to the value in rs2.

L{W|H|HU|B|BU} rd, lab

For each one of the lw, lh, lhu, lb, and lbu machine instructions there is a
pseudo-instruction that performs the same operation, but the memory address
is calculated based on a label (lab) (Pseudo-instruction).

S{W|H|B} rd, lab

For each one of the sw, sh, and sb machine instructions there is a pseudo-
instruction that performs the same operation, but the memory address is
calculated based on a label (lab) (Pseudo-instruction).



Control and Status Read and Write instructions

csrr rd, csr
Copies the value from the control and status register csr into register rd (Pseudo-
instruction).

csrw csr, rs
Copies the value from register rs into the control and status register csr (Pseudo-
instruction).

csrrw rd, csr, rs1

Copies the value from the control and status register csr into register rd and the
value from the rs1 register to the control and status register csr. If rd=rs1, the
instruction performs an atomic swap between registers csr and rs1..

csrc csr, rs
Clears control and status register (csr) bits using the contents of the rs register
as a bit mask. (Pseudo-instruction).

csrs csr, rs
Sets control and status register (csr) bits using the contents of the rs register as
a bit mask. (Pseudo-instruction).
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