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_Exercises

Solutions to the “starred” exercises appear in Appendix B.
O 41 15/10] <4.1, A.4> If we assume the set of latencies in Figure 4.1 and that a resul
can always be forwarded. then a specific structure for some of the CPU pipeline
Is implied. Assume the CPU yses the standard live-stage IF/ID/EX/Mem/WR
pipeline
a. [15] «4.1. A 4> Using a style similar to that of Figures A.23 and A31 in
Appendix A, draw a block diagram showing only the implied portions of the

pipeline. Label each component and data path in your diagram and show the

number of clock cycles each functional unit requires,
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b. [10] <4.1, A4> For each functional unit in your part (a) diagram, which
row(s) of Figure 4.1 provide the information to determine the number of

clock cycles needed for that functional unit to complete its operation?

[ 15/15] <4.1> This chapter examines soltware approaches for exploiting instruction-
level parallelism. This exercise asks how well software can find and exploit ILP.
Chapter 3 presents hardware techniques for exposing and exploiting ILP. Exercise

2 is a reprise of this ILP analysis, but from a hardware perspective.

Consider the following four MIPS code fravments, each containing two instructions:

i. DADDI RI1,RI1,{
.i_

117 .

iv. BEZ Rl,place

SD 7(R1)

a. |13] <4.1> For cach code fragment (i)—(iv) identify each type of dependence
that a compiler will find (a tragment may have no dependences) and describe

what data flow. name reuse, or control structure causes the dependence.

b. [15] <4.1> Assuming nonspeculative execution. for each code fragment dis
cuss whether a compiler could schedule the two instructions.

[20/15/15] <2.12, 4.1> Consider the simple loop in Section 4.1. Assume the num-

ber of iterations is unknown, but large

a. [20] <4.1> Find the theoretically optimal number of unrollings using t

&
latencies in Figure 4.1. Hmee Recall that you will need two loops: one
unrolled and one not!

b. [15] «2.12, 4.1> What is the actual maximum number of times the simple
loop in Section 4.1 can be unrolled using the given MIPS code? What is the
limiting resource? Show how to increase the number of times the loop may be
unrolled by transforming the MIPS code to make less intensive use of the hm

iting resource. How much does this transformation improve performance’

c. |15] €2.12. 4.1=> For the MIPS instruction set, what additional parameters
limit the number of times this loop can be unrolled? Hinr: When you find one
limiting parameter, assume that the resource it defines is unlimited, look for
an additional parameter, and repeat as needed.

[15] <4.1> Section 4.1 presents a technique for unrolling loops where the unroll-
ing factor is not statically known to be a factor of the number of loop iterations.
For a factor of k, the technique constructs two consecutive loops that iterate (2

nod &) and (a/k) times. respectively. Find a technigue to use just a single loop con-

taining the unrolled body iterated [ n/k | times. What restrictions are there on the

use of this technique? When does this technique perform better than the general

two-consecutive-loops technique? Can a compiler employ this technique?
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4.6

4.8

[15]

[ragment,

List all the dependences (output, anti. and truel in the followine code
| I :

Indicate whether the true dependences are loop carried or not. Show

why the loop is not parallel.
for (i=2;i<100;i=i+1) |
ali] = b[i] + a[i]; * Sl
I|—|| = a[i] + d[i]; /* s2
ali- =2 * b[i]: * 53
r1I1| 2% b[i] * 54
[15] <4.1> Here 1s an unusual loop. First, list the dependences and then rewrite

the loop so that it is parallel

for (1=1;7<100;i=1+1) {
al1] = b[i] + c[i]; /¥ 81 *
b[i] = a[i] + d[i]; /* S2 *
afi+1] = a[i] + e[i]; /* 53 *

[20/12] <4.]

