Exercises 665

Exercises

Solutions to the “starred™ exercises appear in Appendix B

6.1 [15] <6.1> Assume that we have a tunction for an application of the form F(i.p)

rich gives the fraction of time that exactly i processors are usable given that a

total of p processors are available. This means that

Assume that when i processors are in use. the application runs / times fasler.
Rewrite Amdahl’s Law so that it gives the speedup as a function of p for some

application,

6.2 [10] <6.1, 6.2> The Transaction Pr cessing Council (TPC) has several different
benchmarks. Visit their Web site at wiw ipe.org and look at the top 10 performers
in each benchmark class. Determine whether each of the top 10 configurations is
a multiprocessor, and if so, what type (e.g., SMP, NUMA, cluster). Does the

ordering look different if price-performance is used as the metric?

6.3 [10] <6.1, 6.2> The Top 500 list categorizes the fastest scientific machines in the
world according 1o their performance on the Linpack benchmark. Visit their Web
site at www top500.0rg and look at the top 100 performers (there are many
repeats ol a particular vendor product, since individual supercomputer sites rather
than & product are counted). Determine how many different supercomputer prod-
tcts occur among the top 100 configurations and what type (e. g., SMP, NUMA.,
cluster) each different supercomputer is Try to obtain cost information and see

how the data change when cost-performance is considered.

@ 64 [15] <6.3> In small bus-based multiprocessors, write-through caches are some-
times used. One reason is that a wi tte-through cache has a slightly simpler coher-
ence protocol. Show how the basic snooping cache coherence protocol of Figure
6.12 on page 559 can be changed for a write through cache. From the view point
of an implementor. what is the major hardware functionality that 1s not needed

with a write-through cache compared with a write-back cache?

6.5 [20] <6.3> Add u clean exclusive state to the basic snooping cache coherence pro-

tocol (Figure 6.12 on page 559). Show the protocol i the format of Figure 6.12

6.6 [15] <6.3> One proposed solution for the problem of false sharing is to add a
valid bit per word (or even for each byte). This would allow the protocol to inval-
idate a word without remoy ing the entire block, letting a cache keep a portion of a
block in its cache while another processor writes a different portion of the block
What extra complications are introduced into the basic sneoping cache coherence
protocol (Figure 6.12) if this capability is included? Remember 1o consider all
possible protocol actions.

6.7 [12/10/15] <6.3> The performance differences for write mvalidate and write

update schemes can arise from both bandwidth consumption and latency. Assume

dmemory system with 64-byte cache blocks. Ignore the effects of contention

666

o
o5}

s 6.10

6.11

Chapter Six Muli

iprocessors and Thread-Level |

: VO
s e

a. [12

lerences between invalidate and update schemes. One sequence should make

<6.3> Write two parallel code sequences to illustrate the bandwidth dif-

update look much better and the other should make invalidate look much
better.

b. [10] <6.3> Write a parallel code sequence 1o illustrate the latency advantage

ol an update scheme versus an invalidate scheme

c. [15] <6.3> Show. by example, that when contention is included, the latency
ol update may actually be worse. Assume a bus-based multiprocessor with

S0-cycle memory and snoop transactions.,

[15/10] <6.2, 6.4> This exercise studies the impact of aggressive techniques to
exploit instruction-level parallelism in the processor when used in the design of
shared-memory multiprocessor systems. Consider two systems identical except
for the processor. System A uses a processor with a simple single-issue in-order
pipeline. while system B uses a processor with four-way issue. out-of-order exe-
cution and a reorder buffer with 64 entries. For four benchmarks—online transac-
tion processing. decision support systems, LU, and FFT—system B gives a
speedup of 1.5, 2.5, 2.9, and 2.4, respectively. over system A.
a. [15] <6.4> Following the convention of Figure 6.13, let us divide the execu
tion time into instruction execution, cache access, memory access. and other
stalls. How would you expect each of these components to ditfer between

system A and system B?

b. [10] <6.2, 6.4> Based on the discussion of the behavior of OLTP workloads
in Section 6.4, what is the important difference between the OLTP workload
and the other benchmarks that limits benefit from a more aggressive proces-
sor design?