F2 is initially

> The following loop is a dot product (ass suming the running sum in

0) and contains a recurrence. Assume the pipeline latencies from

Figure 4. | and a | cycle delaved branch,

foo: L.D FO,0(R1) : load 'L1|
L.D F4,0(R2) ;load Y[i]
FO,FO, smultiply X[i]*Y[4]
2,F0 ;add sum = sun X[1]*Y[1]
R1,R1 ;decrement X index
12,R2 sdecrement Y index
R1,foo ;loop if not done

a. [20] <4.1> Assume a single-issue pipeline. Despite the fact that the loop 1s

not parallel. it can be scheduled with no delays. Unroll the following loop a
suthcient number of times to schedule it without any del: tys. Show the

”‘JU\I\UHHHJHﬂVlW

sched
redundant overhead instructions. Hinr: An additional
transtormaton of the code

b _Il_‘i

processor in

1s needed to schedule without delay

<4.1> Show the schedule of the transformed code from part (a} for the

Figure 4.2, For an issue capability that is 100% greater. how
much faster is the loop body?
I .

[15/15] <4.1> The following loop computes Y[i = ax X[i] + Y][i]

. the key step in
a Gaussian elimination

Assume the pipeline latencies from Figure and a
cycle delayed branch,

loop: i!}

. ;load X[
MUL smultiply a*Xx[i]
|_,l.:= ;load Y|

ADD.D

i
;add a*Xx|[
;store Y[
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R1,R1,
R2,R2,#8

R1,Toop

issue pipeline. Unroll the loop as many times as

it without collapsing the loop overhead

tle. What is the execution time per element?

¢ sched

e a dual-issue processor as in Figure 4.2, Unroll the loop as

sssary 1o schedule it without any delays, collapsing the

loop overhead instructions. Show the schedule. What 1s the exec ution time

imstruction issue slots are unused

> In this exercise. we look at how some soft

techniques can extract ILP in a common vector loop, The following loop is

so-called DAXPY loop (double-precision ¢X plus ¥, discussed i Appendix

| Gaussian elimination. The Tollowing code mmple

ra vector length 100

s s
odar:

;load X(1)
smultip

t X index
t Y index
done

;loop if not done

wipeline late

ies from Figure 4.1 and a 1-cycle de

n the 1D stage. Assume that integer operations issue and

and that their results are fully bypassed.

- Assume a single-issue pipeline. Show how the loop would

1 unscheduled by the compiler and after compiler scheduling for bo h

yoint operation and branch de

ys, including any stalls or idle clock

cveles (see the example on page 305). What is the execution time per element

ol the result vector. Y, unscheduled and scheduled? How much faster must the

w processor hardware alone to match the performance improve

ment achieved by the sched piler (neglect the possible increase m

the number of clock cvcles necessary for memory system access elfects ot

essor clock speed on memory system performance)?

Assume a single-issue pipeline. Unroll the loop as many times as

to schedule it without any stalls, collapsing the loop overhead

instructions. How many times must the loop be unrolled? Show the struc
3 I

tion schedule. What 1s the execution time nent ol the result vector?

is the major contribution to the reduction in time per element?”

|20 }.3> Assume a VLIW processor with instructions that contain five

Il comy

in Fiaure 4.5

two degrees ol loop
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W 4.12

f

unroll

ol the loop 4 times 1o exti
any stalls (i.e.. completely empty issue cyeles). ¢

instructions. and then repeat the process but

the branch delay slot. Show the two schedules
clement of the result vector tor each schedule? W

slots are used in each schedule? How much do

between the two schedules? What is the

schedules?

d. |[15]<44

performance points in the marketpl

has latencies greater than those in 1 O )
vour answer to part (¢) is executed on the low-ci 0l
eliminate any undesirable behavior?

e. |15] <4.4> Assume a single-issue pipeline. Show the L sOftwart
pipelined version ol the DAXPY loop. You may omil md clean-