[15] <6.4> How would you change the code ol an application to avoid false shar-
]

ing”? What might be done by a compiler and what might require programmer

directives

[15] <6.5> Assume a directory-based cache coherence protocol. The directory
currently has information that indicates that processor P1 has the data in “exclu-
sive” mode. If the directory now gets a request for the same cache block from

processor P1, what could this mean? W

1at should the directory controller do?
(Such cases are called “race conditions™ and are the reasons why coherence pro-

tocols are so hard to design and verify.)

[20] <6.5> As we discussed earlier, the directory controller can send invalidates
for lines that have been replaced by the local cache controller. To avoid such mes-
sages, and to keep the directory consistent, replacement hints are used. Such
messages tell the controller that a block has been replaced. Modify the directory

coherence protocol of Section 6.5 to use such replacement hints.

[12/10/12/15] <6.4, 6.6> One possible approach to achieving the scalability of
distributed shared memory and the cost-effectiveness of a bus design is 1o combine
the two approaches, using a set of processors with memories attached directly to

the processors and interconnected with a bus. The argument in favor of such a

design is that the use of local memories and a coherence scheme with himited
broadcast results in a reduction in bus traffic, allowing the bus to be used for a
large

Assume the following characteristics for a machine with 64-byte cache blocks:

A 1
MASSL

misses that must use the bus. use the E6000 (Wildfire) restart memory miss imes

from the top portion of Figure 6.5(),

a. |

b. |

processor 1s stalled during a cache miss un
cffective CPI? What is the effective rate at which loads or stores are issued
from the processor?!

c. [12
€
bytes of bus bandwidth and a data transfer requires a total of 80 bytes, what 18

the bandwidth demand on the shared bus per processor?

only accurate way to assess their bandwidth limitations is often by measure-

&6.13 0 (12

Wilc

this
and
witl

distributed. (Remember that this aftects Wildfire and the Origin differently!)

d.

Exercises 667

rnumber ol processors

Total data miss rate (assume instruction miss rate is negligible) 26
% misses to private data (used only by this processor) 60%
% misses to shared data that is unowned in a remote cache/memory 20%
Y misses o shared data that 1s dirty 10 a remote 0%

|15

ment. Using the results from part (b) and the assumptions from part (c) about

bandwidth requirements, determine how many processors could share a bus

the top portion of Figure 6.51. Assume that the processors should not con-

116 processors per Wildfire node. Assume that remote accesses are uniformly

ime a local memory miss takes 100 ns until processor restart. For remote

12] <6.4, 6.6> Find the average miss time for this design

10] <6.4, 6.6> Assume a | GHz clock rate, a CPI of 1.0 when the cache hit
ate is 100%. and that a load or store is issued every other clock cycle. If the
il processor restart, what is the

<6.4. 6.6> Assume a split-transaction bus with a request and acknowl-

‘dee for all bus transactions. 1f a bus request or acknowledge requires 16

<6.4. 6.6> Split-transaction buses are quite complex in practice, and the

with the bandwidth characteristics of the E6000 (Wildfire) bus as shown in

sume more than 80% ol the unowned or exclusive data bandwidth

10/12] <6.4, 6.6, 6.11> In this exercise, we compare the design of the Sun
ifire to the Sun Origin on the basis of memory latency and bandwidth. For
exercise, use the latency measurements to processor restart from Figure 6.50

the bandwidth measurements in Figure 6.51. Assume a 64-processor design

[12] <6.6, 6.11> For the remote access time outside of an Origin or Wildfire
node, use the average remote latency for less than 128 nodes from the second
section of Figure 6.50. Assuming that 80% of the remote misses are o dirty

lines. find the average remote memory access time for Wildfire and Origin.
[10] <6.4, 6.6, 6.11> What should the fraction of dirty remote requests be 1o
minimize the difference in remote access time between Wildfire and the

Origin? What does this tell you about the design of the cache system w ithin a

node”?