1y i 1
lIP code. W hat 15 the execution time Pel element of thet

(] <4.4> In this exercise we finish the compiler code

are-pipelining loop example on p

<4.4> Starting with the solution loop body given in the example. wrile

code ftor the complete software-pipelined loop

finish-up code. Assume that there will be a large number of iterations exe-

cuted. You need not show cod

oop mduction variable and

scalar increment value. Using the latencies in Figure <1 and ass

cycle branch delay, write an total time for the soltware

pipelined loop to increment all elements

b. [20] <44

Write code Tor the complete softv

’llliil |I\l'r‘i1 m the \'\i.i|]|'i\_' may exccute only one il Liomn

as many ilerations as needed for

schedule and possibly further transform your code so that 1t can ¢

o stalls. and show where those stalls occur. Assume the latencies n

only

»d branches that alw

Ficure 4.1, and use d

the 1-cvele branch l|\‘|.|_\ slot,

[20] <4.4> Consider the loop that we software-pipelined on

the latency of the ADD.D was 5 cycles. The software-pipelined loop now a
stall. Show how this loop can be written using both software ning and looj

unrolling to eliminate any stalls. The loop should be unrol

sible (once is enough). Show the loop start-up and clean-uj
[15] <4 4= Here is a simple code fragment:

for (1=2;

‘normalized —written so that the

[o use the GCD test, this loop must first

mdex starts at 1 and icrements by 1 on every

10rMmMaised Vel
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en use the GCD test o see il

there is a iit'q‘lutlth_'l‘.cu_

4.13  |15] <4.4> Here is another loop:
I

Normalize the IIL‘r'\‘P Does the GCD test detect a '.)'\']1'_“.]\}'-.|"|Li_'.l

for (i=2,i<=n/2;i+=2)

a[i] = a[i] + a[i + n/2];

| Is there a loop-

carried, true dependence 1 this loop? Explain.

414 |25 <4.4> Show that if there is a true de

ments Ala

ndence between the two array ele

i+ b)and Alc x i + d). then GCD(c.a) divides (d = b)

415 [15] <4.5> It is common in scientific codes for array elements 1o be addressed

based on the element values in an inde

The array subscripts are not affine, so the GCD test cannot be used
loop may still be parallel, so additional compiler tests may be valuable
condition on the index array x|] will make the |
answer as you can

list to the co

416 [15/1

for (i

x array. Consider the following loop:

However, the
What
oop parallel? Be as general in you
/int: Think of the loop as adding the elements of one linked

!
(R

.sponding elements of another linked list

45> Consider the following code fragment from an i-then-else

statement of the form

where A is at 0(R3) and B is at 0(R2

In the following assume a standard single-issue MIPS pipeline.

I DADDI
L2: SD

if (A==0) A = B; else A = A+d;

LD R1,0(R3)
21 41

]

branch resolution

in the 1D stage, delayed branches. and forwarding

d.

load instructions LWZ Rd,x(Rs1),Rs2 and

[15] <4.5> Assume conditiona
LWNZ Rd,x(Rs1),Rs2 that do not load unless the value of Rs2 is zero or not
zero, respectively. Compile the code using a conditional load and write 1t
showing any stall cycles that would occur in the pipeline. Compare the clock

cycles and register use to that of the original code fragment

[15] <4.5> Boosting supports compiler speculation via a load mstruction
LW+ that includes a flag of the compiler prediction for the branch on which
the load depends. 1f the prediction flag matches the branch resolution resull.
then the loaded value is written to the register. Compile the code using a

boosted load and write it showing any stall cycles that would occur in the
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- use 1o that of the original

c. [15] <4.5= Compile the code using compiler-based speculation for both the

then and else clauses and write 1t showing any stall cycles that would oceur in

pipeline. Assume conditional move nstructions CMVZ Rd,Rs1,Rs? and

Rd,Rs1,Rs2Z that move the contents ol rec

ter Rs1 to register Rd 1f Rs2

1s equal to or not equal to zero, respectively. Compare the clock cyeles and

register use 1o that of the original code fragmeni.

[5] <4.5= Perform the same transformation (moving up the branch) as the exam-

42, but using only conditional move. Be careful that vour loads

ple on p

which are no longer control dependent. cannot raise an exception 1t they should

not have been executed!

| 1 1 M | 1 wn ] . 1 t PR B he
will mvestigate how predication atfects the
form and execution of pipelined instructions. Conditional execution of mstruc

tons 18 traditionally implemented with branches. For example. the MIPS

is unconditional. Its execution

1

acp-
b gLt

It predicated. however. the instruction form could be

(R8) ADD R1, R1=R2+R3

with control of execution of the ADD an integral part of the mstruction itself, thus

eliminating a control dependence between what was before two instructions. [f

cn set to the value true. then the /

places 1tn

J l.'i‘]‘.l|"1I|L“~ the sum :

1 register; otherwise the A

leaving R1 unchanged

)0 behaves hike a NOP. computing no result and

set ol I-bit predicate v ters that are set by a compare instruction of
the form
p) NE pT,pF= 0

O
]

[his compare (written with mnemonic CMP) is itself predicated on the truth value

ol the qualifving predicate. gp. This example uses a not equal (.NE) comparison

relation o ma

ch the code Tragment above; other relations may be availa
) NE set

If gp

registers pT and pF such that

the [-bit pred
and pF!=(R8!=R0)

Fhat 1s. pT is assigned the truth value of the

t equal to RO, and pF 1s assigne

statement “f

| the complement of the truth

villue of that same statement. It gp is false. the

.NE behaves as would a NOP

mnstruction
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15] <4 5> Usine predicated mstructions, wrile the following code fragment
2] £ -

. hasic block (assuming the SUB instruction 1s the only entry poimnt
! 3 Y

for the code). You may assume that any comparce instruction vou use Is not

itsell predicated.

all the dependences in the code given in part (a), and

b. |15] <4.5> What are

what are the dependences in the code for your answer 1o part (a)? How do

they differ. and what 1s the advantage tor performance of the predicated code!

}.5. 4.7> See the description ol predicated mstructions in the preced-

1.19 l
then answer the following questions.
15 47> Write the following code without branches. Use predicated
MIPS instructions.
£ (A>B) then { X=1;}
‘_]
if X=23 |
:_xlf i :
b. [12] - Where would an TA-64 compiler place stop(s) n the answer 1o
raart ()
c. |12] <4.7> What are the possible sequences of instruction bundle templates
(see Fleure 4.12) for the answer to part ( U7 Assume that the first mstruction
£ I
ins a bundle.
o 4 [10] <4.5> Predi ated instructions cannot climinate a branch mstruction when

of what kind of program structure?

anch 1s part

- tor 1A-64 has gencrated the following sequence ol three

421 [15]<4.7> A \lilI:i‘l.

Mem[0+R1]
then R1=R2+R3
then R5=R1-R4

(p: DSUB

where pl and p2 are two predicate registers that are set earlier in the program
that the three instructions are to form a bundle What are the possible

bundle (see Fieure 4.12). and under

emplates that the compiler could use tor the

hat circumstances would each template be chosen?
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422 [20] <4.7>

A compound conditional joins more than two values by Boolean oper
ators, for example, X&&YR&Z. If predicate-generating compare instructions can be
ganged together to simultaneously update a single predicate register. then com-
pound conditionals can be computed more rapidly. Consider a parallel computa-
tion of an && only compound condition (a conjunction term). If the predicate
register were initialized to true, then simultaneous writes by only those compare
instructions determining that their comparison should set the predicate to false
(zero) is readily supportable in hardware. There will be no contention from trying
to set the predicate simultaneously to conflicting values. A parallel not-equal
compare (o update pT might be writien

pT=Rx,R0

where RO always contains zero and . AND denotes that the write by this compare to
predicate register pT will occur only if this compare finds pT is lalse. Initialize a
predicate register to true, and then use the parallel compare instruction to trans-
form the following code into a single block of predicated instructions and form it

into as few bundles as possible, as in Figure 4.13 on page 335.