668

Chapter Six Muli

c. [12] <6.4, 6.11> Compare the local memory bandwidth of the Origin and
E6O00 nodes using the data in the top of Figure 6.51. ASSUmIng accesses are
cither unowned or dirty, for what fraction of dirty accesses will the bandwidth

of the two designs be the same?

6.14 |15/

O] <6.0> A key design question in DSM multiprocessors is how big to
make the nodes in the design. In Origin, each node contains two Processors,
while in Wildfire a node contains more processors, with 16 to 20 being a likely
target. This choice represents a complex design trade-off: When each node is
lai

ger. more accesses use the first level of interconnect, which is usually faster.
but larger nodes typically impose a higher burden on accesses that must 20
remote. Throughout this exercise assume a total of 128 processors. and assume
the goal is to minimize the remote access time. A spreadsheet will make this exer-
cise much easier!

\ssume the following local and remote access times

[ntranode access time with # processors 300 + 20 (7 — 1) ns
per node (n = 2)

Average remole access time Local memory access time + 100 + 10() x

a. [15] <6.6> Assuming a uniform distribution of remote accesses. find the opli-

mum node size for this I]'JEI[]I!WI""L'L'NKL'JI'

b. [15] <6.6> A one-processor node could have a considerably lower local mem-
ory access time. Does there exist a one-processor node design that is faster
than the optimal node size from part (a)? If so. what must the local memory
access time be? If not, how would you change this design if yvou wanted to

use a one-processor node design?

c. [20] <6.6> Now consider optimizing node size for best average memory
access tume. Suppose the memon y accesses are not uniformly distributed, but
heavily biased toward a nearest neighbor structure. The probability of a near-

est neighbor being in the same node is given by the following:

Processors per node Fraction within node
Y o __“.;'r_—
4-7 S0%
815 625%
T 16-31 o b
“x_l —03 -
- = fhd - 1005

It this is the only improvement gained from a nearest neighbor allocation,

find the optimal node size, assuming that 60% of the remote accesses are

i
nearest neighbor.

XETCISeS 669

5T P N GOy (S netahbor aeeee it ay wlvantaoe
[201] <6.6> In reality, a nearest neighbor access pattern also conveys advantages

¢ 1o access a remote node. Assume that if the nearest neighbor

1ode, then the access time 1s Local memory access time + 200

size assuming 60% of the remote accesses are nearesl

| 20/15/30] <6.5= One downside of a

itforward implementation of directo-

tors 1s that the total size of the directory informa

ries using fully populated bit ve

duct: Processor count X Memory blocks, [t memory is grown

n the total size of the dire

h processor count, the tory erows gquadrati

cally in the processor count. In practice. because the directory needs only [bit

memory block (which is t 32128

)1

Cil

>5). this problem is not serious

for small to moderate processor counts. For example. assuming a 128-byte block,

is Processor count/

the amount of directory storage compared to main menm«

1024, or about 10% additional storage with 100 processors. This problem can be

avoided by observi p an amount of information that is

that we only need to k

portional to the cessor. We explore some solutions 1n

One method to obtain a scalable directory protoce Lo vrganize

processor as a logical hierarchy with the processors at the leaves ol

rarchy and directories positioned at the root of each subtree. The dired

Is which

subtree root red

Lory swcendents cache which memory

blocks, as well as which memory with a home in that subtree are

cached outside of the sub

amount ol storage needed 10

processor information for the directories, assuming that each direc-

“answer should mcorporate both the number of

tory is fully associative. Y

nodes at each level of the hierarchy as wel he total number of nodes.
~ | | P A A - I y 1 1 | { Ik] " - . - 1 oy P . |
D. [15] <6.5>= Assume that cach level of the hierarchy in part (a) has a lookup

ta or cache of 50 cycles. when

ycles plus a cost 1o access the ds

the poimnt is reached. We want to compute the AMAT (average memory

access time—see Chapter 5) for a 64-processor multiprocessor with four

[rom the Ocean benchmark run on 64 processors
it all noncoherence misses occur within a sub

misses are uniformly distributed across the

AT for this multiprocessor. What 's this say

ch 1o implementing directory schemes 1s 1o

dense. There are two such s

weeded. and the oth

yYou can compare these schemes. I st Hiliﬂ-.'?l':\'ll[

but

set-associative cache stormg full bit vect

I outside of the home node. It a directory

v directory entry and invalidate the entry. Second,

hed in

every entry has &8 bits. If a block 1s ca

this field contains the node number. If the

670

[

[e)

h

o

apter Six

18

22

dultiprocessors a

block is cached in more than one node outside its home, this field is a bit vec-
tor with each bit indicating a group of eight processors, at least one of which
caches the block. Using traces of 64-processor execution, simulate the behav-
1or of these two schemes. Assume a perfect cache for nonshared references, so
as to focus on coherency behavior. Determine the number of extraneous inval-

idations as the directory cache size 15 increased.

[10] <6.3-6.6> Some systems do not use multiprocessing for perlormance.
Instead they run the same program in lockstep on multiple processors. What

potential benefit 1s possible on such multiprocessors?

[15] <6.7> Some multiprocessors have implemented a special broadcast coher-
ence protocol just for locks, sometimes even using a different bus. Evaluate the
performance of the spin lock in the example on page 396 assuming a write broad-

casl protocol.

[153] <6.7> Implement the barrier in Figure 6,39 on page 598, using queuing

locks. Compare the performance to the spin lock barrier

[15] <6.7> Implement the barrier in Figure 6.39 on page 598, using fetch-and-
increment. Compare the performance to the spin lock barrier.

15] <6.7= Implement the barrier in Fieure 6.42 on page 602, so that barrier
& [RE:

release 1s also done with a combining tree,

[15] <6.7> One performance optimization commonly used 15 to pad synchroniza-
tion variables to not have any other uscful data in the same cache line as the syn-
chronization variable. Construct a pathological example when not doing this can

hurt performance. Assume a snoopy write invalidate protocol.

> Find the time for n processes to synchronize using a standard barrier

Assume that the time for a single process to update the count and release the lock

[15] <6.7> Find the time for n processes (o synchronize using a combining tree
barrier. Assume that the time for a single process to update the count and release

the lock is ¢.

[25] <6.7> Implement a software version of the queuing lock for a bus-based sys-
tem. Using the model in the example on page 596, how long does it take for 20

processors to acquire and release the lock? You need only count bus cycles,

[15/15/15] <6.4, 6.5, 6.7> Prefetching 15 a technique that allows the “consumer”

of data to request the data to its cache before it needs them. With multiprocessors,
we can think of the “dual™ of this technique where the “producer™ of the data
“evicts” the data from its cache affer 1t is done with them. An extension of such
“postflushes™ could be to send the data to the next processor that needs the data,

in cases where that can be determined.

a. [15] <6.4. 6.7> When is prefetching likely to be applicable? When is
producer-initiated communication likely to be beneficial? Would producer-
initiated communication be applicable in the context of the queuing locks and

tree barriers discussed in Section 6.77

6.28

671

Exercises

b. |15] <6.7> Assume a shared-

mory multiprocessor system that takes 100

cveles for a memory access and 300 cveles for a cache-to-cache transter. A

m running on this machme spends 60% of its time stalled on memory

()%

accesses and of 1ts time stalled on synchronization. Of these memory
stalls, 20% are due to producer-consumer data access patterns where the