A4 el
A+1; )

L)

if (X && Y 8& Z) then
else { A=A+2
423 [10220/10) <4.1.4.5,4.7.5.10, 5.1 1> The example on page 342 uses a speculative
| | Pt

load instruction to move a load above its guarding branch instruction. Consider

the following code:
instr. 1 ;arbitrary instruction
instr. 2 snext instruction in block

sintervening instructions

;check for null pointer

;load using pointer

;dependent ADD.D

BEQZ
L.D
A‘_,][‘ . L:'

. shandle null pointer
a. [10] <4.5% Write the above code using a speculative load (sL.D) and a specu-
lation check instruction (SPECCK) to preserve exception behavior. Where

should the L.D move to best hide its potentially long latency?

b. [20] <4.1, 4.5, 4.7> Assume a speculation check struction that branches to
recovery code. Write the above code speculating on both the load and the
dependent add. Use a speculative load, a nonspeculative add, a check instruc-
tion, and the block of recovery code. How should the speculated load and add
be scheduled with respect to each other?

c. [10]<5.10.5.11> What tvpe(s) of load exceptions could the SPECCK protect

for in part (a)? What type ol load exception will trigger the recovery code in

part (b)?

9 4.24  |15] <4.7> An advanced load address table ( ALLAT) holds the effective address of

a load that has been moved before a preceding store. which may or may not have
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the same or overlapping effective address. For which processor. the one ol Fig

.1 or the IA-64 described in Figure 4.15, is an ALAT most benehcial and why?

[15] <4 .85 Why might speculation and predication be of less value in the embed-
ded computer marketplace than in the server or desktop arena? What are the mai
ket niches where thev will be least valued?

i
[20
scheduled processors. For statically scheduled processors, loop unrolling. trace

<4.1.4.4, 4.5> Branches are the target of considerable effort Tor dynanmically

scheduling. superblocks, and predication all attempt to reduce the negative eftects
of branches on performance. Construct a comparison ol these four techniques
For each technique include a description of its best-suited branch characteristics,
suitable program structures, needed hardware support, complexity of compiler
support, effect on code size, effect on fetching. and other meaningtul distinguish-
ing features

[ Discussion] <3.2-3.7. 4.1-4.5> Dynamic instruction scheduling requires a con-
siderable mvestment in hardware. In return, this capability allows the hardware 1o
run programs that could not be run at full speed with only compile time, static
scheduling. What trade-offs should be taken into account in trying to decide

between a dynamically and a statically scheduled implementation? What situa-

tions in either hardware technol or program characteristics are likely to favor
one approach or the other? Most speculative schemes rely on dynamic schedul-
ing; how does speculation affect the arguments in favor of dynamic scheduling?
Many static schemes incorporate predication; how do branch behavior and pro-

gram structure affect the arguments in favor of predication?

| Discussion] <3.2, 3.3, 4.5> Consider combining the static and dynamic ILP
techniques of predicated instructions and the Tomasulo algorithm. How might
predicated mstructions be handled in cach of the three steps of the Tomasulo
aleorithm (see Section 3.2)7 For each approach that you can devise, clearly deline
how it is implemented. discuss its performance potential, list what additional

dware support is necessary it any. tell whether the approach mvolves specula-

tive execution or not, and identify whether dependences on the predicate behave
as data or control dependences. Do you think the two techniques work together
W l\ll_]

| Discussion] <4.3-4.5> Discuss the advantages and disadvantages ol a supersca
lar implementation and a VLIW approach in the context ol MIPS. What levels ol
[LP

which type of processor o build? How does NPL.‘\_lI|‘l[J<‘-I1 aftect the results?

avor each approach? What other concerns would you consider in choosing

[Discussion] <3, 4> Investigate the delivered clock speeds for various processors
using primarily hardware techniques for explomting 1LP and for processors focused
on soltware techniques for exploiting ILP. Try to determine the reasons for any
differences in clock speeds. Examine available benchmark results to see how they

do or do not correlate closely with clock speed