1

cases, producer-initiated communication can directly transfer data to the

Wrier o the value next. In thesc

lata can identily the processor that will re

cache of the next processor needing the data. This will reduce the [atency ol

these memory accesses from 300 cycles for a cache-to-cache transfer 1o |

cycle for a cache hit. Another 30% of the memory stalls are due to migratory

data patterns where data move from one processor to another, but the migra

tion path is unclear 1o the source processor. In this case. a producer-initiated

communication primitive. such as “postflush.” can reduce the latency of the

les. Further assume that all the

memory access from 300 cycles to 100 ¢

the tree barrier overhead can

synchronization is due to tree barriers and
be reduced by 40% with producer-initiated communication. Assuming no

other overheads. what is the reduction in execution time with producer-

mitiated L,'i.‘l‘.'-!]]lII]iL'cl[I\':-I] 4

. |[15] <6.5= What memory system and program code changes are required for
)

implementing producer-initiated communication

[20/30] <6.2-6.7> Both rescarchers and industry designers have explored the

idea ol having the capability to explicitly transfer data between memories. The

argument in favor of such facilities is that the programmer can achieve better

overlap of computation and communication by explicitly moving data when they

are available. The first part of this exercise explores the potential on paper: the

e | = - 11 « v 1 f 1 . e P N1 »
second explores the use of such tacilities on real multiprocessors

a. |20] < 6.7 Assume that cache misses stall the processor, and that block
1. |20 { tl | tall the § I that blocl

[

ister oceurs into the local memory ol a DSM node. Assume that remote
misses cost 100 cycles and that local misses cost 40 cyeles. Assume that each

DMA transfer has an overhead of 10 cyeles. Assuming that all the coherence

can be replaced with DMA into main memory followed by a cache
miss. find the potential improvement for Ocean running on 64 processors

(Figure 6.31).

6.7> Find a multiprocessor that implements both shared mem

ent or incohe

ent) and a stmple DMA facility. Implement a blocked
matrix multiply using only shared memory and using the DMA facilities with
shared memorv. s the latter faster? How much? What factors make the use of
hared memory. Is the latter fast How mucl

1 block data transfer facility attractive?

[10/12/10/12] <6.8> As discussed in Section 6.8, the memory consistency model

provides a specification of how the memory system will appear to the program-
| i b | Prog

mer. Consider the following code segment, where the initial values are A = flag

egment, what is the value vou would

b, [12] <6.8> A system with a general-purposc interconnection network, @
directory-based cache coherence protocol. and support for nonblog king
d i result where C is (0. Describe a scenario where this result is
- 6.8> If you he system sequentially consistent. W hat
the kev constraimnt impose’!
d. [12] <6.8> Assume a Processor supports a I xed memory consistency

o fon 5 S o] 5 . R a t 1i~11
d consistency model requires synchronizabon 1o be ¢ wplicitly

identified. Assume that the processor supports a “barrier” instruction (e.g.. the

SPARC instruction set). which ensures that all memory operations precedi

the barrier instruction complete before any memory operdations following the

harrier are allowed to begin. Where would you include barrier mstructions in

the above code segment to ensure that you gel the “intuitive results™ of

tial consistency”’

5.29 <6.9> The following results are seen from a simulation study ol hive
yoint benchmarks and two 1 chmarks from the SPECY2 suite
I'he isprediction rate neal doubles from 5% to 9.1% goimng from |
(hread to 8 threads in an SMT processor. However, the wrong-path instructions
[etched (on a misprediction) drops from 24¢ a-threaded processor (o
1 an 8-thread processor
a 10] What causes the increase in branch mispre iction rate’?
b. 6 0= Why is there a decrease in the number ol wrong path instructions
il there 1s an merease n anch misprediction rates? (o
[his is related scheduling of threads.)
[10] <6.9> Based on these numbers, w hat conclusions can you draw about the
- o contention and interference on various resources i d
led processor?
i‘_:i 6.30 | ‘, 6.9= (n page 612 one of the L"I;\'_'_'il L‘|LI[|-_'I‘|‘_‘_L"\ |‘-\lL‘\.| o1 SM |‘-[‘.‘L'l"“~l\|"~ IS
cnsuring that cache conflicts eenerated by the simultancous execution ol multiple

threads do not cause sigmficant perlormance deeradation (often referred 1o a

vence). However. a simulation studv ol the online
{. OLTP. on an 8-threa

14% to 9% . When 1s

lestructive cac he inte

transacton-processing Workio

ed SMT processor sho

in instruction cache miss rate from

decrease. called constructive ¢ ache interference, | o happen’

of the important design decisions with an SMT pre

[15/15/10] <6.9:

is the heuristic to identify the “preferred thread.” The following problem illus-

5 with this.

ates some ol the ¢l

An eight v o multithreaded version of a |

.Y | b - -
SMT processor 1s runn

oram. The processor uses the heuristic of giving preference to o thread that has

uctions in the decode, rename. and iNstruction queues.

673

Exercises

[15] <6.9> What are the

antages with this heuristic?

b. |15] <6.9> Cralt a scenario where this heuristic may lead to a particular

thread not being scheduled. (This 1s called starvation.)

c. [10] <6.9= What other heuristics can you think of to schedule the preferred

6.32

6.10> Prove that in a two-level cache hierarchy, where L1 is closer to the

processor. inclusion is maintained with no extra action if L2 has at least as much

ty as L1. both caches use LRU replacement. and both caches have the

5] <6.10= The key differences, with respect to a hardware shared-memory sys
tem, of a shared virtual memory (SVM) system are (1) the longer latency ol
memory accesses through the OS handler and over the LAN, and (2) the
pages instead of cache blocks). How are these two key
differences likely to affect the performance and operation of the system? What

units of conerence |

e ways to address each negative effect

10/15] <6.10> Consider a multiprocessor on a chip with four CPU cores. Each
core has a 64 KB first-level cache. and the chip includes a | MB second-level

cache.

[10] <6.10= 1f the system implements multilevel inclusion between the L1
and L2 caches, what is the upper bound on the capacity of the L2 that 1s

wasted with duphicate data?

b. [15] <6.10> To avoid the potential waste of second-level cache capacity due

to multilevel inclusion, the system designer may decide to forgo maintaining
the inclusion property. In this case. blocks that are replaced in an L1 cache

a write back to the L2 cache. What optimization discussed in Chapter 5

Calise

is this similar to? Wh

other changes would vou require to minimize conten

tion tor the L1 cache?

(] <6

5.6.11> As we saw in “Putting It All Together™ and in “Fallacies and Pit
lalls.” data distribution can be important when an application has & nontrivial pri
vate data miss rate caused by capacity misses. This problem can be attacked with

compiler technology (distributing the data in blocks) or through architectural sup-

wort, as we saw 1 the description of CMR on Wildhre

\ssume that * two DSM multiprocessors: one with CMR support and one
vithout such support. Both multiprocessors have one processor per node. and
remote coherence misses, which are uniformly distributed. take 1 ps. Assume that
Ul capacity misses on the CMR multiprocessor hit - the local memory and

require 250 ns. Assume that capacity misses take 200 ns when they are local on

the DSM multiprocessor without CMR and 800 ns otherwise. Using the Ocean
data for 32 processors (Figure 6.23), find what fraction of the capacity misses on
the DSM multiprocessor must be local if the performance of the two multiproces-

sors 1s identical

674

6.39

6.40

[15] <6.13> In contrast to the MXP chip that includes four similar MIPS 32 pro-

cessors (discussed

n Section 6.13), some embedded processors may support
multiprocessing between nonuniform (heterogencous) processor cores. For
example. consider a DSP chip that includes a three-way issue master processor
two VLIW processors with support for special-purpose DSP primitives, and an
mtelligent DMA and memory controller, in addition to several on chip DRAM
banks. (Many commercial DSP processors exist with similan configurations; for
example. the TI TMS 320C82.)

Discuss the trade-offs of writing parallel applications for such a heterogeneous

system compared to writing parallel applications for the MXP configuration. What

are the implications on binary software compatibility for future generations?

[Discussion] <6> When trying to perform detailed performance evaluation of a
multiprocessor system, system designers use one of three tools: analytical models,
trace-driven simulation, and execution-driven simulation. Analytical models use
mathematical expressions to model the behavior of programs. Trace-driven simula
tions run the applications on a real machine and generate a trace., 1y pically of mem
ory operations. These traces can then be replayed through a cache simulator or a
simulator with a simple processor model to predict the performance of the system
when various parameters are changed, Execution-driven simulators simulate the
entire execution including maintaining an equivalent structure for the processor

state, and so on. What are the accuracy/speed trade-offs between these approaches?

[Discussion] <6.11> Construct a scenario whereby a truiy revolutionary architec-

ture—pick your favorite candidate—will play a significant role. Si

defined as 10% of the computers sold, 10% of the users. 10% of the money spent
on computers, or 10% ol some other figure of merit.

[30] <6.3-6.7. 6.11> Using an available shared-memory multiprocessor, see if
you can determine the organization and latencies of its memory hierarchy. For
each level of the hierarchy. you can look at the total size, block size, and associa-

tivity. as well as the latency of e:

h level of the hierarchy. If the multiprocessor
uses a nonbus interconnection network. see if you can discover the topology and

latency characteristics of the network. Try to make a table like that in | lgure 6.50

Il

tor the machine. The Imbench (www by

nchl) and stream (wwn

£ VIO I T

) benchmarks may prove useful in this exercise
| 30] <6.3-6.7, 6.11> Perform Exercise 6.39 but looking at the bandwidth charac
teristics rather than latency. See if vou can prepare a table like that in Figure 6.51.
Extend the table by looking at the effect of strided accesses, as well as sequential

and unrelated accesses.

[40] <6.2. 6.10. 6.14> A multiprocessor or cluster is typically marketed using
programs that can scale performance linearly with the number of processors., The
project here is to port programs written for one multiprocessor to the others and
o measure their absolute performance and how it changes as you change the

number of processors. What changes need to be made to improve performance of

6.42

6.43

6.44

6.45

Exercises 675

)

the ported programs on each multiprocessor? What 1s the ratio ol processor per

formance according to each program?

35] <6.2, 6,10, 6.14> Instead of trying to create lair benchmarks, mvent pro-
grams that make one multiprocessor or cluster look terrible compared with the
others, and also programs that always make one look better than the others. It
would be an interesting result if you couldn’t find a program that made one multi-
processor or cluster look worse than the others. What are the key performance
characteristics of each organization?

[40] <6.2, 6.10. 6.14> Multiprocessors and clusters usually show performance
increases as you increase the number of processors, with the ideal being 7 times
speedup for # processors. The goal of this biased benchmark is to make a pro-
gram that gets worse performance as vou add processors. For example, this
means that one processor on the multiprocessor or cluster runs the program fast-
est, two are slower, four are slower than two. and so on. What are the key perfor-

mance characteristics for each organization that give imverse linear speedup”

[50] <6.2. 6.10, 6.14> Networked workstations can be considered multicomput
ers or clusters, albeit with somewhat slower, though perhaps cheaper. communi
cation relative to computation. Port some cluster benchmarks to a network usimg
remote procedure calls for communication. How well do the benchmarks scale on

the network versus the cluster? What are the practical differences between net-
worked workstations and a commercial cluster, such as the IBM-SP series?

|50] <6.3, 6.4, 6.5, 6.8> Implement parallel versions of two standard algo-

rithms—matrix multiply and mergesort—for a shared-memory architecture that
supports a relaxed memory consistency model. You will have to decide on a suit-
able partitioning of the computation, a suitable data layout across the processors,
and implement the necessary synchronization to ensure correctness. Use a pub-
licly available simulator, such as RSIM (www.ecerice edu/~rsin, 1o measure the
speedups you get for various processor sizes. Experiment with various cache
sizes, different latency parameters, and different working set sizes. Experiment
with different cache coherence protocols. Vary the parameters to model both

UMA and NUMA systems. How does that affect your experiments?

